

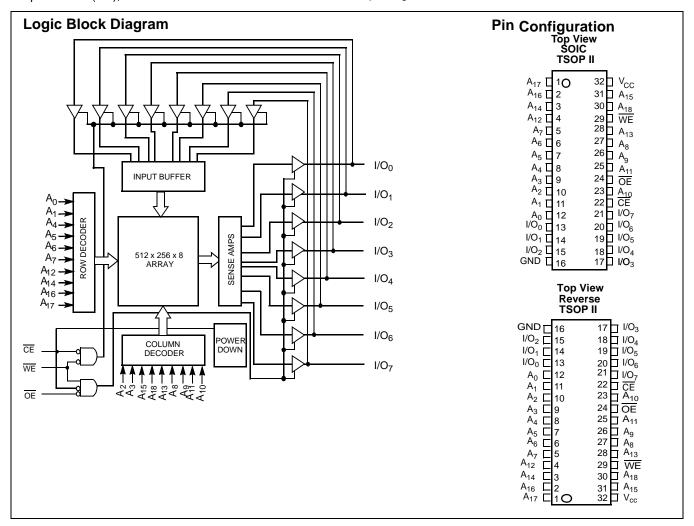
512K x 8 Static RAM

Features

- 4.5V-5.5V operation
- · Low active power
 - Typical active current: 2.5 mA @ f = 1 MHz
 - Typical active current: 12.5 mA @ f = f_{max}
- Low standby current
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- CMOS for optimum speed/power

Functional Description

The CY62148B is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. This device has


an automatic power-down feature that reduces power consumption by more than 99% when deselected.

Writing to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0$ through I/O_7) is then written into the location specified on the address pins $(A_0$ through A_{18}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) HIGH for read. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY62148B is available in a standard 32-pin 450-mil-wide body width SOIC, 32-pin TSOP II, and 32-pin Reverse TSOP II packages.

Product Portfolio

							Power Di	ssipation	
						Operati	ing, Icc	Standb	y (I _{SB2})
	,	V _{CC} Range	•			f = f	max		
Product	Min.	Тур.	Max.	Speed	Temp.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62148BLL	4.5 V	5.0V	5.5V	70 ns	Com'l	12.5 mA	20 mA	4 μΑ	20 μΑ
					Ind'l				

Maximum Ratings

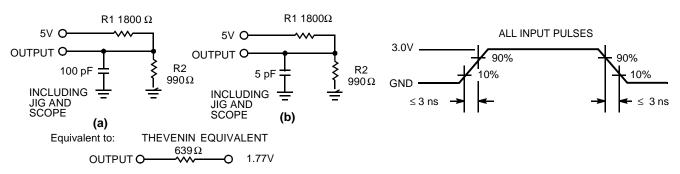
(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage on V_{CC} to Relative GND –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State^[1].....-0.5V to V_{CC} +0.5V DC Input Voltage^[1]-0.5V to V_{CC} +0.5V

Current into Outputs (LOW)	. 20 mA
Static Discharge Voltage	2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current>	200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{cc}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	–40°C to +85°C	

- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "Instant On" case temperature
 Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.


Electrical Characteristics Over the Operating Range

				(CY62148B-	·70	
Parameter	Description	Test Cond	Test Conditions			Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	- 1 mA	2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2$	2.1 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}, O$	-1		+1	μΑ	
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	Com/Ind'I		12.5	20	mA
	Supply Current	f = 1 MHz	$I_{OUT} = 0 \text{ mA}$ $V_{CC} = \text{Max.},$		2.5		mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\label{eq:max_vcc} \begin{split} & \underbrace{\text{Max}}_{\text{CC}}, & V_{\text{CC}}, \\ & \text{CE} \geq V_{\text{IH}} \\ & V_{\text{IN}} \geq V_{\text{IH}} \text{ or } \\ & V_{\text{IN}} \leq V_{\text{IL}}, f = f_{\text{MAX}} \end{split}$	Com/ Ind'I			1.5	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:max_vcc} \begin{split} & \underline{\text{Max}}. \ V_{\text{CC}}, \\ & \text{CE} \geq V_{\text{CC}} - 0.3 \text{V}, \\ & V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ & \text{or} \ V_{\text{IN}} \leq 0.3 \text{V}, \ \text{f} = 0 \end{split}$	Com/ Ind'I		4	20	μΑ

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

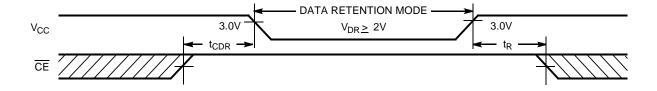
Note:

4. Tested initially and after any design or process changes that may affect these parameters.

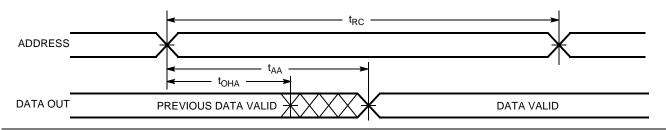
Switching Characteristics^[5] Over the Operating Range

		62148	BLL-70		
Parameter	Description	Min.	Max.	Unit	
READ CYCLE					
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
WRITE CYCLE ^[8]	·				
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	55		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	5		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns	

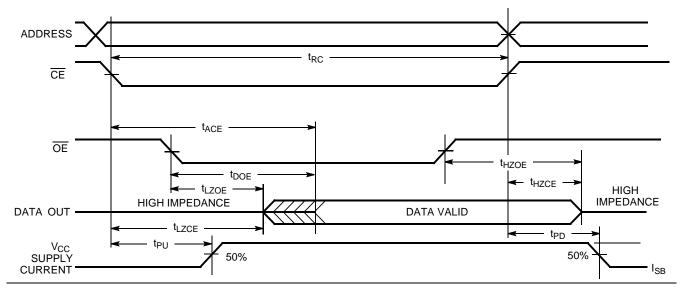
- 5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.


- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of <u>AC</u> Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of <u>CE</u> LOW, and <u>WE</u> LOW. <u>CE</u> and <u>WE</u> must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics (Over the Operating Range)


Parameter	Description			Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0			V
I _{CCDR}	Data Retention Current	Com'l	LL	No input may exceed			20	μΑ
		Ind'l	LL	$V_{CC} + 0.3V$ $V_{CC} = V_{DR} = 3.0V$			20	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		$CE > V_{CC} - 0.3V$	0			ns	
t _R ^[9]	Operation Recovery Time			$V_{IN} > V_{CC} - 0.3V$ or $V_{IN} < 0.3V$	t _{RC}			ns

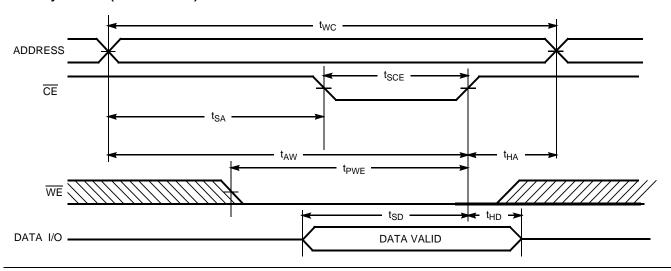
Data Retention Waveform



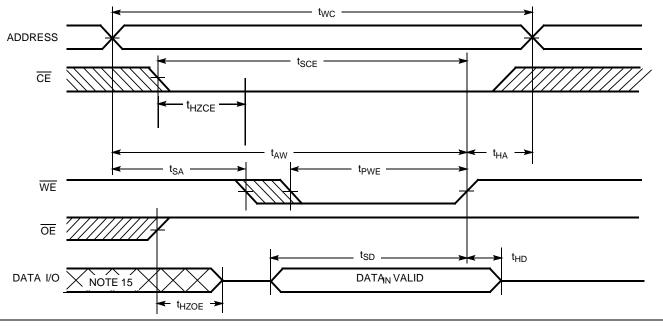
Switching Waveforms

Read Cycle No.1^[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]



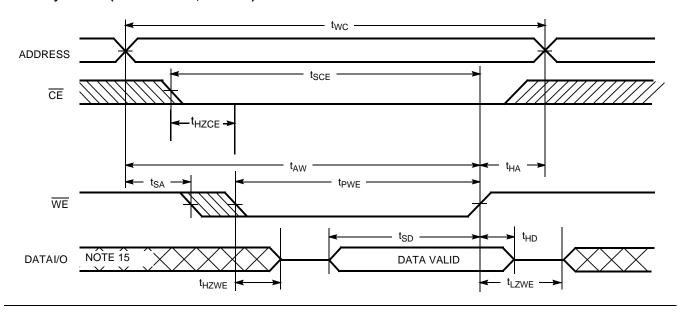
- Full Device operatin requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{cc(min)} ≥ 100 μs.
 Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]



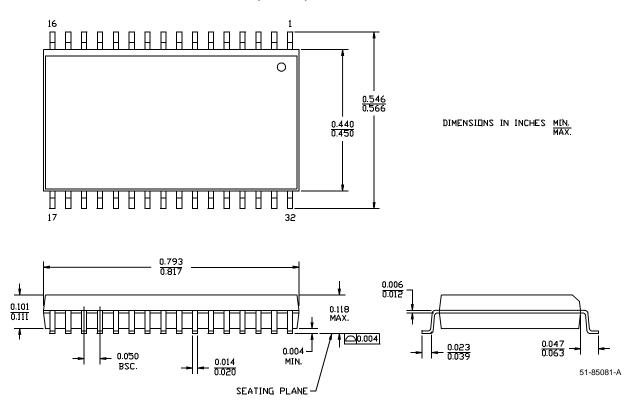
- 13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 14. Data I/O is high-impedance if OE = V_{IH}.
 15. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[13, 14]

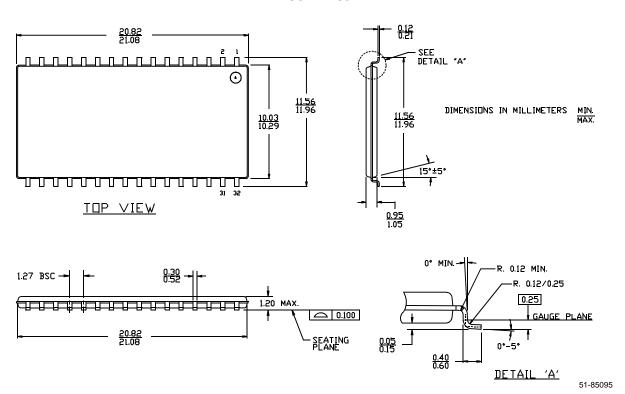
Truth Table

CE	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

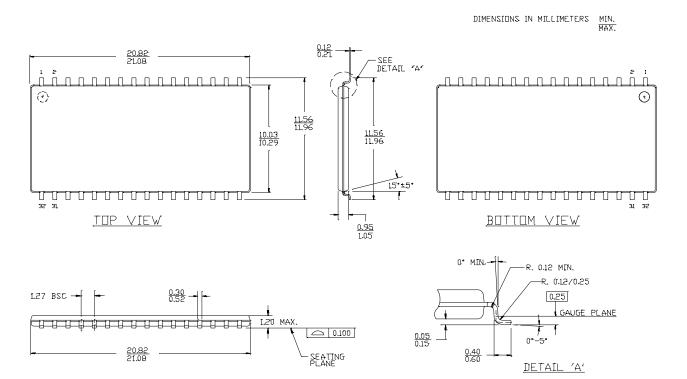

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62148BLL-70SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY62148BLL-70ZC	ZS32	32-Lead TSOP II	
	CY62148BLL-70ZRC	ZU32	32-Lead RTSOP II	
	CY62148BLL-70SI	S34	32-Lead (450-Mil) Molded SOIC	Industrial
	CY62148BLL-70ZI	ZS32	32-Lead TSOP II	
	CY62148BLL-70ZRI	ZU32	32-Lead RTSOP II	

Package Diagrams


32-Lead (450 MIL) Molded SOIC S34

Package Diagrams (continued)


32-Lead TSOP II ZS32

Package Diagrams (continued)

32-Lead Reverse Thin Small Outline Package Type II ZU32

51-85138-**

Document Title: CY62148B 512K x 8 Static RAM Document Number: 38-05039								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	106833	05/01/01	SZV	Change from Spec number 38-01104 to 38-05039				
*A	106970	07/16/01	GAV	Modified annotations on Pin Configurations; t _{SD} = 30 ns				
*B	109766	10/09/01	MGN	Remove 55-ns devices				

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com