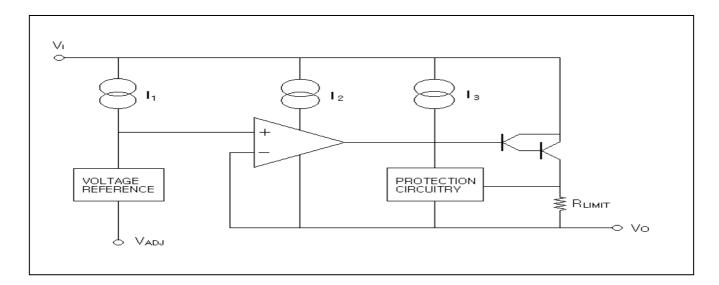

查询"LM317F"供应商 ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)

3-TERMINAL 100mA POSITIVE ADJUSTABLE REGULATOR

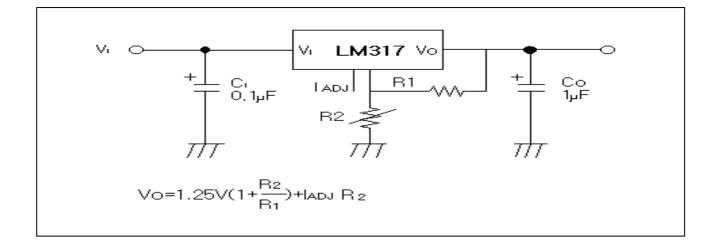
This monolithic integrated circuit is an adjustable 3-terminal positive voltage regulator designed to supply more than 100mA of load current with an output voltage adjustable over a 1.2 to 37V. It employs internal current limiting, thermal shut-down and safe area compensation.

FEATURES


- ♦ Output current in Excess of 100mA
- \diamond Output Adjustable Between 1.2V and 37V
- ◇ Internal Thermal-Overload Protection
- ♦ Internal Short-Circuit Current-Limiting
- ♦ Output Transistor Safe-Area Compensation
- \diamond Floating operation for high voltage applications

ORDERING INFORMATION

Device	Marking	Package
LM317L	LM317L	TO-92
LM317F	317	SOT-89


BLOCK DIAGRAM

查询"LM317F"供应商 ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)

TYPICAL APPLICATIONS

Fig.5 Programmable Regulator

 $C_{I}\xspace$ is required when regulator is located in appreciable distance from power supply filter.

Co is not needed for stability, however, it does improve transient response.

Since I_{ADJ} is controlled to less than 100μ A, the error associated with this term is negligible in most applications.

查询"LM317F"供应商 ADJUSTABLE VOLTAGE REGULATOR (POSITIVE)

ABSOLUTE MAXIMUM RATINGS (T_=25°C, unless otherwise specified)

Characteristic	Symbol	Value	Unit
Input-output Voltage Differential	VI-Vo	40	V
Lead Temperature	Tlead	230	Ĵ
Power Dissipation	PD	Internally limited	-
Operating Temperature Range	Topr	0 ~ +125	Ĵ
Storage Temperature Range	Тѕтд	-65 ~ +125	Ĵ

ELECTRICAL CHARACTERISTICS

(VI-Vo=5V, Io=0.5A, $0^{\circ}C \le T_J \le 125^{\circ}C$, IMAX=1.5A, PMAX= 1.5 W, unless otherwise specified)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
Line Regulation	∆Vo	$T_A=0 \sim 125 \degree C$ $3V \leq V_I - V_O \leq 40V$		0.01	0.04	%/V
		3V≤VI-Vo≤40V		0.02	0.07	%/V
		T _A =25℃, 10mA≤Io≤I _{MAX}				
		Vo≤5V		10	25	mV
Load Regulation	∆Vo	Vo≥5V		0.1	0.5	%/Vo
		$10 \text{ mA} \le 10 \le 1_{\text{MAX}}$				
		Vo≤5V		20	70	mV
		Vo≥5V		0.3	1.5	%/Vo
Adjustable Pin Current	ADJ			46	100	μA
Adjustable Pin Current		3V≤VI-Vo≤40V				
Change		$10 \text{ mA} \le 10 \le 1_{\text{MAX}}$		0.2	5	μA
		PSPMAX				
Reference Voltage		3V≤VIN-VOUT≤40V				
	Vref	$10 \text{ mA} \le 10 \le 1_{\text{MAX}}$	1.20	1.25	1.30	V
		Pd≤Pmax				
Temperature Stability	ST⊤			0.7		%/Vo
Minimum Load Current to	L(MIN)	VI-V0=40V		3.5	10	mA
Maintain Regulation						
Maximum Output Current	O(MAX)	VI−Vo≤5V, Pd≤Pmax	100	200		mA
		VI-V0≤40V, PD≤PMAX, TA=25℃	0.156	0.4		
RMS Noise, % of Vout	θN	T _A =25℃,10Hz≤f≤10KHz		0.003	0.01	%/Vo
		Vo=10V, f=120Hz				
Ripple Rejection	RR	without Cadj		60		dB
		C _{ADJ} =10 µF	66	75		
Long-Term Stability,	ST	T _A =25℃, for end point		0.3	1	%
Тј=Тнідн		measurements, 1000HR				

 * Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used. (Pmax = 1500 mW)