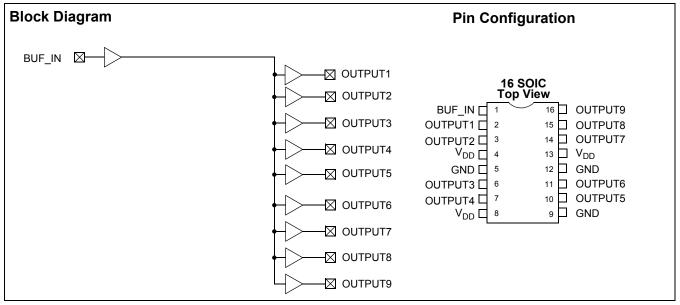




## CY2309NZ

# Nine-Output 3.3V Buffer


#### Features

- · One-input to nine-output buffer/driver
- Supports two DIMMs or four SO-DIMMs with one additional output for feedback to an external or chipset PLL
- Low power consumption for mobile applications
  Less than 32 mA at 66.6 MHz with unloaded outputs
- 8.7-ns Input-Output delay
- Buffers all frequencies from DC to 133.33 MHz
- · Output-output skew less than 250 ps
- Multiple  $V_{DD}$  and  $V_{SS}$  pins for noise and electromagnetic interference (EMI) reduction
- Space-saving 16-pin 150-mil SOIC package
- 3.3V operation
- Industrial temperature available

### **Functional Description**

The CY2309NZ is a low-cost buffer designed to distribute high-speed clocks in mobile PC systems and desktop PC systems with SDRAM support. The part has nine outputs, eight of which can be used to drive 2 DIMMs or 4 SO-DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 133.33 MHz.

The CY2309NZ is designed for low EMI and power optimization. It has multiple  $V_{SS}$  and  $V_{DD}$  pins for noise optimization and consumes less than 32 mA at 66.6 MHz, making it ideal for the low-power requirements of mobile systems. It is available in an ultra-compact 150-mil 16-pin SOIC package.



#### Pin Description for CY2309NZ

| Pin                              | Signal          | Description                 |  |
|----------------------------------|-----------------|-----------------------------|--|
| 4, 8, 13                         | V <sub>DD</sub> | 3.3V Digital Voltage Supply |  |
| 5, 9, 12                         | GND             | Ground                      |  |
| 1                                | BUF_IN          | Input Clock                 |  |
| 2, 3, 6, 7, 10, 11<br>14, 15, 16 | , OUTPUT [1:9]  | Outputs                     |  |



## CY2309NZ

### **Maximum Ratings**

| Storage Temperature      | –65°C to +150°C |
|--------------------------|-----------------|
| Junction Temperature     | 150°C           |
| Static Discharge Voltage |                 |

(per MIL-STD-883, Method 3015) .....>2,000V

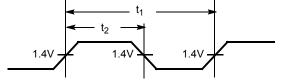
**Operating Conditions** for Commercial and Industrial Temperature Devices

Supply Voltage to Ground Potential ...... -0.5V to +7.0V DC Input Voltage (Except REF) .....-0.5V to V<sub>DD</sub> + 0.5V

DC Input Voltage REF.....-0.5V to 7V

| Parameter           | Description                                                                                   | Min. | Max.   | Unit |
|---------------------|-----------------------------------------------------------------------------------------------|------|--------|------|
| V <sub>DD</sub>     | Supply Voltage                                                                                | 3.0  | 3.6    | V    |
| T <sub>A</sub>      | (Ambient Operating Temperature) Commercial                                                    | 0    | 70     | °C   |
|                     | (Ambient Operating Temperature) Industrial                                                    | -40  | 85     | °C   |
| CL                  | Load Capacitance, Fout < 100 MHz                                                              |      | 30     | pF   |
|                     | Load Capacitance,100 MHz < Fout < 133.33 MHz                                                  |      | 15     | pF   |
| C <sub>IN</sub>     | Input Capacitance                                                                             |      | 7      | pF   |
| BUF_IN, SDRAM [1:9] | Operating Frequency                                                                           | DC   | 133.33 | MHz  |
| t <sub>PU</sub>     | Power-up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic) | 0.05 | 50     | ms   |

Electrical Characteristics for Commercial and Industrial Temperature Devices


| Parameter       | Description                        | Test Conditions                   | Min. | Max.  | Unit |
|-----------------|------------------------------------|-----------------------------------|------|-------|------|
| V <sub>IL</sub> | Input LOW Voltage <sup>[1]</sup>   |                                   |      | 0.8   | V    |
| V <sub>IH</sub> | Input HIGH Voltage <sup>[1]</sup>  |                                   | 2.0  |       | V    |
| IIL             | Input LOW Current                  | V <sub>IN</sub> = 0V              |      | 50.0  | μA   |
| IIH             | Input HIGH Current                 | V <sub>IN</sub> = V <sub>DD</sub> |      | 100.0 | μA   |
| V <sub>OL</sub> | Output LOW Voltage <sup>[2]</sup>  | I <sub>OL</sub> = 8 mA            |      | 0.4   | V    |
| V <sub>OH</sub> | Output HIGH Voltage <sup>[2]</sup> | I <sub>OH</sub> = –8 mA           | 2.4  |       | V    |
| I <sub>DD</sub> | Supply Current                     | Unloaded outputs at 66.66 MHz     |      | 32    | mA   |

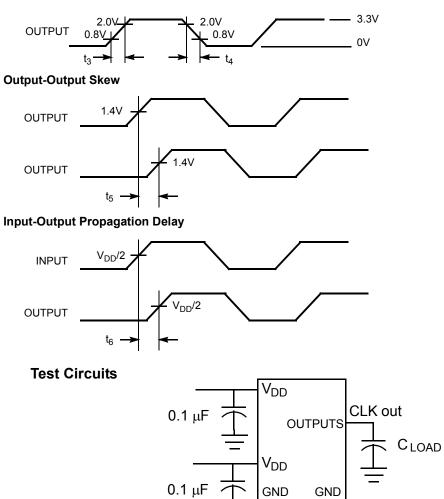
Switching Characteristics for Commercial and Industrial Temperature Devices<sup>[3]</sup>

| Parameter      | Name                                                                             | Description                    | Min. | Тур. | Max. | Unit |
|----------------|----------------------------------------------------------------------------------|--------------------------------|------|------|------|------|
|                | Duty Cycle <sup>[2]</sup> = t <sub>2</sub> ÷ t <sub>1</sub>                      | Measured at 1.4V               | 40.0 | 50.0 | 60.0 | %    |
| t <sub>3</sub> | Rise Time <sup>[2]</sup>                                                         | Measured between 0.8V and 2.0V |      |      | 1.50 | ns   |
| t <sub>4</sub> | Fall Time <sup>[2]</sup>                                                         | Measured between 0.8V and 2.0V |      |      | 1.50 | ns   |
| t <sub>5</sub> | Output to Output Skew <sup>[2]</sup>                                             | All outputs equally loaded     |      |      | 250  | ps   |
| t <sub>6</sub> | Propagation Delay, BUF_IN<br>Rising Edge to OUTPUT<br>Rising Edge <sup>[2]</sup> | Measured at V <sub>DD</sub> /2 | 1    | 5    | 9.2  | ns   |

#### **Switching Waveforms**

#### **Duty Cycle Timing**




#### Notes:

BUF\_IN input has a threshold voltage of V<sub>DD</sub>/2.
 Parameter is guaranteed by design and characterization. It is not 100% tested in production.
 All parameters specified with loaded outputs.

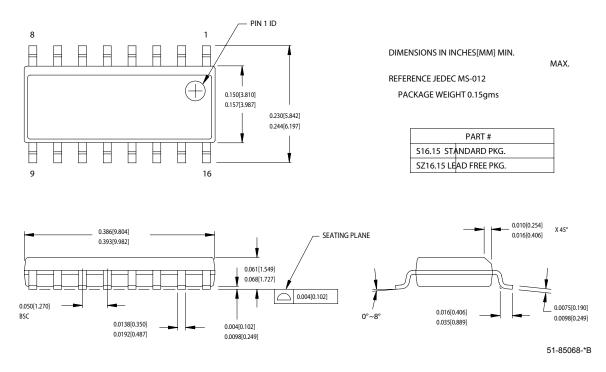


### Switching Waveforms (continued)

#### All Outputs Rise/Fall Time



## **Ordering Information**


| Ordering Code | Package Name | Package Type        | Operating Range |
|---------------|--------------|---------------------|-----------------|
| CY2309NZSC-1H | S16          | 16-pin 150-mil SOIC | Commercial      |
| CY2309NZSI-1H | S16          | 16-pin 150-mil SOIC | Industrial      |

GND



## Package Diagram

16-Lead (150-Mil) SOIC S16



All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.



## **Document History Page**

| Document Title: CY2309NZ Nine-Output 3.3V Buffer<br>Document Number: 38-07182 |         |            |                    |                                                                                            |
|-------------------------------------------------------------------------------|---------|------------|--------------------|--------------------------------------------------------------------------------------------|
| REV.                                                                          | ECN NO. | Issue Date | Orig. of<br>Change | Description of Change                                                                      |
| **                                                                            | 111858  | 12/09/01   | DSG                | Change from Spec number: 38-00709 to 38-07182                                              |
| *A                                                                            | 121834  | 12/14/02   | RBI                | Power-up requirements added to Operating Conditions Information                            |
| *B                                                                            | 130563  | 10/23/03   | SDR                | Added industrial operating temperature to operating conditions                             |
| *C                                                                            | 212991  | See ECN    | RGL/GGK            | Updated the propagation delay $T_6$ spec to 9.2 ns in the Switching Character istics table |

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com