Dual Output CD and DVD 4 Channel Laser Diode Driver

Features

－Pin compatible with EL6839
－Dual output for CD／DVD laser
－LVDS control signal，internal 100 ohms
－Rise time 1.0 ns，Fall time 1.1 ns typical
－Low noise read channel with gain of $100 x$ to 150 mA
－Channel 2 gain of $250 x$ to 550 mA
－Channel 3 gain of $150 x$ to 500 mA
－Channel 4 gain of $100 x$ to 450 mA
－Combined total output current 700 mA
－On－chip oscillator with frequency and amplitude control by external resistors
－Oscillator frequency to 575 MHz ，amplitude to 100 mA pk to pk
－Power Up／Down control
－>2 kV ESD Single 5 V supply（ $\pm 10 \%$ ）

February 2005

Ordering Information

ZL40539LCG Trays／Bake／Dry Pack ZL40539LCF Tape／Reel Bake／Dry Pack
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
－32－pin QFN package

Applications

－DVD $\pm R W / R A M$
－DVD \pm R
－CD－RW
－CD－R
－Write optical drives
－Laser Diode current switch
－Supports double density DVD

Figure 1 －ZL40539 Block Diagram

Figure 2 - Pinout for $5 \times 6 \mathrm{~mm} 32$ pin QFN (top view)

Description

The ZL40539 is a high performance laser diode driver capable of driving two separate cathode grounded laser diodes (e.g., 650 nm and 780 nm laser diodes).

The ZL40539 contains a 150 mA low noise read channel (ChR), and three $>450 \mathrm{~mA}$ write channels (Ch2, Ch3 and Ch4). Each channel amplifies the positive current supplied at its reference input (INR, IN2, IN3, IN4) by a fixed factor of $100,250,150$ and 100 respectively.

The device is enabled with a High level applied to the Enable Pin. The read channel is activated by applying a 'Low' signal to the ENRB pin. Each fast write channel can be enabled by applying a positive voltage difference between the enable pins (EN2P, EN2N), (EN3P, EN3N) and (EN4P, EN4N). The output currents of the four channels are summed together and output as a composite signal at either OUTA (if SELA select is 'High') or OUTB (if SELA select is 'Low'). This provides the ability to drive two different laser diodes with just one ZL40539.
Voltage control of the channel reference inputs (INR, IN2, IN3 and IN4) can be achieved by using an external resistor in series with the reference channel input to convert a given reference potential to an input current.

An on-chip RF oscillator is provided for the reduction of laser mode hopping noise. The oscillator is enabled if OSCEN = 'High', and its output signal is added to the appropriate current output (OUTA, if SELA select is 'High', or OUTB, if SELA select is 'Low'). The oscillator amplitude is set by external resistors from RSA or RSB to GND. Its frequency is set by an external resistor RFA or RFB to GND. RFA and RSA are selected when SELA = 'High' and RFB and RSB when SELA = 'Low'

Application Notes

Read and Write Channel Operation

The device is activated by applying a 'High' signal to the Enable pin. In this mode, the read channel can be enabled with a low signal on ENRB. The fast write channels can be enabled by applying a 'High' signal to the respective pair of write enable pins (EN2P, EN2N), (EN3P, EN3N), or (EN4P, EN4N). The output currents of the four channels are summed together and output as a composite signal at either OUTA (if SELA select is 'High') or OUTB (if SELA select is 'Low'). This provides the ability to drive two different laser diodes with just one ZL40539.

Voltage control of the channel reference inputs (INR, IN2, IN3 and IN4) can be achieved quite easily using an external resistor $\mathrm{R}_{\text {ref }}$ in series with the reference channel input to convert a given reference potential $\mathrm{V}_{\text {ref }}$ to an input current, $\mathrm{l}_{\text {in }}$:

$$
I_{i n}=\frac{V_{r e f}}{R_{r e f}+R_{i n}}
$$

where $R_{\text {in }}$ is the input impedance of the respective reference channel.

On-chip RF Oscillator

An on-chip RF oscillator is enabled if OSCEN = 'High', and its output signal is added to the appropriate current output (OUTA, if SELA select is 'High', or OUTB, if SELA select is 'Low'). The oscillator amplitude is set by an external resistor from RSA or RSB to GND. Its frequency is set by an external resistor RFA or RFB to GND. RSA and RFA are selected when SELA is 'High'

The oscillator signal is summed with the programmed Write and Read levels before amplification to the output. The oscillator signal has zero DC level and +l_pk to -I_pk signal swing. Consequently, if the programmed DC level from the Write and Read Channels is less than the PK level programmed for the Oscillator, the combined signal will be clipped on the negative cycle of the signal. This will increase the harmonic content of the output signal and reduce the pk to pk amplitude output.

Thermal Considerations

Package thermal resistance is $40^{\circ} \mathrm{C} / \mathrm{W}$ under the EIA/JESD51-3 compliant PCB test board condition.
Users should ensure that the junction temperature does not exceed $150^{\circ} \mathrm{C}$. Thermal resistance from junction to case and to ambient is very much dependent on how the IC is mounted onto the board, on the PCB layout and on any heat extraction arrangements.

Power consumption and system ambient operating temperature limits should be noted and careful thermal gradient calculations undertaken to ensure that the junction temperature never exceeds $150^{\circ} \mathrm{C}$.

Electrical and Optical Pulse Response

Figure 3 - Pulse Response Model
Figure 3 illustrates a simplified model of the ZL40539 output and the application. The ZL40539 consists of an ideal switched current source and an equivalent model of the ZL40539 output stage. The Electrical Model for the Laser Diode is a Voltage source Vd (V_on) in series with the On Resistance Rd all in parallel with the Junction Capacitance Cd. This simplified model approximately represents the Laser Diode Electrical load when operated beyond the Laser Threshold. To a first approximation, the Optical output is proportional to the current flow in the Resistor Rd.

The Laser Diode and the ZL40539 are connected together buy interconnect tracks with the return current passing through the supply decoupling bypass capacitor between ground and output Vcc.

The ZL40539 will typically switch the programmed output current in 400 ps and can be approximated to an ideal switch with a propagation delay of lout_on (1.2 nS). The electrical pulse response parameters, Trise, Tfall, Overshoot and Undershoot are determined by the combined electrical network as illustrated in Figure 3.

For example, the Rise Time and Fall time for large current steps can be slew rate limited by the combined interconnect and fixed interconnect inductance. The Fixed Inductance represents that associated with packaging and minimum interconnect distance. The Interconnect Inductance is that associated with the additional tracking between Laser Diode and the ZL40539 to accommodate application physical limitations. For example:-
if a pulse of 360 mA amplitude (40 mA to 400 mA) is to be switched in a time of 1 nS with the $\mathrm{Vd}=$ 1.6 V , then:-
the maximum volt drop across the interconnect inductance is approximately 3.5 V (maximum Vpin for 500 mA output) -1.6 V (Vdiode) $=1.9 \mathrm{~V}$.
Consequently, L*di/dt < 1.9 V .
Hence, $L<1.9 /(0.36 \mathrm{~A} / 1 \mathrm{nS})=5.3 \mathrm{nH}$.
Small current step size Rise and Fall time will be determined by the Bandwidth of the combined network. This is dominated by the Interconnect Inductance and the output Capacitance. Similarly, the overshoot and undershoot will be determined by the Q of the network. This is a function of the Source Impedance from the ZL40539, the Interconnect inductance and the Load impedance of the Laser Diode. Figure 3 includes example simplified estimates of the Q and BW of the combined Laser Diode, ZL40539 and interconnect network for two different interconnect inductance values ($5 \mathrm{nH} \& 7 \mathrm{nH}$) and two different Diode On resistance ($3 \mathrm{Ohm} \& 7 \mathrm{Ohm}$). This simple analysis illustrates the change in BW and Q of the network depending on these parameters. This in turn effects the Rise Time and Fall time and the Overshoot and Undershoot performance achieved in the application.

Specified Electrical Performance with 15 mm Interconnect and Zarlink ZLE40539 Evaluation Board

The specified transient pulse performance in the table are results based on the electrical measurements and simulations across full process corners using the Zarlink Evaluation Board using a 3.9 Ohm resistive load to ground.

The track interconnect between ZL40539 and the 3.9 Ohm Resistor is 15 mm long and uses a 2 mm wide track on single sided FR4 board. The return path is via two 2 mm wide tracks spaced 0.25 mm either side of the track between output and the 3.9 ohm resistor. The combined forward and return path forms a co planar transmission line with a characteristic impedance of approximately 120 ohms.

The tight coupled return paths carrying the return current reduce the effective series inductance (Leff) which can be approximated to:-

$$
\text { Leff }=2 \text { * Lint * }(1-K)+2 \text { * Lfix * }(1-K)
$$

The ZLE40539 board has two positions for the Laser Diode at two different distances. (15 and 30 mm).
The measured value of Leff is 7 nH .
The estimated value of Leff $=2$ * $8(1-0.5)=8 \mathrm{nH}$.
The actual pulse response achieved in an application is thus dependent on the application.

Application Layout Guide Lines
Minimize Interconnect Inductance by:

1. Using Short Interconnect Distance
2. Use wide interconnect tracks
3. Keep the return path tightly coupled to the forward path

ZL40539E Interconnect

Figure 4 - ZLE40539 Application Board Electrical Interconnect

Application Diagram

Figure 5 - Application Schematic Diagram

Evaluation Boards From Zarlink Semiconductor

Zarlink Semiconductor provide an LDD evaluation board. This is primarily for those interested in performing their own assessment of the operation of the LDD. Figure 5 shows a recommended application configuration. The inputs are connected via side launch SMA connectors.

Please order as ZLE40539.

Pin List

Pin	Pin Name	Type	Function
1	VCC_IN	Supply	Input Vcc
2	GND	Supply	Ground
3	INR	Analog	Current input, $\mathrm{R}_{\text {in }}=500 \Omega$ to GND
4	IN2	Analog	Current input, $\mathrm{R}_{\text {in }}=500 \Omega$ to GND
5	IN3	Analog	Current input, $\mathrm{R}_{\text {in }}=500 \Omega$ to GND
6	IN4	Analog	Current input, $\mathrm{R}_{\text {in }}=500 \Omega$ to GND
7	RFA	Analog	Resistor to GND sets oscillator frequency when SELA='High'
8	RFB	Analog	Resistor to GND sets oscillator frequency when SELA='Low'
9	GND	Supply	Ground
10	ENRB	Digital, CMOS	Enable Read Bar for Read Channel
11	EN2P	Digital, LVDS	Positive channel 2 enable input (EN2P>EN2N channel 2 enabled)
12	EN2N	Digital, LVDS	Negative channel 2 enable input
13	EN3P	Digital, LVDS	Positive channel 3 enable input (EN3P>EN3N channel 3 enabled)
14	EN3N	Digital, LVDS	Negative channel 3 enable input
15	EN4P	Digital, LVDS	Positive channel 4 enable input (EN4P>EN4N channel 4 enabled)
16	EN4N	Digital, LVDS	Negative channel 4 enable input
17	OSCEN	Digital, CMOS	Oscillator enable control input (OSCEN = Hi the oscillator is ON)
18	GND	Supply	Ground
19	SELA	Digital, CMOS	'Output select' input; 'High' selects OUTA, 'Low' selects OUTB
20	ENABLE	Digital, CMOS	Chip enable input, Enable = high the chip is active
21	RSA	Analog	External resistor to GND sets oscillator amplitude when SELA ='High'
22	RSB	Analog	External resistor to GND sets oscillator amplitude when SELA ='Low'
23	GND	Supply	Ground
24	OUTB	Analog	Output current source B (sum of all channels)
25	OUTB	Analog	Output current source B (sum of all channels)
26	VCC_B	Supply	Output B Vcc
27	VCC_B	Supply	Output B Vcc
28	GND	Supply	Ground
29	GND	Supply	Ground
30	OUTA	Analog	Output current source A
31	OUTA	Analog	Output current source A
32	VCC_A	Supply	Output A Vcc

Absolute Maximum Ratings

Characteristic	Value			Units	Comments
	Min.	Typ.	Max.		
Supply voltage (VCC, VCC_IN)	-0.5		6.0	V	
Input voltage (INR, IN2, IN3, IN4)	-0.5		VCC_IN +0.5	V	
Input voltage (ENABLE, EN2P, EN2N,	-0.5		VCC_IN +0.5	V	
EN3P, EN3N, EN4P, EN4N, OSCEN, SELA)					
Output voltage (OUTA, OUTB)	-0.5		VCC	V	
Output current (OUTA, OUTB)			700	mA pk	
Junction temperature			150	${ }^{\circ} \mathrm{C}$	

CAUTION: Stresses outside these ranges may cause permanent damage to the device.

Operating Range

Characteristic	Value			Units	Comments
	Min.	Typ.	Max.		
Supply voltage (VCC,	4.5		5.5	V	
VCC_IN)					
INR input voltage range	0		1.0	V	
IN2 input voltage range	0		1.0	V	
IN3 input voltage range	0		1.7	V	
IN4 input voltage range	0		2.3	V	
INR input current range	0		2.0	mA	
IN2 input current range	0		2.8	mA	
IN3 input current range	0		4.7	mA	
IN4 input current range	0		6.3	mA	
Output voltage (OUTA, OUTB)	-0.3		VCCA, B-0.9	V	
Oscillator frequency range	100		600	MHz	
Oscillator amplitude range	40		100	mA	
RFA and RFB	1			$\mathrm{k} \Omega$	External resistors to GND
RSA and RSB	1			$\mathrm{k} \Omega$	External resistors to GND

Characteristic	Value			Units	Comments
	Min.	Typ.	Max.		
Operating ambient temperature range	0		70	${ }^{\circ} \mathrm{C}$	
Operating temperature range, junction	0		150	${ }^{\circ} \mathrm{C}$	

Package Thermal Resistance

Package Type	Junction to			Comments
	Case $\mathbf{R}_{\text {thJc }}$	ambient $\mathbf{R}_{\text {thJA }}$		
32 pin QFN		40	Exposed paddle soldered to multi-layer PCB	

Electrical Characteristics - Supply Current and Digital Inputs - $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \operatorname{INR}=\operatorname{IN} 4=400 \mu \mathrm{~A}, \operatorname{IN} 2=160 \mu \mathrm{~A}$, IN3 $=267 \mu \mathrm{~A}$, Enable $=$ High, ChR, Ch2, Ch3, Ch4 disabled, OSCEN $=$ Low, unless otherwise specified.

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
Supply Current (into VCCpin)						
Supply current, power down, ICCPD		80	220	$\mu \mathrm{A}$	ENABLE = Low	A
Supply current, read mode, oscillator disabled, $\mathrm{I}_{\mathrm{ccRo}}$		69	84	mA	INR $=400 \mu \mathrm{~A}, \mathrm{ChR}$ enabled	A
Supply current, read mode, oscillator enabled, $\mathrm{I}_{\text {ccR1 }}$		70	85	mA	```OSCEN = High, ChR enabled RF = 6.8 kOhm, RS = 8.2 kOhm,```	
Supply current, write mode, IccW		150	198	mA	Ch2, Ch3, Ch4 enabled	B
Supply current, input off		20	25	mA	ChR, Ch2, Ch3, Ch4 enabled $\begin{aligned} & \operatorname{INR}=\operatorname{IN} 2=\operatorname{IN} 3=\operatorname{IN} 4= \\ & \mathrm{OuA} \end{aligned}$	B

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
SELA \& OSCEN Digital Inputs Logic low voltage			0.8	V	TTL compatible level	A
Logic high voltage Threshold level Logic low input current Logic high input current	2.0 -50	1.68	50	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$	TTL compatible level Temperature stabilised $\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=3.3 \mathrm{~V} \end{aligned}$	A
ENRB \& Enable digital inputs						
Logic low voltage			0.5	V	CMOS compatible level	A
Logic high voltage	2.8			V	CMOS compatible level	A
Logic low input current	-50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	B
Logic high input current		70	300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=3.3 \mathrm{~V}$	B
Logic high input current		700	800	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, 2 \mathrm{k} \Omega$ external resistor in series with input	
LVDS Digital Inputs						
Input voltage range	0		2.4	V		B
Differential input voltage	100		600	mV	V(EN2P-EN2N), V(EN3P-EN3N), V(EN4P-EN4N), All LVDS Compatible	A
Differential Input impedance	87	110	133	V		B
Common mode input impedance		10		$k \Omega$	internal resistor to Vcc	B

Notes:

[^0]Electrical Characteristics - Outputs \mathbf{A} and $\mathbf{B}-\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, Enable $=\mathrm{High}, \mathrm{ChR}, \mathrm{Ch} 2, \mathrm{Ch} 3, \mathrm{Ch} 4$ disabled, $\mathrm{OSCEN}=$ Low, unless otherwise specified.

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
Read channel output current	150	180		mA	ChR enabled, $\mathrm{V}_{\text {out }} \leq 3.0 \mathrm{~V}$	B
Channel 2 output current	550	650		mA	Ch 2 enabled, $\mathrm{V}_{\text {out }} \leq 3.0 \mathrm{~V}$	A
Channel 3 output current	500	600		mA	Ch 3 enabled, $\mathrm{V}_{\text {out }} \leq 3.0 \mathrm{~V}$	A
Channel 4 output current	450	570		mA	Ch 4 enabled, $\mathrm{V}_{\text {out }} \leq 3.0 \mathrm{~V}$	A
Total output current	700	900		mA	ChR, 2, 3, 4 enabled, $\mathrm{V}_{\text {out }} \leq 3.0 \mathrm{~V}$	B
Read Output current, zero input		1.3	2.5	mA	INR $=0 \mu \mathrm{~A}, \mathrm{ChR}$ enabled	A
Ch2 Output Current, zero input		1.5	10	mA	$\mathrm{IN} 2=0 \mu \mathrm{~A}, \mathrm{Ch} 2$ enabled	
Ch3 Output Current, zero input		0	2		$\mathrm{IN} 3=0 \mu \mathrm{~A}, \mathrm{Ch} 3$ enabled	
Ch4 Output Current, zero input		0	2		$\mathrm{IN} 4=0 \mu \mathrm{~A}, \mathrm{Ch} 4$ enabled	
Input impedance (INR, IN2, IN3, IN4)	410	500	590	w	$\mathrm{R}_{\text {in }}$ to GND	B
$\mathrm{I}_{\text {out }}$ supply sensitivity, any channel	+3.0	+4.2	+6.0	\%/V	$\begin{aligned} & \mathrm{I}_{\text {out }}=80 \mathrm{~mA}, \mathrm{R}_{\text {diode }}=3.9 \Omega \\ & \mathrm{~V}_{\text {diode }}=1.6 \mathrm{~V} \end{aligned}$	B
$\mathrm{I}_{\text {out }}$ temperature sensitivity, any channel		300		$\begin{gathered} \mathrm{ppm} / \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=160 \mathrm{~mA}, \\ & \mathrm{I}_{\text {in }} \text { temp coefficient }=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	C
$\mathrm{I}_{\text {out }}$ current output noise		3		$\begin{aligned} & \mathrm{nA} / \\ & \mathrm{V} \mathrm{~Hz} \end{aligned}$	$\mathrm{l}_{\text {out }}=50 \mathrm{~mA} \ln \mathrm{R}=500 \mathrm{uA}$	B
Current gain, ChR, best fit *	85	100	115	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{I}_{\text {out }}=20 \mathrm{~mA} \text { to } 60 \mathrm{~mA} \dagger^{*}$ ChR enabled	A
Current gain, Ch2, best fit **	205	250	275	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=40 \mathrm{~mA} \text { to } 120 \mathrm{~mA} \dagger^{* *} \\ & \mathrm{Ch} 2 \text { enabled } \end{aligned}$	A
Current gain, Ch3, best fit **	120	150	180	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{mA} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=40 \mathrm{~mA} \text { to } 120 \mathrm{~mA} \dagger^{* *} \\ & \text { Ch3 enabled } \end{aligned}$	A
Current gain, Ch4, best fit **	85	100	115	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=40 \mathrm{~mA} \text { to } 120 \mathrm{~mA} \dagger^{* *} \\ & \text { Ch4 enabled } \end{aligned}$	A
Output current offset, ChR, best fit	-1	+3	8	mA	$\begin{aligned} & \mathrm{I}_{\text {out }}=20 \mathrm{~mA} \text { to } 60 \mathrm{~mA} \dagger^{*} \\ & \text { ChR enabled } \end{aligned}$	A

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
Output current offset, Ch2, best fit	-2.5	+5	12	mA	$\mathrm{I}_{\text {out }}=40 \mathrm{~mA} \text { to } 120 \mathrm{~mA} \dagger^{* *}$ Ch2 enabled	A
Output current offset, Ch3, best fit	-2	+3.2	8	mA	$\mathrm{I}_{\text {out }}=40 \mathrm{~mA} \text { to } 120 \mathrm{~mA} \dagger^{* *}$ Ch3 enabled	A
Output current offset, Ch4, best fit	-2	+2.5	7	mA	$\mathrm{I}_{\text {out }}=40 \mathrm{~mA} \text { to } 120 \mathrm{~mA} \dagger^{* *}$ Ch4 enabled	A
Output current linearity (any channel) *	-0.5	+0.8	1.5	\%	$\mathrm{I}_{\text {out }}=40 \mathrm{~mA}$ to $120 \mathrm{~mA} \dagger^{* *}$	A

Notes: $A=100 \%$ Tested, $B=$ Guaranteed by Characterisation and Design, C= Guaranteed by Design

Electrical Characteristics - Timing - $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, Enable $=\mathrm{High}, \mathrm{Ch} 2, \mathrm{Ch} 3, \mathrm{Ch} 4$ disabled, OSCEN $=$ Low, unless otherwise specified.

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
Current Output OutA \& OutB Channel rise time, (10% to 90%), $t_{r 2}$		1.1	2.0	ns	$40 \mathrm{~mA} R \mathrm{R}+40 \mathrm{~mA}$ WR, Ch2, 3 or 4 pulsed* \ddagger	B
Channel fall time, (10\% to 90\%), $\mathrm{t}_{\mathrm{f} 2}$		1.2	2.0	ns	$40 \mathrm{~mA} R \mathrm{D}+40 \mathrm{~mA}$ WR, Ch2, 3 or 4 pulsed* ${ }^{\ddagger}$	B
Output current overshoot (any write channel)		5		\%	40 to 375 mA Ch2 3, 4 pulsed* ${ }^{\ddagger}$	B
Output current undershoot (any write channel)		5		\%	40 to 375 mA Ch2 3, 4 pulsed* \ddagger	B
Channel to Channel Enable Skew Tr		50		ps		B
Channel to Channel Enable Skew Tf		50		ps		B
$\mathrm{I}_{\text {out }} \mathrm{ON}$ propagation delay, $\mathrm{t}_{\mathrm{on} \text { Ch }}$		2.0		ns	50\% En High-Low to 50\% I ${ }_{\text {out }}$, any write channel	B
$\mathrm{I}_{\text {out }}$ OFF propagation delay, $\mathrm{t}_{\text {offCh }}$		2.0		ns	50% En Low-High to $50 \% \mathrm{I}_{\text {out }}$, any write channel	B

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
Read amplifier -3 dB bandwidth	41	55	69	MHz	INR=400 $\mu \mathrm{A}$, ChR enabled	C
Ch2 Wr amplifier -3 dB bandwidth	15	21	27	MHz	IN2=400 uA, Ch2 enabled	
Ch3 Wr amplifier -3 dB bandwidth	22	30	39	MHz	IN3=400 uA, Ch3 enabled	
Ch4 Wr amplifier -3 dB bandwidth	28	40	52		IN4=400 uA, Ch4 enabled	
Power_Up \& SelA						
Power_Up time, $\mathrm{t}_{\text {on }}$		1.5	3.5	$\mu \mathrm{s}$	50\% PowerUp-High to $50 \% \mathrm{I}_{\text {out }}$	C
Power_Up time, $\mathrm{t}_{\text {off }}$		20	33	ns	50% PowerUp-Low to $50 \% \mathrm{I}_{\text {out }}$	C
Output A select delay		5	8	ns	50% CD/DVD select Low-High to 50% IOUTA	C
Output A deselect delay		5	8	ns	50\% CD/DVD select High-Low to 50% IOUTA	C

Notes:-
A = 100\% Tested
$\mathrm{B}=$ Guaranteed by Characterisation and Design
$\mathrm{C}=$ Guaranteed by Design

* (EN2P, EN2N), (EN3P, EN3N), (EN4P, EN4N) input pulse rise and fall time $=0.4 \mathrm{~ns}$.
\ddagger Parameter is measured Electrical Pulse Response using 3.9 Ohm load to gnd and Zarlink Application Board. Pulse response performance parameters Trise, Tfall, Overshoot and Undershoot can be limited by interconnect inductance. Optical response is influenced by Laser Diode response. See Application Notes.

Electrical Characteristics - Oscillator - Vcc $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{INR}=400 \mathrm{uA}, \mathrm{IN} 2=\mathrm{IN} 3=\mathrm{IN} 4=160 \mu \mathrm{~A}, \mathrm{PWR}$ _UP $=$ High, Ch2, Ch3, Ch4 disabled, OSCEN = Low, unless otherwise specified.

Characteristic	Value			Unit	Comments	Type
	Min.	Typ.	Max.			
Oscillator						
Frequency adjust Low			250	MHz	RF $=16 \mathrm{k} \Omega$, OSCEN $=$ High	B
Frequency adjust High	575			MHz	RF $=2 \mathrm{k} \Omega$ OSCEN $=$ High	B
Frequency tolerance	335	381	427	MHz	RF $=7.5 \mathrm{k} \Omega$, OSCEN $=$ High	A
Frequency temperature coefficient		-100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\mathrm{RF}=7.5 \mathrm{k} \Omega, \mathrm{OSCEN}=$ High	C
Amplitude adjust Low $(\mathrm{RS}=11 \mathrm{~K} \Omega)$		26		mA pk to pk	$\begin{aligned} & \mathrm{RS}=11 \mathrm{k} \Omega, \mathrm{OSCEN}=\mathrm{High} \\ & \mathrm{RF}=9 \mathrm{~K}(350 \mathrm{MHz}) \operatorname{InR}=1 \mathrm{~mA} \end{aligned}$	B
Amplitude adjust High $(\mathrm{RS}=1 \mathrm{~K} \Omega)$		83		mA pk to pk	$\begin{aligned} & \text { RS }=1 \mathrm{k} \Omega, \mathrm{OSCEN}=\mathrm{High} \\ & \mathrm{RF}=9 \mathrm{~K}(330 \mathrm{MHz}) \mathrm{INR}=1 \mathrm{~mA} \end{aligned}$	B
Third Harmonic		-30		dBC	$\begin{aligned} & \mathrm{RS}=10 \mathrm{k} \Omega \text { to } 2 \mathrm{k} \Omega, \\ & \mathrm{OSCEN}=\mathrm{High} \\ & \mathrm{RF}=9 \mathrm{~K}(330 \mathrm{MHz}) \mathrm{INR}=400 \mathrm{uA} \end{aligned}$	C
Second Harmonic		-20		dBC	$\begin{aligned} & \mathrm{RS}=10 \mathrm{k} \Omega \text { to } 2 \mathrm{k} \Omega, \\ & \mathrm{OSCEN}=\mathrm{High} \\ & \mathrm{RF}=9 \mathrm{~K}(330 \mathrm{MHz}) \mathrm{INR}=400 \mathrm{uA} \end{aligned}$	C
Amplitude tolerance	-20	0	20	\%	Fosc= 250 MHz to 450 MHz , OSCEN = High, RSA/B 1\%	C
Amplitude RS=7.5 K		35		mA pk to pk	$\begin{aligned} & \mathrm{f}=400 \mathrm{MHz}, \mathrm{RS}=7.5 \mathrm{k} \Omega \text {, } \\ & \text { OSCEN = High } \end{aligned}$	C
Amplitude flatness		9		dB	$\mathrm{RS}=7.5 \mathrm{k} \Omega, \mathrm{RF}=9 \mathrm{k} \Omega$ to $4 \mathrm{k} \Omega$	B
Amplitude temperature coefficient		800		ppm/ ${ }^{\circ} \mathrm{C}$	RF $=5.6 \mathrm{k} \Omega, \mathrm{OSCEN}=$ High	C
Oscillator enable time, $\mathrm{t}_{\text {onOsc }}$			2	ns	50\% OSCEN High-Low to 50\% $\mathrm{I}_{\text {out }}$	B
Oscillator disable time, $\mathrm{t}_{\text {offOsc }}$			3	ns	50\% OSCEN Low-High to 50\% $\mathrm{I}_{\text {out }}$	B

Notes:
$A=100 \%$ Tested
$\mathrm{B}=$ Guaranteed by Characterisation and Design
C= Guaranteed by Design

* (EN2P, EN2N), (EN3P, EN3N), (EN4P, EN4N) pulse rise and fall time $=0.4 \mathrm{~ns}$.

Characteristic Curves

Figure 6 - lout vs lin for Read Channel

Figure 7 - lout vs lin Channel 2

Figure 8 - lout vs lin Channel 3

Figure 9 - lout vs lin Channel 4

Figure 10-Oscillator Frequency vs RF

Figure 11-Oscillator Current Amplitude vs RS

Figure 12-Oscillator Amplitude vs Frequency
Vcc $=5 \mathrm{~V}$, Temp $=25 \mathrm{C}$

Figure 13 - Pulse Response for 200 mA Write Current

Figure 14 - Pulse Response for 200 mA Write Current

I/O diagrams

Figure 15 - CMOS/LVTTL Input (Enable, OSCEN)

Figure 16-Oscillator Resistors (RF, RS)

Figure 17-Read Current Input (INR)

Figure 18 - Output (OUTA, OUTB)

Figure 19 - Write Current Input (IN2, IN3, IN4)

Figure 20 - LVDS Input (EN2, IEN2), (EN3, /EN3), (EN4, /EN4)

OUTA and OUTB Control

Enable	SELA	ENRB	EN2P- EN2N	EN3P- EN3N	EN4P- EN4N	OUTA	OUTB
0	X	X	X	X	X	OFF	OFF
1	X	1	0	0	0	OFF	OFF
1	1	0	0	0	0	100xINR	OFF
1	1	0	1	0	0	100xINR + 250xIN2	OFF
1	1	0	0	1	0	100xINR + 150xIN3	OFF
1	1	0	0	0	1	100xINR +100xIN4	OFF
1	1	0	1	1	1	$\begin{aligned} & \text { 100xINR+250xIN2+1 } \\ & \text { 50xIN3+100xIN4 } \end{aligned}$	OFF
1	0	0	0	0	0	OFF	100xINR
1	0	0	1	0	0	OFF	100xINR +250xIN2
1	0	0	0	1	0	OFF	100xINR +150xIN3
1	0	0	0	0	1	OFF	100xINR + 100xIN4
1	0	0	1	1	1	OFF	$\begin{aligned} & \text { 100xINR+250xIN2+ } \\ & \text { 150xIN3+100xIN4 } \end{aligned}$

Table 1 - Output Function for Set Logic Inputs
Note: 1 = logic high, $0=$ logic low and $X=$ "don't care"

Oscillator Control

Enable	SELA	ENRB	OSCEN	OUTA	OUTB
0	X	X	X	OFF	OFF
1	X	X	0	OFF	OFF
1	1	0	1	Frequency A, Amplitude A	OFF
1	0	0	1	OFF	Frequency B, Amplitude B

Table 2 - Output Function for Set Logic Inputs
Note: $1=$ logic high, $0=$ logic low and $X=$ "don't care"

Timing Diagrams

Figure 21 - Timing of Read or Write Channels

Figure 22 - Timing of Output with Enable, Read and Write Levels

Example Waveforms

Write Waveform

The Write output waveform may be produced as shown in Figure 23. The Erase level is set by switching off both the Bias level and the Write level. The Write switching waveform is produced by switching off the Erase level and Switching on the Bias level and then modulating that with the Write level. The peak of the Write waveform is the sum of the Bias and the Write levels.

Figure 23 - Write Waveform Example
Note 1: Only the Write signal changes to modulate the output during the Write pulse.
Note 2: Each of the Write Channels can provide typically 570 mA . It is not necessary to add together the output of more than one Write Channel to achieve 570 mA .

Oscillator Waveform

The Oscillator may be enabled independently and is summed with the selected level.

Figure 24 - Example of the Oscillator Waveform Superimposed on the Read Waveform
Note: The amplitude of the Oscillator must be less than the programmed DC output level to avoid clipping and subsequent increase in harmonic distortion.

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} C$ components conveys a licence under the Philips $I^{2} C$ Patent rights to use these components in and $I^{2} C$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

[^0]: A $=100 \%$ Tested
 $B=$ Guaranteed by Characterisation and Design
 $C=$ Guaranteed by Simulation

