查询Z86160供应商

[®] Zilo⁷

Preliminary CUSTOMERPRODUCTSPECIFICATION

FEATURES

Part		ROM RAM* Kbytes Bytes Sp		Speed	Package Information		
Z8	6160	32	768	16	100-Pin QFP		
*General-Purpose							
n	n 3.0- to 5.5-Volt Operating Range						
n Low-Power Consumption							
n	Custom Input/Output Lines						

GENERAL DESCRIPTION

The Z86160 is a member of the Z8 $^{\circ}$ single-chip microcontroller family offering a unique architecture that is characterized by Zilog's 8-bit microcontroller core.

This CMOS microcontroller features fast execution, efficient use of memory, sophisticated interrupts, input/ output bit manipulation capabilities, and easy hardware/ software system expansion along with low-cost and low-power consumption.

For applications demanding powerful I/O capabilities, the Z86160 fulfills this with custom I/O, specifically tailored to meet the needs of set-top requirements.

Four basic address spaces, the Program Memory, Data Memory, 236 General-Purpose Registers, and 512 bytes of protected RAM, support a wide range of memory configurations. The protected RAM is mapped into data memory. n 0° C to $+70^{\circ}$ C Temperature Range

- n 512 Bytes Battery Backed-Up (BBU) Secure RAM
- n Keypad Buffer
- n LED Controller
- n Two Comparators
- n Two On-Chip Counter/Timers

To unburden the program from coping with real-time problems such as counting/timing, and serial data communications, the Z86160 offers two on-chip counter/timers with a large number of user selectable modes, and an asynchronous receiver/transmitter (UART) (see Block Diagram).

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device	
Power	V _{cc}	V _{DD}	
Ground	GND	V _{SS}	

GENERAL DESCRIPTION

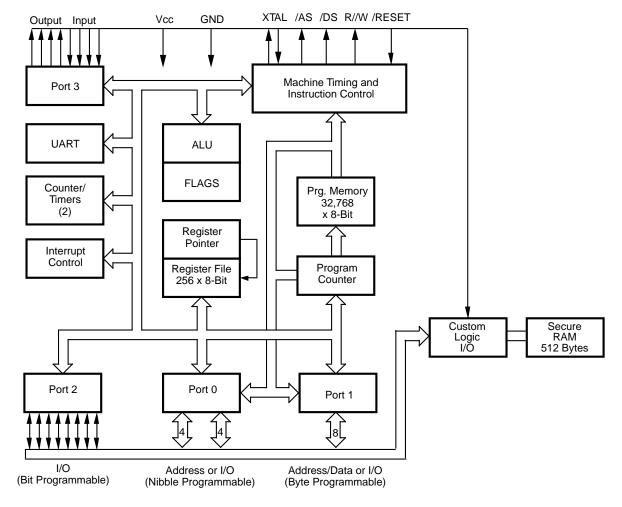


Figure 1. Z86160 Functional Block Diagram

<u> Asiras</u>

PIN DESCRIPTION

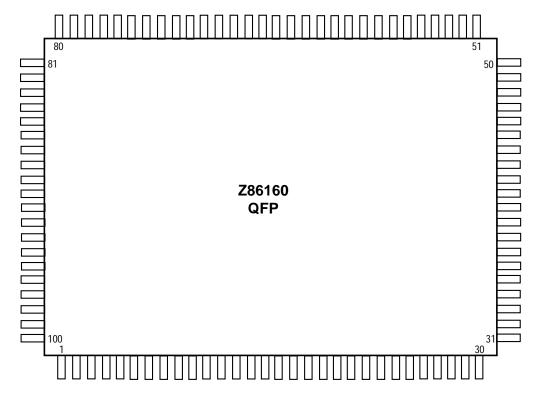


Figure 2. Z86160 100-Pin QFP Package

[©]Silæ

PIN DESCRIPTION (Continued)

Pin #	Symbol	Pin #	Symbol	Pin #	Symbol	Pin #	Symbol
1	EXADR14	26	V _{cc}	51	S4	76	M7
2	EXR/W	27	D5	52	S 5	77	ON/OFF
3	EXADR07	28	D1	53	S 6	78	GND
4	EXADR12	29	D4	54	K1	79	N1
5	GND	30	D2	55	S 7	80	N2
j.	EXADR13	31	D3	56	Т0	81	V _{cc}
	EXADR08	32	S 0	57	T1	82	K5
	EXADR06	33	S 1	58	T2	83	N3
)	EXADR09	34	GND0	59	T3	84	K6
0	V _{cc}	35	GND1	60	T4	85	K7
1	EXADR05	36	GND2	61	T5	86	LO
2	EXADR11	37	GND3	62	GND	87	L1
3	EXADR04	38	S 2	63	T6	88	L3
4	/EXDS	39	GND	64	T7	89	B0
5	GND	40	IO	65	M0	90	B1
6	EXADR03	41	I1	66	M1	91	GND
7	EXADR10	42	I2	67	M2	92	XTAL1
8	EXADR02	43	I3	68	V _{cc}	93	XTAL2
9	/EXRAMCS	44	I4	69	M3	94	GND
20	EXADR01	45	I5	70	K2	95	B2
1	D7	46	I6	71	M4	96	B3
22	EXADR00	47	I7	72	K3	97	L4
23	D6	48	K0	73	M5	98	N4
4	D0	49	V _{cc}	74	K4	99	N5
5	GND	50	V _{CC} S3	75	M6	100	L5

Z86160 100-Pin QFP Pin Identification

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Мах	Units
$V_{\rm CC}$	Supply Voltage*	$-0.3 \\ -65 \\ 0^{\circ}$	+7.0	V
$T_{\rm STG}$	Storage Temp		+150	C
$T_{\rm A}$	Oper Ambient Temp		70°	C

Notes:

* Voltages on all pins with respect to GND.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load). Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

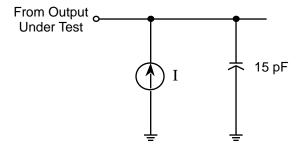
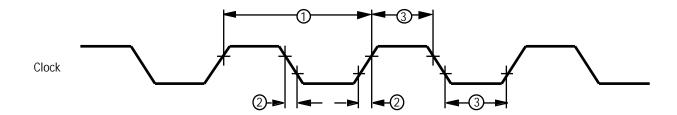


Figure 3. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS Z86160


		11	T _A =0°C to+70°C				
Sym	Parameter	Min	Max	25°C	Units	Conditions	
	Max Input Voltage		V _{cc} +0.3		V	I _{IN} <250μA	
V _{CH}	ClockInputHighVoltage	0.85V _{cc}	$V_{00}^{+0.3}$		V	Driven by External Clock Generator	
V _a	ClockInputLowVoltage	$V_{ss} = 0.3$	0.8		V	DrivenbyExternalClockGenerator	
V _H	InputHighVoltage	2	V _{cc} +0.3		V		
V _L	InputLowVoltage	$V_{ss}-0.3$			V		
V_{CH}	OutputHighVoltage	4	ũ		V	$I_{OH} = -2.0 \text{mA}[3]$	
V _{CH}	OutputHighVoltage		V_{cc} -100m	V	V	I _{он} =-100µА	
Va	OutputLowVoltage		0.75		V	$I_{01}^{n} = +7.0 \text{mA}[3]$	
Va	OutputLowVoltage		0.3		V	$I_{01}^{2} = +2.0 \text{mA}[3]$	
V V U V U U	OutputLowVoltage		0.3		V	$I_{0L}^{0} = +1.0 \text{ mA}[2]$	
Ļ	InputLeakage	-2	2		μA	$V_{\rm IN}=0V,V_{\rm CC}$	
Ĺ	OutputLeakage	-2	2		μA	$V_{IN} = 0V, V_{CC}$	
$\overline{I_{cc}}$	SupplyCurrent(StandardMode)		44	30	mA	[1]@16MHz	
I _{cc1}	StandbyCurrent(StandardMode)		18.75	5.75	mA	[1]HALTMode V_{N} =0V, V_{CC} @16MHz	
I _{cc2}	StandbyCurrent		5		μA	$[1]@0MHzV_{IN}=0V,V_{CC}=3V$	
I	AutoLatchLowCurrent	-14	14	5	μA	00	

Notes:

[1] All inputs driven to either 0V or V_{cc} , outputs floating. [2] $V_{cc} = 3.0V$ to 3.6V [3] $V_{cc} = 4.5V$ to 5.5V Data Retention @ 2.0V – BBU

AC CHARACTERISTICS

Additional Timing Diagram

Additional Timing

AC CHARACTERISTICS

Additional Timing Table Z86160

		T _A = 0°C to +70°C 16 MHz				
No	Symbol	Parameter	Min Max	Units Notes		
1	ТрС	Input Clock Period	TBD	ns [1]		
2	TrC,TfC	Clock Input Rise & Fall Times	TBD	ns [1]		
3	TwC	Input Clock Width	TBD	n s [1]		

Notes:

[1] Clock timing references use $0.85V_{\rm CC}$ for a logic 1 and 0.8V for a logic 0.

[⊗] ZiLŒ

LIMITATIONS

Be advised that AC Electrical Characteristics and Timing Diagram information was unavailable at the time of this publication, they will be supplied at a later date.

Development Projects:

Customer is cautioned that while reasonable efforts will be employed to meet performance objectives and milestone dates, development is subject to unanticipated problems

Low Margin:

Customer is advised that this product does not meet Zilog's internal guardbanded test policies for the specification requested and is supplied on an exception basis. Customer is cautioned that delivery may be uncertain and that, in addition to all other limitations on Zilog liability

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be found,

© 1996 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document. and delays. No production release is authorized or committed until the Customer and Zilog have agreed upon a Customer Procurement Specification for this project.

stated on the front and back of the acknowledgement, Zilog makes no claim as to quality and reliability under the CPS. The product remains subject to standard warranty for replacement due to defects in materials and workmanship.

either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http//:www.zilog.com