

DATA SHEET

ARRAY CHIP RESISTORS

YC122 (4Pin/2R; Pb Free)

5%, 1% sizes 2 × 0402

YAGEO

Chip Resistor Surface Mount

SERIES

122 (Pb Free)

SCOPE

This specification describes YC122 series chip resistor arrays with lead-free terminations made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO ORDERING CODE

CTC CODE

YC122 - X X X XX XXXX L (1) (2) (3) (4) (5) (6)

(I) TOLERANCE

 $F = \pm 1\%$ $J = \pm 5\%$

(2) PACKAGING TYPE

R = Paper/PE taping reel

(3) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(4) TAPING REEL

07 = 7 inch dia. Reel 13 = 13 inch dia. Reel

(5) RESISTANCE VALUE

56R, 560R, 5K6, 56K, 1M 0R = Jumper

(6) RESISTOR TERMINATIONS

L = Lead free terminations (pure Tin)

ORDERING EXAMPLE

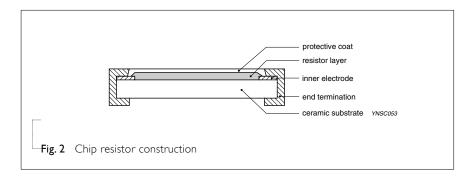
The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

NOTE

- The "L" at the end of the code is only for ordering. On the reel label, the standard CTC will be mentioned an additional stamp "LFP"= lead free production.
- 2. Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- Products with lead in terminations will be phased out in the coming months (before July 1st, 2006)

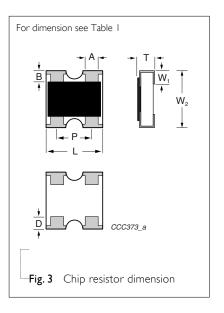
Chip Resistor Surface Mount YC SERIES 122 (Pb Free)

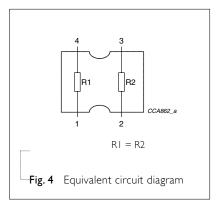
MARKING


YCI22

No marking

CONSTRUCTION


The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat.


Finally, the four external terminations (pure Tin) are added. See fig. 2.

DIMENSIONS

Table I	
TYPE	YC122
A (mm)	0.21 +0.10/-0.05
B (mm)	0.20 ±0.10
P (mm)	0.67 ±0.05
L (mm)	1.00 ±0.10
T (mm)	0.35 ±0.10
W _I (mm)	0.25 ±0.10
W ₂ (mm)	1.00 ±0.10
D (mm)	0.20 ±0.10

<u>SCHEMATIC</u>

Chip Resistor Surface Mount

S

SERIES

122 (Pb Free)

ELECTRICAL CHARACTERISTICS

Table 2

CHARACTERISTICS YC122		
Operating Temperature Range	–55 °C to +125 °C	
Maximum Working Voltage	50 V	
Maximum Overload Voltage	100 V	
Dielectric Withstanding Voltage	100 V	
Number of Resistors		2
	5% (E24)	10 Ω to 1 MΩ
Resistance Range	1% (E24/E96)	10 Ω to 1 MΩ
	Zero Ohm Jumper	< 0.05 Ω
Temperature Coefficient		±200 ppm/°C
Jumper Criteria	Rated Current	1.0 A

<u>FOOTPRINT AND SOLDERING</u> PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data" conformed to EU RoHS.

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PRODUCT TYPE	PACKING STYLE	REEL DIMENSION	QUANTITY PER REEL
YC122	Paper / PE Taping Reel (R)	7" (178 mm)	10,000 units
		13" (330 mm)	50,000 units

NOTE

1. For Paper/PE tape and reel specification/dimensions, please see the special data sheet "Packing" document.

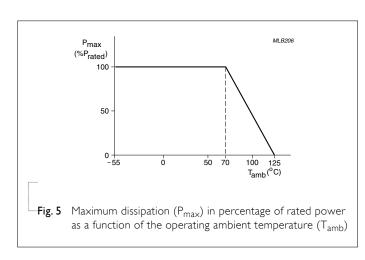
FUNCTIONAL DESCRIPTION

POWER RATING

YC122 rated power at 70°C is 1/16 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V=\sqrt{(P \times R)}$$

Where

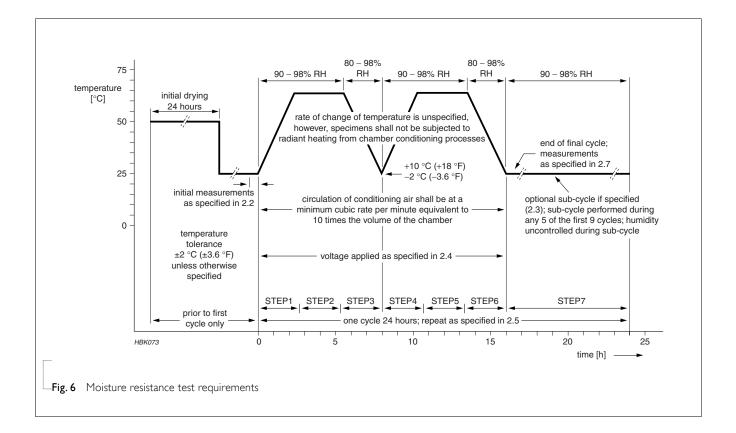
V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements


ΓEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of	MIL-STD-202F-method 304; JIS C 5202-4.8	At +25/–55 °C and +25/+125 °C	Refer to table 2
Resistance)10 C 3202-1.0	Formula:	
(T.C.R.)		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t_2 =–55 °C or +125 °C test temperature	
		R_1 =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Thermal Shock	MIL-STD-202F-method 107G;	At -65 (+0/-10) °C for 2 minutes and at +125	$\pm (0.5\% \pm 0.05~\Omega)$ for 1% tol.
	IEC 60115-1 4.19	(+10/-0) °C for 2 minutes; 25 cycles	$\pm (1.0\% {+} 0.05~\Omega)$ for 5% tol.
Low	MIL-R-55342D-Para 4.7.4	At -65 (+0/-5) °C for I hour, RCWV applied	$\pm (0.5\% + 0.05~\Omega)$ for 1% tol .
Temperature		for 45 (+5/–0) minutes	$\pm (1.0\% {+} 0.05~\Omega)$ for 5% tol.
Operation			No visible damage
Short Time	MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds at room	$\pm (1.0\% + 0.05 \ \Omega)$ for 1% tol.
Overload	IEC 60115-1 4.13	temperature	$\pm (2.0\% \pm 0.05~\Omega)$ for 5% tol.
			No visible damage
Insulation	MIL-STD-202F-method 302;	RCOV for I minute	≥10 GΩ
Resistance	IEC 60115-1 4.6.1.1	Type YC122	
		Voltage (DC)	
Dielectric	MIL-STD-202F-method 301;	Maximum voltage (V _{rms}) applied for 1 minute	No breakdown or flashover
Withstand Voltage	IEC 60115-1 4.6.1.1	Type YCI22	
		Voltage (AC) 100 V _{rms}	
Resistance to Soldering Heat	MIL-STD-202F-method 210C;	Unmounted chips; 260 ± 5 °C for 10 ± 1	$\pm (0.5\% {+} 0.05~\Omega)$ for 1% tol.
	IEC 60115-1 4.18	seconds	\pm (1.0%+0.05 Ω) for 5% tol.
			No visible damage
Life	MIL-STD-202F-method 108A;	At 70±2 °C for 1,000 hours; RCWV applied for	$\pm (1\% + 0.05 \ \Omega)$ for 1% tol.
	IEC 60115-1 4.25.1	1.5 hours on and 0.5 hour off	$\pm (3\% {+} 0.05~\Omega)$ for 5% tol.

Chip Resistor Surface Mount YC SERIES 122 (Pb Free)

TEST METHOD	PROCEDURE	REQUIREMENTS	
MIL-STD-202F-method 208A;	Solder bath at 245±3 ℃	Well tinned (≥95% cove	ered)
IEC 60115-1 4.17	Dipping time: 2±0.5 seconds	No visible damage	
JIS C 5202.6.14;	Resistors mounted on a 90 mm glass epoxy	\pm (1.0%+0.05 Ω) for 1%	6 tol.
IEC 60115-1 4.15	resin PCB (FR4)	\pm (1.0%+0.05 Ω) for 5% tol.	
	Bending: I mm	No visible damage	
MIL-STD-202F-method 215;	Isopropylalcohol (C ₃ H ₇ OH) or dichloromethane	No smeared	
IEC 60115-1 4.29	(CH ₂ Cl ₂) followed by brushing		
JIS C 5202 5.9;	Maximum voltage (V _{ms}) applied.	Resistors range	Value
IEC 60115-1 4.12		R < 100 Ω	10 dB
		$100 \Omega \le R < 1 K\Omega$	20 dB
		$1 \text{ K}\Omega \leq R < 10 \text{ K}\Omega$	30 dB
		$10 \text{ K}\Omega \leq R < 100 \text{ K}\Omega$	40 dB
		$100 \text{ K}\Omega \leq R < 1 \text{ M}\Omega$	46 dB
		$1 \text{ M}\Omega \leq R \leq 22 \text{ M}\Omega$	48 dB
JIS C 5202 7.5;	I,000 hours; 40±2 °C; 93(+2/-3)% RH	$\pm (0.5\% + 0.05~\Omega)$ for 1% tol. $\pm (2.0\% + 0.05~\Omega)$ for 5% tol.	
IEC 60115-8 4.24.8	RCWV applied for 1.5 hours on and 0.5 hour off		
EIA/IS 4.13B;	Solder bath at 260±5 °C	No visible damage	
IEC 60115-8 4.18	Dipping time: 30±1 seconds		
JIS C 5202 5.8	At room temperature; 2.5 × RCWV applied for I second on and 25 seconds off; total 10,000 cycles	$\pm (1.0\% \pm 0.05 \ \Omega)$ for 1% tol. $\pm (2.0\% \pm 0.05 \ \Omega)$ for 5% tol.	
On request	On request		
MIL-STD-202F-method 106F;	42 cycles; total 1,000 hours	±(0.5%+0.05Ω) for 1%	tol.
IEC 60115-1 4.24.2	Shown as Fig. 6	$\pm (2.0\% + 0.05\Omega)$ for 5% tol.	
	=	No visible damage	
	MIL-STD-202F-method 208A; IEC 60115-1 4.17 JIS C 5202.6.14; IEC 60115-1 4.15 MIL-STD-202F-method 215; IEC 60115-1 4.29 JIS C 5202 5.9; IEC 60115-1 4.12 JIS C 5202 7.5; IEC 60115-8 4.24.8 EIA/IS 4.13B; IEC 60115-8 4.18 JIS C 5202 5.8 On request MIL-STD-202F-method 106F;	MIL-STD-202F-method 208A; Solder bath at 245±3 °C IEC 60115-1 4.17 Dipping time: 2±0.5 seconds JIS C 5202.6.14; Resistors mounted on a 90 mm glass epoxy resin PCB (FR4) Bending: I mm MIL-STD-202F-method 215; Isopropylalcohol (C₃H႗OH) or dichloromethane (CH₂Cl₂) followed by brushing JIS C 5202 5.9; Maximum voltage (V₂ms) applied. JIS C 5202 7.5; I,000 hours; 40±2 °C; 93(+2/−3)% RH RCWV applied for I.5 hours on and 0.5 hour off EIA/IS 4.13B; Solder bath at 260±5 °C Dipping time: 30±1 seconds JIS C 5202 5.8 At room temperature; 2.5 × RCWV applied for I second on and 25 seconds off; total 10,000 cycles On request On request MIL-STD-202F-method 106F; 42 cycles; total 1,000 hours	MIL-STD-202F-method 208A: Solder bath at 245±3 °C Well tinned (\ge 95% cov. No visible damage JIS C 5202.6.14; Resistors mounted on a 90 mm glass epoxy resin PCB (FR4) \pm (1.0%+0.05 Ω) for 19

122 (Pb Free)

Chip Resistor Surface Mount YC SERIES 122 (Pb Free)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Dec 21, 2004	-	- Test method and procedure updated
Version 0	Nov. 10, 2003	-	- First issue of this specification