THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

AUGUST 1994

ZN428E8/ZN428J8/ZN428D 8-BIT LATCHED INPUT D-A CONVERTER

The ZN428 is a monolithic 8-bit D-A converter with input latches to facilitate updating from a data bus. The latch is transparent when enable is LOW and the data is held when enable is taken HIGH. The ZN428 also contains a 2.5 V reference the use of which is pin optional to retain flexibility. An external fixed or varying reference may therefore be substituted.

FEATURES

- Contains DAC with Data Latch and On-Chip Reference
- Guaranteed Monotonic over the Full Operating Temperature Range
- Single +5 V Supply
- Microprocessor Compatible
- TTL and 5V CMOS Compatible
- 800ns Settling Time
- Complementary to ZN427 A to D Series
- Commercial or Military Temperature Range

ORDERING INFORMATION

DeviceType
ZN428D
ZN428E8
ZN428J8

Operating temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package MP16W DP16 DC16

Fig. 1 Pin connections (not to scale) - top view

ZN428

ABSOLUTE MAXIMUM RATINGS

Supply voltage V_{CC}
Max.voltage, logic and $V_{\text {REF }}$ inputs
Operating temperature range
Storage temperature range
Analog ground to digital ground

$$
\begin{aligned}
& +7.0 \mathrm{~V} \\
& +\mathrm{V}_{\mathrm{CC}} \\
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { (ZN428E8, ZN428D) } \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{ZN} 428 \mathrm{~J} 8) \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& +200 \mathrm{mV}
\end{aligned}
$$

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Min. \& Typ. \& Max. \& Units \& Conditions \\
\hline \begin{tabular}{l}
Internal Voltage Reference Output voltage \\
Slope resistance \\
\(V_{\text {REF OUT }}\) T.C. \\
Reference current
\end{tabular} \& \[
2.475
\] \& \[
\begin{gathered}
2.550 \\
0.5 \\
50
\end{gathered}
\] \& \begin{tabular}{l}
2.625 \\
2 \\
15
\end{tabular} \& \begin{tabular}{l}
V \\
\(\Omega\) \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
mA
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{R}_{\mathrm{REF}}=390 \Omega \\
\& \underset{\mathrm{Z}}{\mathrm{C}} \mathrm{CEF}=1 \mu \mathrm{~F} \\
\& \text { Note } 1
\end{aligned}
\] \\
\hline \begin{tabular}{l}
D-A Converter \\
Linearity error \\
Differential non-linearity \\
Linearity error T.C. \\
Differential non-linearity T.C. \\
Offset voltage \\
Offset voltage T.C. \\
Full-scale output \\
Full-scale output T.C. \\
Analog output resistance \\
External reference voltage \\
Settling time to 0.5 LSB \\
Operating temperature range: ZN428D and ZN428 E8 ZN428J8 \\
Supply voltage (\(\mathrm{V}_{\mathrm{CC}}\)) \\
Supply current \\
Power consumption
\end{tabular} \& 2.545
-
-
0
-
-
-

0
-55

4.5 \& $$
\begin{gathered}
\pm 0.5 \\
\pm 3 \\
\pm 6 \\
2 \\
\pm 6 \\
2.550 \\
2 \\
4 \\
- \\
800 \\
1.25 \\
\\
- \\
- \\
5.0 \\
20 \\
100
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\pm 0.5 \\
- \\
- \\
- \\
5 \\
- \\
2.555 \\
- \\
- \\
3.0 \\
- \\
- \\
70 \\
125 \\
5.5 \\
30
\end{gathered}
$$
\] \& LSB

LSB
$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
mV
$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{k} \Omega$
V
ns
$\mu \mathrm{s}$

o \& | $2.0 \mathrm{~V} \leq \mathrm{V}_{\text {REF IN }} \leq 3.0 \mathrm{~V}$ |
| :--- |
| All bits off |
| External reference $\mathrm{V}_{\text {REF IN }}=2.560 \mathrm{~V}$, all bits ON |
| 1 LSB major transition (Note 2) |
| All bits ON to OFF or OFF to ON (Note 2) |
| Note 3 |

\hline
\end{tabular}

Note 1: See REFERENCE
Note 2: $R_{L}=10 \mathrm{M} \Omega, C_{L}=10 p F$
Note 3: All inputs HIGH $\left(\mathrm{V}_{\mathrm{IH}}=3.5 \mathrm{~V}\right)$

ELECTRICAL CHARACTERISTICS (cont.)

Parameter	Min.	Typ.	Max.	Units	Conditions
Logic (over specified operating temperature range)					
High level input voltage	2.0	-	-	V	
Low level input voltage	-	-	0.8	V	
High level input current	-	-	60	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathbb{I N}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$.
	-	-	20	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$.
Low level input current	-	-	-5	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$.
Input clamp diode voltage	-	-1.5	-	V	$\mathrm{I}_{\mathrm{IN}}=-8 \mathrm{~mA}$
Enable pulse width	100	-	-	ns	
Data set-up time	150	-	-	ns	Note 4
Data hold time	10	-	-	ns	Note 5

Note 4: Set up time before ENABLE goes high
Note 5: Hold time after ENABLE goes high

D-A CONVERTER

The converter is of the voltage switching type and uses an R-2R ladder network as shown in Fig.3. Each 2R element is connected to 0 V or $\mathrm{V}_{\text {REF IN }}$ by transistor voltage switches
specially designed for low offset voltage ($<1 \mathrm{mV}$). A binary weighted voltage is produced at the output of the R-2R ladder.

Fig. 3 The R-2R ladder network

$$
\text { Analog output }=\frac{n}{256}\left(V_{\text {REF IN }}-V_{O S}\right)+V_{O S}
$$

where n is the digital input to the $\mathrm{D}-\mathrm{A}$ from the data latch.
V_{OS} is a small offset voltage produced by the D-A switch currents flowing through the package lead resistance. The
value of V_{OS} is typically 1 mV . This offset will normally be removed by the setting up procedure (see Operating Notes) and because the offset temperature coefficient is low $\left(\pm 6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ the effect on accuracy is negligible.

ZN428

Fig. 4 Analog output equivalent circuit

Fig. 4 shows equivalent circuit of the output (ignoring V_{OS}). The output resistance R has a temperature coefficient of $+0.2 \%$ per ${ }^{\circ} \mathrm{C}$.

The gain drift due to this is $\frac{0.2 R}{R+R_{L}}$ \% per ${ }^{\circ} \mathrm{C}$.
R_{L} should be chosen as large as possible to make the gain drift small. As an example if $R_{\perp}=400 \mathrm{k} \Omega$ then the gain drift due to the T.C. of R for a $100^{\circ} \mathrm{C}$ change in ambient temperature will be less than 0.2%. Alternatively the ZN428 can be buffered by an amplifier (see Operating Notes).

REFERENCE

(a) Internal Reference

The internal reference is an active bandgap circuit which is equivalent to a 2.5 V Zener diode with very low slope impedance (Fig.5). A resistor ($\mathrm{R}_{\text {REF }}$), should be connected between $+\mathrm{V}_{C C}$ (pin 10) and pin 7. The recommended value of 390Ω will supply a nominal reference current of (5.0$2.5) / 0.39=6.4 \mathrm{~mA}$. A stabilising/decoupling capacitor $\mathrm{C}_{\text {REF }}=$ $1 \mu \mathrm{~F}$ is required between pins 7 and 8 for internal reference option, $\mathrm{V}_{\text {REF OUT }}$ (pin 7) being connected to $\mathrm{V}_{\text {REF IN }}(\mathrm{pin} 6)$.

Fig. 5 Internal voltage reference

Up to five ZN428s may be driven from one internal reference (there is no need to reduce $\mathrm{R}_{\text {REF }}$). This useful feature saves power and gives excellent gain tracking between the converters.

(b) External Reference

If required an external reference voltage may be connected to $\mathrm{V}_{\text {REF IN }}$. The slope resistance of such a reference should be less than $\frac{2.5}{\mathrm{n}} \Omega$, where n is the number of converters supplied.
$\mathrm{V}_{\text {REF IN }}$ can be varied from 0 to +3 V for ratiometric operation. The ZN428 is guaranteed monotonic for $\mathrm{V}_{\text {REF IN }}$ above 2 V .

LOGIC

Input coding is binary for unipolar operation and offset binary for bipolar operation. When the ENABLE input is low the data inputs drive the D to A directly. When ENABLE goes high the input data word is held in the data latch.

The equivalent circuit for the data and clock inputs is shown in Fig.6.

The ZN428 is provided with separate analog and digital ground connections. The circuit will operate correctly with as much as $\pm 200 \mathrm{mV}$ between the two grounds.

Fig. 6 Equivalent circuit of all inputs

OPERATING NOTES

(1) Unipolar D-A Converter

The nominal output range of the ZN428 is 0 to $\mathrm{V}_{\text {REF IN }}$ through a 4Ω resistance. Other output ranges can readily be obtained by using an external amplifier.

The general scheme (Fig.7) is suitable for amplifiers with input bias currents less than $1.5 \mu \mathrm{~A}$.

The resulting full-scale range is given by:
$V_{\text {OUT }} F S=\left(1+\frac{R 1}{R 2}\right) V_{\text {REF IN }}=G . V_{\text {REF IN }}$
The impedance at the inverting input is $\mathrm{R} 1 / / \mathrm{R} 2$ and for low drift with temperature this parallel combination should be equal to the ladder resistance ($4 \mathrm{k} \Omega$). The required nominal values of R1 and R2 are given by $R 1=4 G k \Omega$ and $R_{2}=$ $4 \mathrm{G} /(\mathrm{G}-1) \mathrm{k} \Omega$.

Using these relationships a table of nominal resistance values for R_{1} and R_{2} can be constructed for $\mathrm{V}_{\text {REF IN }}=2.5 \mathrm{~V}$.

Output Range	\mathbf{G}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
+5 V	2	$8 \mathrm{k} \Omega$	$8 \mathrm{k} \Omega$
+10 V	4	$16 \mathrm{k} \Omega$	$5.33 \mathrm{k} \Omega$

For gain setting R_{1} is adjusted about its nominal value. Practical circuit realisations (including amplifier stabilising components) for +5 and +10 V output ranges are given in Fig.8. Settling time for a major transition is $1.5 \mu \mathrm{~s}$ typical.

ZN428

Fig. 7 Unipolar operation - basic circuit

Fig. 8 Unipolar operation - component values

UNIPOLAR ADJUSTMENT PROCEDURE

(i) Set all bits to OFF (low) with ENABLE low and adjust zero until $\mathrm{V}_{\text {OUT }}=0.0000 \mathrm{~V}$.
(ii) Set all bits ON (high) and adjust gain until $\mathrm{V}_{\text {OUT }}=\mathrm{FS}$ - 1LSB.

UNIPOLAR SETTING UP POINTS

Output Range, +FS	LSB	FS - 1LSB
+5 V	19.5 mV	4.9805 V
+10 V	39.1 mV	9.9609 V

$1 \mathrm{LSB}=\mathrm{FS}$
256

UNIPOLAR LOGIC CODING

Input Code (Binary)	Analog Output (Nominal Value)
11111111	$\mathrm{FS}-1 \mathrm{LSB}$
11111110	$\mathrm{FS}-2 \mathrm{LSB}$
11000000	$3 / 4 \mathrm{FS}$
10000001	$1 / 2 \mathrm{FS}+1 \mathrm{LSB}$
10000000	$1 / 2 \mathrm{FS}$
01111111	$1 / 2 \mathrm{FS}-1 \mathrm{LSB}$
01000000	$1 / 4 \mathrm{FS}$
00000001	1 LSB
00000000	0

Fig. 9 Bipolar operation - basic circuit

(2) Bipolar D-A Converter

For bipolar operation the output from the ZN428 is offset by half full-scale by connecting a resistor R3 between $\mathrm{V}_{\text {REF }}$ in and the inverting input of the buffer amplifier (Fig.9).

When the digital input to the ZN428 is zero the analog output is zero and the amplifier output should be -Full-scale. An input of all ones to the D-A will give a ZN428 output of $\mathrm{V}_{\text {REF IN }}$ and the amplifier output required is + Full-scale. Also, to match the ladder resistance the parallel combination of R_{1}, R_{2} and R_{3} should be $4 k \Omega$.

The nominal values of R_{1}, R_{2} and R_{3} which meet these conditions are given by

$$
\mathrm{R}_{1}=8 \mathrm{Gk} \Omega, \mathrm{R}_{2}=8 \mathrm{G} /(\mathrm{G}-1) \mathrm{k} \Omega \text { and } \mathrm{R}_{3}=8 \mathrm{k} \Omega
$$

where the resultant output range is $\pm G \mathrm{~V}_{\text {REF IN }}$. A bipolar output range of $\pm \mathrm{V}_{\text {REF IN }}$ (which corresponds to the basic unipolar range 0 to $V_{\text {REF IN }}$) is obtained if $R_{1}=R_{3}=8 k \Omega$ and $R_{2}=\infty$.

Assuming that $\mathrm{V}_{\text {REF } I N}=2.5 \mathrm{~V}$ the nominal values of resistors for ± 5 and $\pm 10 \mathrm{~V}$ output ranges are given in the following table:

Output Range	\mathbf{G}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$
+5 V	2	$16 \mathrm{k} \Omega$	$16 \mathrm{k} \Omega$	$8 \mathrm{k} \Omega$
+10 V	4	$32 \mathrm{k} \Omega$	$10.66 \mathrm{k} \Omega$	$8 \mathrm{k} \Omega$

Minus full scale (Offset) is set by adjusting R_{1} about its nominal value relative to R_{3}. Plus full-scale (gain) is set by adjusting R_{2} relative to R_{1}.

Practical circuit realisations are given in Fig.10.
Note that in the $\pm 5 \mathrm{~V}$ case R_{3} has been chosen as $7.5 \mathrm{k} \Omega$ (instead of $8.2 \mathrm{k} \Omega$) to get a more symmetrical range of adjustment using standard potentiometers. Settling time for a major transition is $1.5 \mu \mathrm{~s}$ typical.

ZN428

Fig. 10 Bipolar operation - component values

BIPOLAR ADJUSTMENT PROCEDURE

(i) Set all bits to OFF (low) with ENABLE low and adjust offset until the amplifier output reads -full-scale.
(ii) Set all bits ON (high) and adjust gain until the amplifier output reads +(full-scale - 1LSB).
BIPOLAR SETTING UP POINTS

Input Range, \pm FS	LSB	-FS	+(FS - $\mathbf{1 L S B})$
$\pm 5 \mathrm{~V}$	39.1 mV	-5.0000 V	+4.9609 V
$\pm 10 \mathrm{~V}$	78.1 mV	-10.0000 V	9.9219 V

BIPOLAR LOGIC CODING

Input Code (Offset Binary)	Analog Output (Nominal Value)
11111111	$+(\mathrm{FS}-1 \mathrm{LSB})$
11111110	$+(\mathrm{FS}-2 \mathrm{LSB})$
11000000	$+1 / 2 \mathrm{FS}$
10000001	+1 LSB
10000000	0
0111111	-1 LSB
01000000	$-1 / 2 \mathrm{FS}$
00000001	$-(\mathrm{FS}-1 \mathrm{LSB})$
00000000	- FS

HEADQUARTERS OPERATIONS
GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire, United Kingdom. SN2 2QW
Tel: (0793) 518000
Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017,

1500 Green Hills Road,
Scotts Valley, California 95067-0017, United States of America.
Tel (408) 4382900
Fax: (408) 4385576

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax: (1) 64460607
- GERMANY Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02)66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 4382900 Fax: (408) 4387023
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 4687029770 Fax: 4686404736
-TAIWAN, ROC Taipei Tel: 88625461260 Fax: 88627190260
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (0793) 518510 Fax: (0793) 518582
These are supported by Agents and Distributors in major countries world-wide. © GEC Plessey Semiconductors 1994 Publication No. DS3007 Issue No. 2.1 August 1994 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

