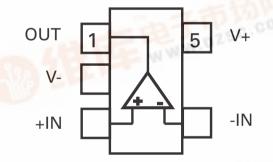
## **ADVANCED INFORMATION**

ZXFV202


# Video Amplifier

#### **DEVICE DESCRIPTION**

The ZXFV202 is a single high speed amplifier designed for video and other high speed applications. Packaged in a small SOT23-5 it is ideally suited to applications where space is at a premium. In applications where cross talk is critical this part provides better isolation than dual or quad devices.

It features low differential gain and phase performance. High output drive capability compliments this part for use in video applications.

#### CONNECTION DIAGRAM



#### **FEATURES AND BENEFITS**

- -3dB bandwidth 300MHz
- Slew rate 400V/μs
- Differential gain 0.01%
- Differential phase 0.01°
- Output current 40mA
- Characterised up to 400pF load
- ±5 Volt supply
- Supply current 7mA
- SOT23-5 package

## **APPLICATIONS**

- Video gain stages
- CCTV buffer
- Video distribution
- RGB buffering
- High frequency instrumentation
- Cable Driving
- Radar Imaging
- Medical Imaging

## ORDERING INFORMATION

| PART NUMBER | CONTAINER | INCREMENT |
|-------------|-----------|-----------|
| ZXFV202E5TA | Reel 7"   | 3000      |
| ZXFV202E5TC | Reel 13"  | 10000     |







#### **ZXFV202 ABSOLUTE MAXIMUM RATINGS**

Supply Voltage ±5.25V

Inputs to ground Outputs to ground

-40°C to 85°C Storage -65°C to 150°C Operating Temperature Range

Continuous Power Dissipation 250mW Thermal resistance 250°C/W

The power dissipation of the device including the loads must be designed to keep t<sub>j</sub> below 150°C

## **ELECTRICAL CHARACTERISTICS**

Test Conditions:  $Vcc=\pm5V$ , Tamb=25C unless otherwise stated. Rf =  $1k\Omega$ ,  $R_L = 150\Omega$ ,  $C_L <= 10pF$ 

| Parameter                              | Conditions                    | Test | Min.  | Typical     | Max.  | Units    |
|----------------------------------------|-------------------------------|------|-------|-------------|-------|----------|
| Supply Voltage V+                      |                               |      | 4.75  | 5           | 5.25  | V        |
| Supply Voltage V-                      |                               |      | -5.25 | -5          | -4.75 | V        |
|                                        |                               |      |       |             |       |          |
| Supply current                         |                               | P    |       | 7           |       | mA       |
|                                        |                               |      |       |             |       |          |
| Input Common mode<br>Voltage           |                               | P    |       | ±3          |       | V        |
| Input offset voltage                   |                               | Р    | -10   | ±3          | 10    | mV       |
| Input bias current non inverting input |                               | P    |       | +10<br>-4.5 |       | μΑ<br>μΑ |
| Input Resistance                       |                               | Р    | 3     |             | 7     | MΩ       |
| Output voltage swing                   |                               | Р    |       | ±3          |       | V        |
| Output drive current                   |                               | Р    |       |             | 40    | mA       |
|                                        |                               |      |       |             |       |          |
| Positive PSRR                          |                               |      |       | -55         |       | dB       |
| Negative PSRR                          |                               |      |       | -57         |       | dB       |
| Bandwidth                              | Av= +1                        | С    |       | 300         |       | MHz      |
| Slew rate                              | Av= +1<br>Av = +2<br>Av = +10 |      |       | 400<br>400  |       | V/µs     |
| Rise time                              | Vout = ±1 V,<br>10% - 90%     |      |       | 4.0         |       | ns       |
| Fall time                              | Vout = ±1V,<br>10% - 90%      |      |       | 3.2         |       | ns       |
| Propagation delay                      | Vout = +2 V,<br>50%           |      |       | 4           |       | ns       |
| Open loop gain                         |                               |      |       | 53          |       | dB       |
| Differential Gain                      | RL = 150Ω                     |      |       | 0.01        |       | %        |
| Differential phase                     | RL = 150Ω                     |      |       | 0.01        |       | deg      |

Test: P=Production tested, C= Characterised



Zetex plc.
Fields New Road, Chadderton, Oldham, OL9-8NP, United Kingdom.
Telephone: (44)161 622 4422 (Sales), (44)161 622 4444 (General Enquiries)
Fax: (44)161 622 4420

Zetex GmbH Streitfeldstraße 19 D-81673 München Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 Zetex Inc. 47 Mall Drive, Unit 4 Commack NY 11725 USA Telephone: (631) 543-7100 Fax: (631) 864-7630

Zetex (Asia) Ltd. 3701-04 Metroplaza, Tower 1 Hing Fong Road, Kwai Fong, Hong Kong Telephone:(852) 26100 611 Fax: (852) 24250 494

These are supported by agents and distributors in major countries world-wide © Zetex plc 2000

Internet:http://www.zetex.com