

45V NPN MEDIUM POWER HIGH GAIN TRANSISTOR IN D-PAK

SUMMARY

BV_{CEO} = 45V : R_{SAT} = 77mΩ; I_C = 3A

DESCRIPTION

Packaged in the D-Pak outline this high gain 45V NPN transistor offers low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.

FEATURES

- 3 Amps continuous current
- Up to 6 Amps peak current
- Low saturation voltages
- High gain

APPLICATIONS

- DC DC Converters
- MOSFET gate drivers
- Charging circuits
- Power switches
- Siren drivers

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXT690BKTC	13"	16mm embossed	2500 units

WWW.DZSC.COM

DEVICE MARKING

• ZXT690B

ISSUE 1 - JUNE 2003

DPAK

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Collector-Base Voltage	BV _{CBO}	60	V
Collector-Emitter Voltage	BV _{CEO}	45	V
Emitter-Base Voltage	BV _{EBO}	5	V
Continuous Collector Current	I _C	3	A
Peak Pulse Current	I _{CM}	6	A
Base Current	I _B	0.5	А
Power Dissipation at T _A =25°C ^(a)	P _D	2.1	W
Linear Derating Factor		16.8	mW/°C
Thermal Resistance Junction to Ambient		59	°C/W
Power Dissipation at $T_A = 25^{\circ}C^{(b)}$	P _D	3.0	W
Linear Derating Factor		24.4	mW/°C
Thermal Resistance Junction to Ambient		41	°C/W
Power Dissipation at T _A =25°C ^(c)	P _D	3.9	W
Linear Derating Factor		30.9	mW/°C
Thermal Resistance Junction to Ambient		32	°C/W
Operating and Storage Temperature Range	T _j , T _{stg}	-55 to +150	°C

NOTES

(a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

(b) For a device surface mounted on 50mm x 50mm FR4 PCB with high coverage of single sided 1oz copper in still air conditions.

(c) For a device surface mounted on 50mm x 50mm FR4 PCB with high coverage of single sided 2oz copper in still air conditions.

ISSUE 1 - JUNE 2003

	a					
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Collector-Base Breakdown Voltage	BV _{CBO}	60	145		V	I _C = 100μA
Collector-Emitter Breakdown Voltage	BV _{CEO}	45	65		V	$I_{\rm C} = 10 {\rm mA}^{(1)}$
Emitter-Base Breakdown Voltage	BV _{EBO}	5	8.2		V	I _E = 100μA
Collector Cut-Off Current	I _{CBO}		<1	20	nA	V _{CB} = 35V
Collector Cut-Off Current	I _{CES}		<1	20	nA	V _{CB} = 35V
Emitter Cut-Off Current	I _{EBO}		<1	20	nA	$V_{EB} = 4V$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}		50	85	mV	$I_{\rm C}$ = 0.1A, $I_{\rm B}$ = 0.5mA ⁽¹⁾
			240	360	mV	$I_{C} = 1A, I_{B} = 5mA^{(1)}$
			210	320	mV	$I_{C} = 2A, I_{B} = 40mA^{(1)}$
			230	350	mV	I _C = 3A, I _B = 150mA
Base-Emitter Saturation Voltage	V _{BE(SAT)}		1.0	1.2	mV	I _C = 3A, I _B = 150mA ⁽¹⁾
Base-Emitter Turn-On Voltage	V _{BE(ON)}		0.9	1.1	mV	$I_{C} = 3A, V_{CE} = 2V^{(1)}$
Static Forward Current Transfer Ratio	h _{FE}	500				$I_{\rm C}$ = 100mA, $V_{\rm CE}$ = 2V ⁽¹⁾
		400				$I_{C} = 1A, V_{CE} = 2V^{(1)}$
		150				$I_{C} = 2A, V_{CE} = 2V^{(1)}$
		60				$I_{C} = 3A, V_{CE} = 2V^{(1)}$
Transition Frequency	f _T	150			MHz	I _C = 50mA, V _{CE} = 5V
						f = 50MHz
Output Capacitance	C _{OBO}		16		pF	$V_{CB} = 10V, f = 1MHz^{(1)}$
Switching Times	t _{ON}		33		ns	$I_{\rm C} = 500 {\rm mA}, V_{\rm CC} = 10 {\rm V},$
	t _{OFF}		1300		ns	I _{B1} = I _{B2} = 50mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^{\circ}C$ unless otherwise stated)

NOTES (1) Measured under pulsed conditions. Pulse width \leq 300µs; duty cycle \leq 2%.

ISSUE 1 - JUNE 2003

PACKAGE OUTLINE

Controlling dimensions are in millimetres. Approximate conversions are given in inches

DIM	MILLIMETRES		INCHES		
	MIN	MAX	MIN	MAX	
Α	2.18	2.38	0.086	0.094	
A1	—	0.127	—	0.005	
b	0.635	0.89	0.025	0.035	
b2	0.762	1.114	0.030	0.045	
b3	5.20	5.46	0.205	0.215	
с	0.457	0.609	0.018	0.024	
c2	0.457	0.584	0.018	0.023	
D	5.97	6.22	0.235	0.245	
D1	5.20	—	0.205	—	
E	6.35	6.73	0.250	0.265	
E1	4.32	—	0.170	—	
е	2.30 BSC		0.090 BSC		
Н	9.40	10.41	0.370	0.410	
L	1.40	1.78	0.055	0.070	
L1	2.74 REF		0.108 REF		
L2	0.051 BSC		0.020 BSC		
L3	0.89	1.27	0.035	0.050	
L4	0.635	1.01	0.025	0.040	
L5	1.14	1.52	0.045	0.060	
θ1°	0°	10°	0°	10°	
θ°	0°	15°	0°	15°	

© Zetex plc 2003

Europe

Zetex plc Fields New Road Chadderton Oldham, OL9 8NP United Kingdom Telephone (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com Zetex GmbH Streitfeldstraße 19 D-81673 München

Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com Americas Zetex Inc

700 Veterans Memorial Hwy Hauppauge, NY 11788

USA Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com Asia Pacific

Zetex (Asia) Ltd 3701-04 Metroplaza Tower 1 Hing Fong Road Kwai Fong Hong Kong Telephone: (852) 26100 611 Fax: (852) 24250 494 asia.sales@2etex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

ISSUE 1 - JUNE 2003