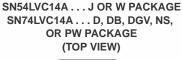
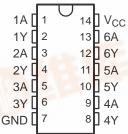
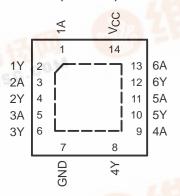
www.ti.com

SCAS285Y -MARCH 1993-REVISED OCTOBER 2010

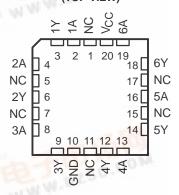

HEX SCHMITT-TRIGGER INVERTERS


Check for Samples: SN54LVC14A, SN74LVC14A

FEATURES


- Operate From 1.65 V to 3.6 V
- Specified From -40°C to 85°C, -40°C to 125°C, and -55°C to 125°C
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 6.4 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)



SN74LVC14A . . . RGY PACKAGE (TOP VIEW)

SN54LVC14A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The SN54LVC14A hex Schmitt-trigger inverter is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC14A hex Schmitt-trigger inverter is designed for 1.65-V to 3.6-V V_{CC} operation.

df.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Ordering Information

T _A	PAG	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	QFN – RGY	Reel of 1000	SN74LVC14ARGYR	LC14A
		Tube of 50	SN74LVC14AD	
	SOIC - D	Reel of 2500	SN74LVC14ADRG3	LVC14A
		Reel of 250	SN74LVC14ADT	
	SOP - NS	Reel of 2000	SN74LVC14ANSR	LVC14A
-40°C to 125°C	SSOP - DB	Reel of 2000	SN74LVC14ADBR	LC14A
		Tube of 90	SN74LVC14APW	
	TSSOP - PW	Reel of 2000	SN74LVC14APWRG3	LC14A
		Reel of 250	SN74LVC14APWT	
	TVSOP - DGV	Reel of 2000	SN74LVC14ADGVR	LC14A
	CDIP – J	Tube of 25	SNJ54LVC14AJ	SNJ54LVC14AJ
-55°C to 125°C	CFP – W	Tube of 150	SNJ54LVC14AW	SNJ54LVC14AW
	LCCC - FK	Tube of 55	SNJ54LVC14AFK	SNJ54LVC14AFK

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The devices contain six independent inverters and perform the Boolean function $Y = \overline{A}$.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Table 1. FUNCTION TABLE (EACH INVERTER)

INPUT A	OUTPUT Y
Н	L
L	Н

logic diagram, each inverter (positive logic)

www.thfoc?\\|54| \\\C14A_SP"(供应商

SCAS285Y - MARCH 1993-REVISED OCTOBER 2010

Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Output voltage range ⁽²⁾ (3)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND		±100	mA	
		D package ⁽⁴⁾		86	
		DB package ⁽⁴⁾		96	
0	Deales as the analysis advanta	DGV package ⁽⁴⁾		127	00.004
$\theta_{\sf JA}$	Package thermal impedance	NS package ⁽⁴⁾		76	°C/W
		PW package ⁽⁴⁾		113	
		RGY package ⁽⁵⁾		47	
T _{stg}	Storage temperature range		-65	150	°C
P _{tot}	Power dissipation	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}^{(6)}$ (7)		500	mW

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-5.

⁽⁶⁾ For the D package: above 70°C, the value of Ptot derates linearly with 8 mW/K.

⁽⁷⁾ For the DB, DGV, NS, and PW packages: above 60°C, the value of Ptot derates linearly with 5.5 mW/K.

Recommended Operating Oonditions(1)

			SN54LVC14A -55 TO 125°C		ı	
					UNIT	
			MIN	MAX		
.,	Complexed to an	Operating	2	3.6		
V _{CC}	Supply voltage	Data retention only	1.5		V	
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V_{CC}	V	
	High level autout august	V _{CC} = 2.7 V		-12	A	
I _{OH}	High-level output current	V _{CC} = 3 V		-24	mA	
	Lavi lavial autovit avimont	V _{CC} = 2.7 V		12	A	
I _{OL}	Low-level output current	V _{CC} = 3 V		24	mA	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Recommended Operating Conditions⁽¹⁾

			SN74LVC14A							
			$T_A = 2$	25°C	-40 TO 85°C		-40 TO 125°C		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
V	Cupply voltage	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V	
V _{CC}	Supply voltage	Data retention only	1.5		1.5		1.5		V	
V_{I}	Input voltage	nput voltage		5.5	0	5.5	0	5.5	V	
Vo	Output voltage		0	V_{CC}	0	V_{CC}	0	V_{CC}	V	
		V _{CC} = 1.65 V		-4		-4		-4		
	Liber level entent enment	$V_{CC} = 2.3 \text{ V}$		-8		-8		-8	mA	
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12		-12		-12		
		V _{CC} = 3 V		-24		-24		-24		
		V _{CC} = 1.65 V		4		4		4		
	Low lovel output ourrent	$V_{CC} = 2.3 \text{ V}$		8		8		8	mA	
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12		12		12		
		V _{CC} = 3 V		24		24		24	-	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS285Y -MARCH 1993-REVISED OCTOBER 2010

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

			SN54LVC	14A	UNIT	
PARAMETER	TEST CONDITIONS	V _{CC}	–55 TO 12	25°C		
			MIN T	YP MAX		
V _{T+}		2.7 V	0.8	2		
Positive-going		3 V	0.9	2	V	
threshold		3.6 V	1.1	2		
V _{T_}		2.7 V	0.4	1.4		
Negative-going		3 V	0.6	1.5	V	
threshold		3.6 V	0.8	1.7		
ΔV_T Hysteresis		2.7 V	0.3	1.1		
		3 V	0.3	1.2	V	
$(V_{T+} - V_{T-})$		3.6 V	0.3	1.2		
	$I_{OH} = -100 \mu A$	2.7 V to 3.6 V	$V_{CC} - 0.2$			
V	I _{OH} = -12 mA	2.7 V	2.2		V	
V_{OH}	I _{OH} = -12 IIIA	3 V	2.4			
	$I_{OH} = -24 \text{ mA}$	3 V	2.2			
	$I_{OL} = 100 \mu A$	2.7 V to 3.6 V		0.2		
V_{OL}	I _{OL} = 12 mA	2.7 V		0.4	V	
	I _{OL} = 24 mA	3 V		0.55		
I _I	V _I = 5.5 V or GND	3.6 V		±5	μΑ	
I _{cc}	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	·	10	μΑ	
ΔI_{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V		500	μΑ	
C _i	$V_I = V_{CC}$ or GND	3.3 V	-	5 ⁽¹⁾	pF	

⁽¹⁾ $T_A = 25^{\circ}C$

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

					S	N74LVC14				
PARAMETER	TEST CONDITIONS	V _{cc}	T _A =	= 25°C		-40 TO 8	5°C	-40 TO 1	25°C	UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
		1.65 V	0.4		1.3	0.4	1.3	0.4	1.3	
		1.95 V	0.6		1.5	0.6	1.5	0.6	1.5	
V_{T+}		2.3 V	0.8		1.7	0.8	1.7	0.8	1.7	
Positive-going		2.5 V	0.8		1.7	0.8	1.7	0.8	1.7	V
threshold		2.7 V	0.8		2	0.8	2	0.8	2	
		3 V	0.9		2	0.9	2	0.9	2	
		3.6 V	1.1		2	1.1	2	1.1	2	
		1.65 V	0.15		0.85	0.15	0.85	0.15	0.85	
		1.95 V	0.25		0.95	0.25	0.95	0.25	0.95	
\/_		2.3 V	0.4		1.2	0.4	1.2	0.4	1.2	
V _T Negative-going threshold		2.5 V	0.4		1.2	0.4	1.2	0.4	1.2	V
		2.7 V	0.4		1.4	0.4	1.4	0.4	1.4	
		3 V	0.6		1.5	0.6	1.5	0.6	1.5	
		3.6 V	0.8		1.7	0.8	1.7	0.8	1.7	
		1.65 V	0.1		1.15	0.1	1.15	0.1	1.15	
ΔV _T Hysteresis		1.95 V	0.15		1.25	0.15	1.25	0.15	1.25	
		2.3 V	0.25		1.3	0.25	1.3	0.25	1.3	
		2.5 V	0.25		1.3	0.25	1.3	0.25	1.3	V
$(V_{T+} - V_{T-})$		2.7 V	0.3		1.1	0.3	1.1	0.3	1.1	
		3 V	0.3		1.2	0.3	1.2	0.3	1.2	
		3.6 V	0.3		1.2	0.3	1.2	0.3	1.2	
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2			V _{CC} - 0.2		V _{CC} - 0.3		
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.29			1.2		1.05		
	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.7		1.65		
V_{OH}		2.7 V	2.2			2.2		2.05		V
	$I_{OH} = -12 \text{ mA}$	3 V	2.4			2.4		2.25		
	I _{OH} = -24 mA	3 V	2.3			2.2		2		
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.1		0.2		0.3	
	I _{OL} = 4 mA	1.65 V			0.24		0.45		0.6	
V_{OL}	I _{OL} = 8 mA	2.3 V			0.3		0.7		0.75	V
OL.	I _{OL} = 12 mA	2.7 V			0.4		0.4		0.6	
	I _{OL} = 24 mA	3 V			0.55		0.55		0.8	
I _I	$V_1 = 5.5 \text{ V or GND}$	3.6 V			±1		±5		±20	μА
I _{CC}	$V_1 = V_{CC}$ or GND, $I_0 = 0$	3.6 V			1		10		40	μА
Δl _{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500		500		5000	μА
C _i	$V_I = V_{CC}$ or GND	3.3 V		5						pF

<u>₩豐梅♥N54LVC14A SP"供应商</u>

SCAS285Y - MARCH 1993-REVISED OCTOBER 2010

Switching Characteristics

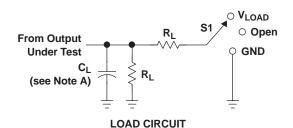
over operating free-air temperature range (unless otherwise noted) (see Figure 1)

-				SN54LV	'C14A		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC}	–55 TO	125°C	UNIT	
	(1.4. 6.1)	(6611 61)		MIN	MAX		
•	۸	V	2.7 V		7.5		
^L pd	A	Y	3.3 V ± 0.3 V	1	6.4	ns	

Switching Characteristics

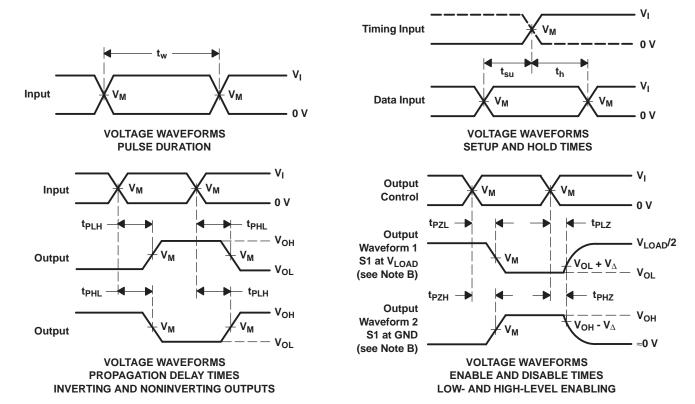
over operating free-air temperature range (unless otherwise noted) (see Figure 1)

						SN	74LVC14	1A			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	$T_A = 25^{\circ}C$			-40 TO 85°C		-40 TO	125°C	UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
		A Y	1.8 V ± 0.15 V	1	5	10.5	1	11	1	13	ns
	^		2.5 V ± 0.2 V	1	3.4	7.3	1	7.8	1	10	
t _{pd}	A		2.7 V	1	3.6	7.3	1	7.5	1	9.5	
			3.3 V ± 0.3 V	1	3.2	6.2	1	6.4	1	8	
t _{sk(o)}			3.3 V ± 0.3 V			1		1		1.5	ns


Operating Characteristics

 $T_{\Delta} = 25^{\circ}C$

$I_A = 23$					
	PARAMETER	TEST CONDITIONS	v_{cc}	TYP	UNIT
			1.8 V	11	
C_{pd}	Power dissipation capacitance per inverter	f = 10 MHz	2.5 V	12	pF
			3.3 V	15	



Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL} t _{PLZ} /t _{PZL}	Open V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INI	PUTS	.,	.,		_	.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_{\Delta}$
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pe
5962-9761501Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/A for Pk
5962-9761501QCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pk
5962-9761501QDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pk
5962-9761501V2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pk
5962-9761501VCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pk
5962-9761501VDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pk
SN74LVC14AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADBLE	OBSOLETE	SSOP	DB	14		TBD	Call TI	Call TI
SN74LVC14ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADGVR	ACTIVE	TVSOP	DGV	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADGVRE4	ACTIVE	TVSOP	DGV	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADGVRG4	ACTIVE	TVSOP	DGV	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADRG3	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260
SN74LVC14ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260

PACKA

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pe
SN74LVC14ADT	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADTE4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ADTG4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
SN74LVC14APWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWRG3	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260
SN74LVC14APWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWT	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWTE4	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14APWTG4	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
SN74LVC14ARGYR	ACTIVE	VQFN	RGY	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260
SN74LVC14ARGYRG4	ACTIVE	VQFN	RGY	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260

PACKA

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pea
SNJ54LVC14AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE N	N / A for Pkg
SNJ54LVC14AJ	ACTIVE	CDIP	J	14	1	TBD	A42 N	N / A for Pkg
SNJ54LVC14AW	ACTIVE	CFP	W	14	1	TBD	A42 N	N / A for Pkg

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate in continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical at TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

OTHER QUALIFIED VERSIONS OF SN54LVC14A, SN54LVC14A-SP, SN74LVC14A:

Catalog: SN74LVC14A, SN54LVC14A

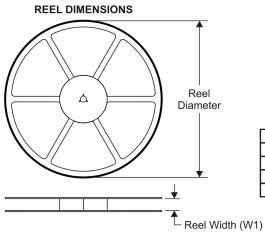
Automotive: SN74LVC14A-Q1, SN74LVC14A-Q1

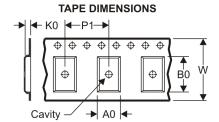
PACKA

● Enhanced Product: SN74LVC14A-EP, SN74LVC14A-EP

Military: SN54LVC14A

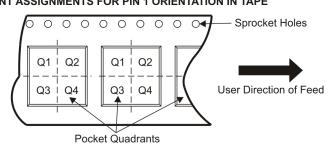
• Space: SN54LVC14A-SP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

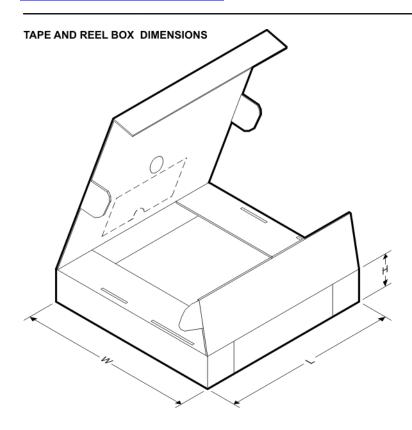
查询"\$N54LVC14A-SP"供应商

23-Oct-2010


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



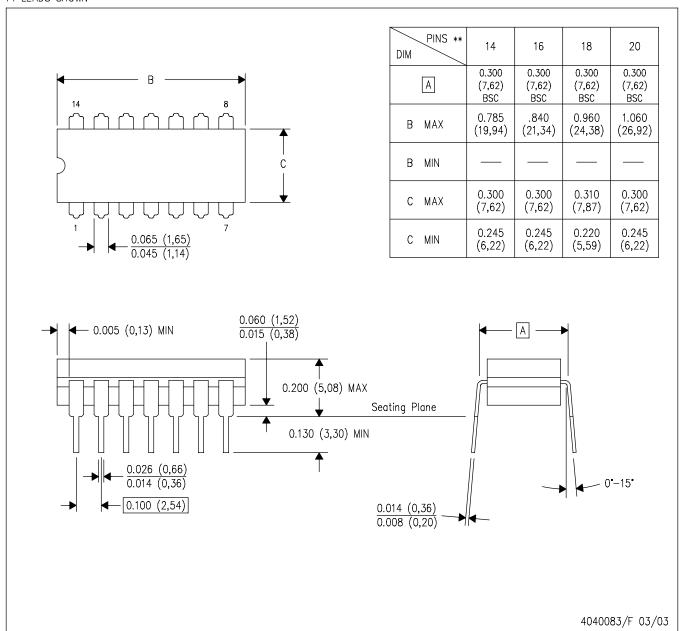
*All dimensions are nominal

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC14ADBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74LVC14ADGVR	TVSOP	DGV	14	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LVC14ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVC14ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVC14ADT	SOIC	D	14	250	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVC14ANSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LVC14APWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC14APWR	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
SN74LVC14APWRG3	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
SN74LVC14APWT	TSSOP	PW	14	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC14ARGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

查询"\$N54LVC14A-SP"供应商

23-Oct-2010

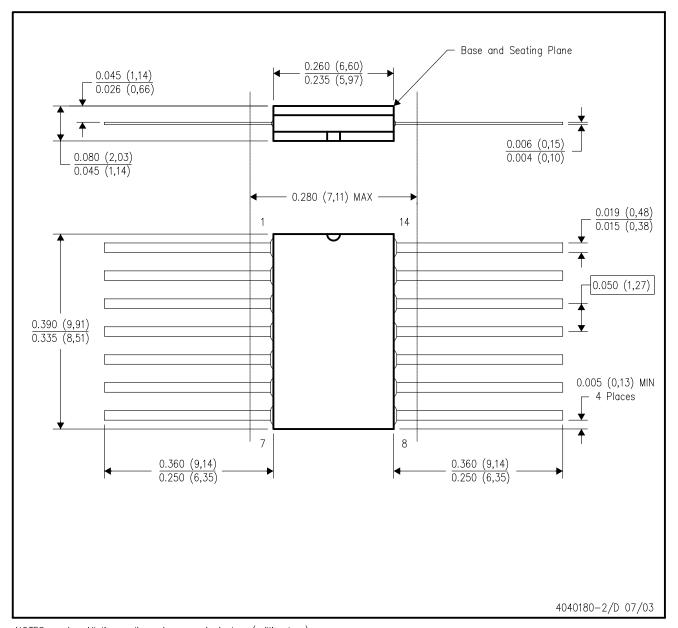
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC14ADBR	SSOP	DB	14	2000	346.0	346.0	33.0
SN74LVC14ADGVR	TVSOP	DGV	14	2000	346.0	346.0	29.0
SN74LVC14ADR	SOIC	D	14	2500	346.0	346.0	33.0
SN74LVC14ADR	SOIC	D	14	2500	333.2	345.9	28.6
SN74LVC14ADT	SOIC	D	14	250	346.0	346.0	33.0
SN74LVC14ANSR	SO	NS	14	2000	346.0	346.0	33.0
SN74LVC14APWR	TSSOP	PW	14	2000	346.0	346.0	29.0
SN74LVC14APWR	TSSOP	PW	14	2000	364.0	364.0	27.0
SN74LVC14APWRG3	TSSOP	PW	14	2000	364.0	364.0	27.0
SN74LVC14APWT	TSSOP	PW	14	250	346.0	346.0	29.0
SN74LVC14ARGYR	VQFN	RGY	14	3000	346.0	346.0	29.0

查询"SN54LVC14A-SP"供应商

J (R-GDIP-T**)

CERAMIC DUAL IN-LINE PACKAGE

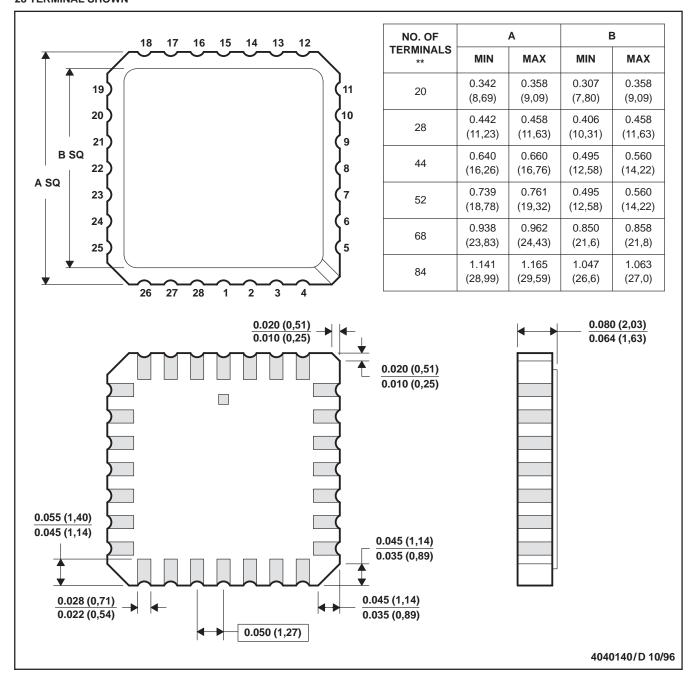

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

NOTES: A. All linear dimensions are in inches (millimeters).

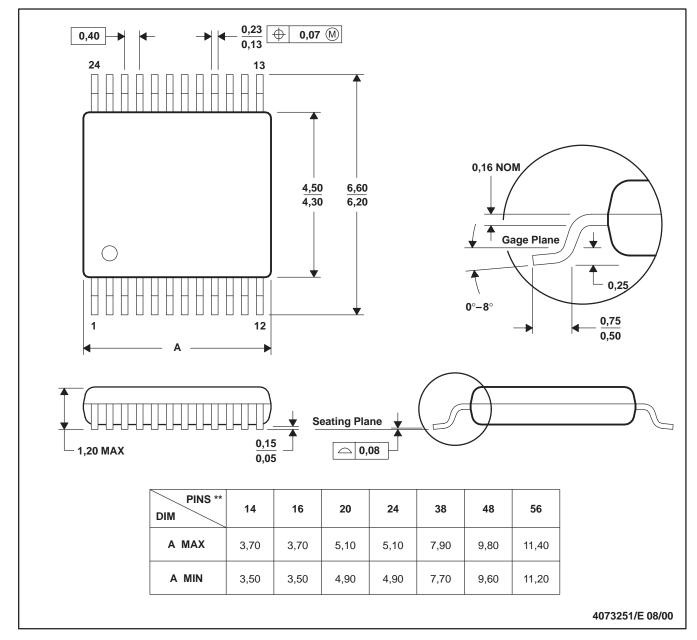

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

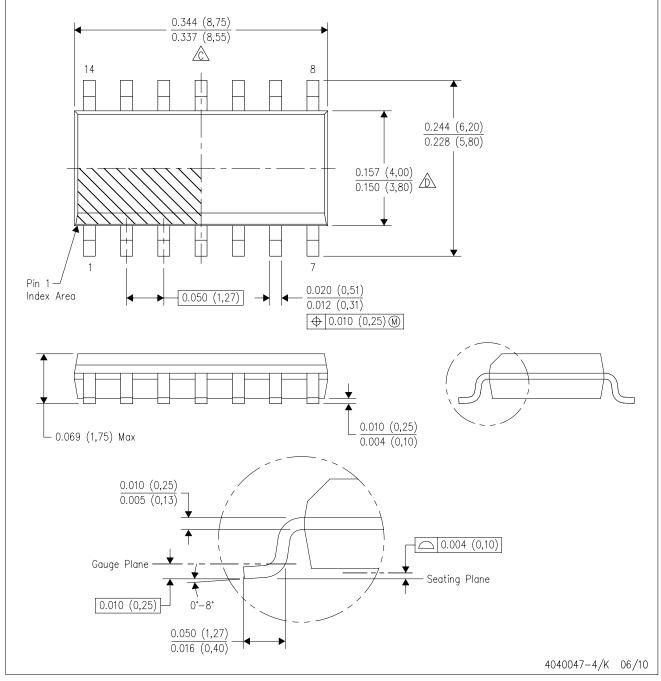
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

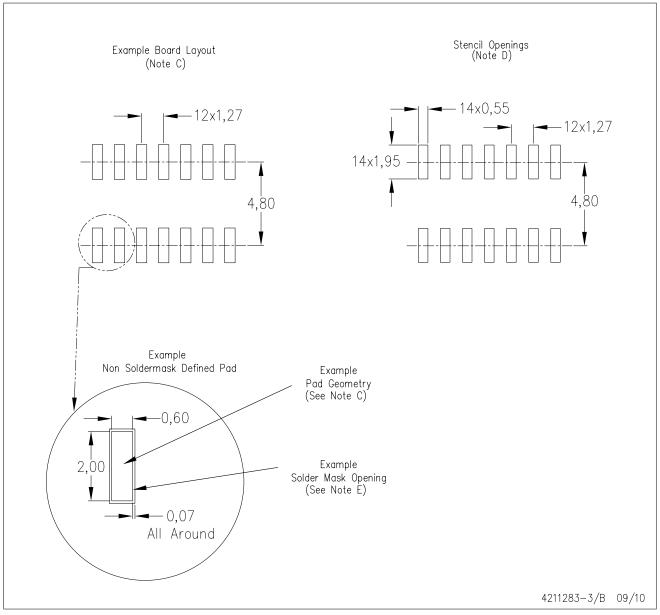
B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

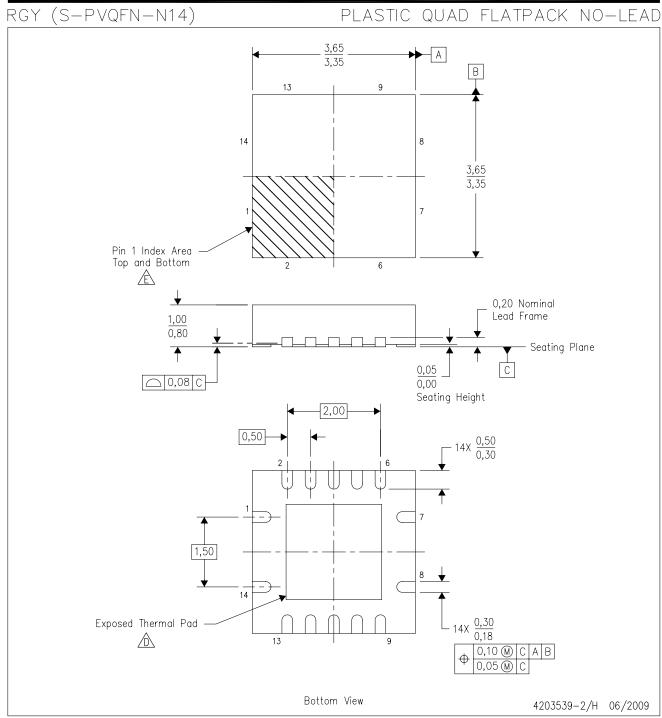
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

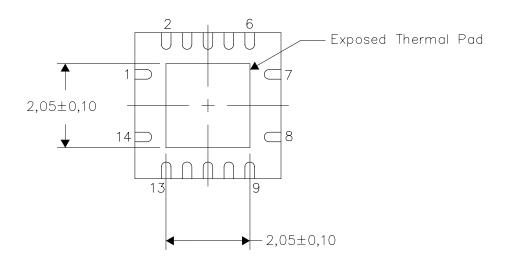

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No—Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BA.

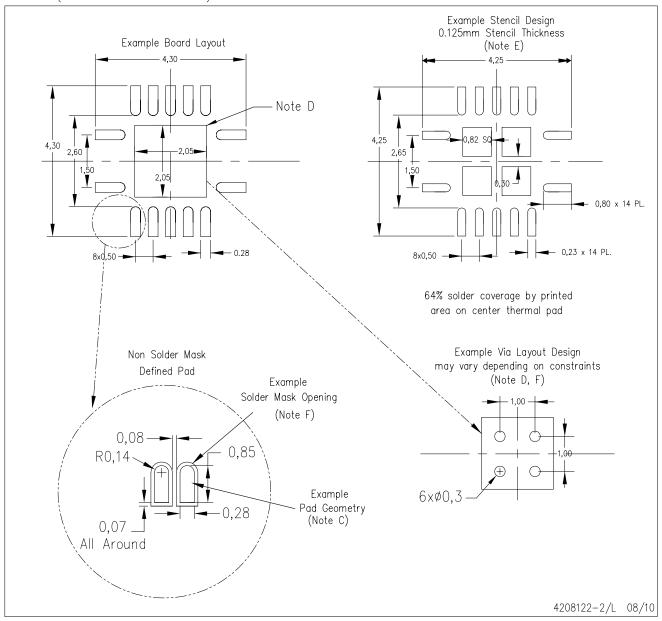

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Bottom View

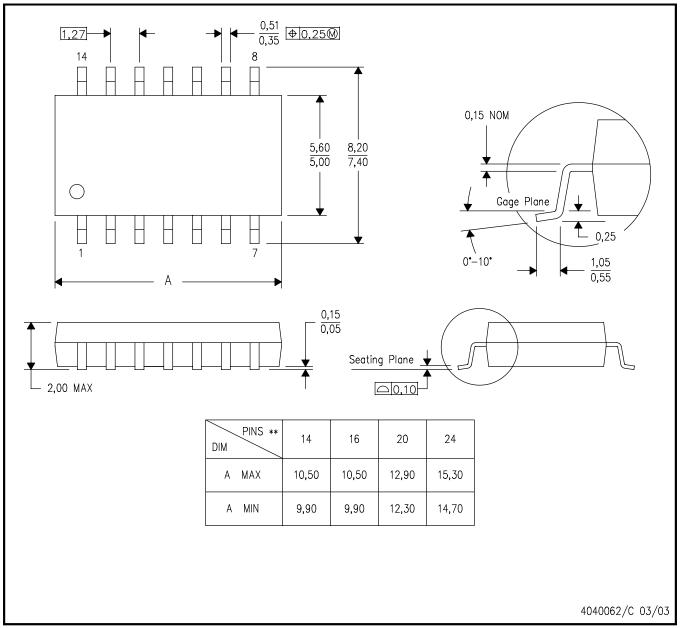
NOTES: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGY (S-PVQFN-N14)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

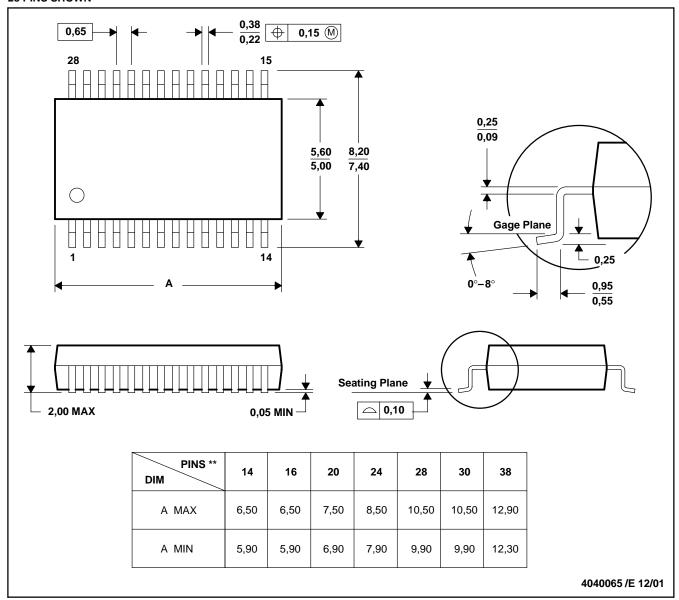


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

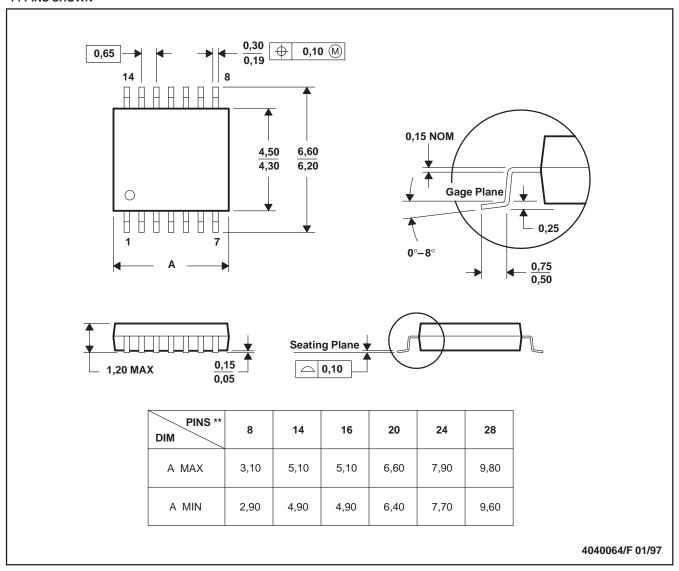
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

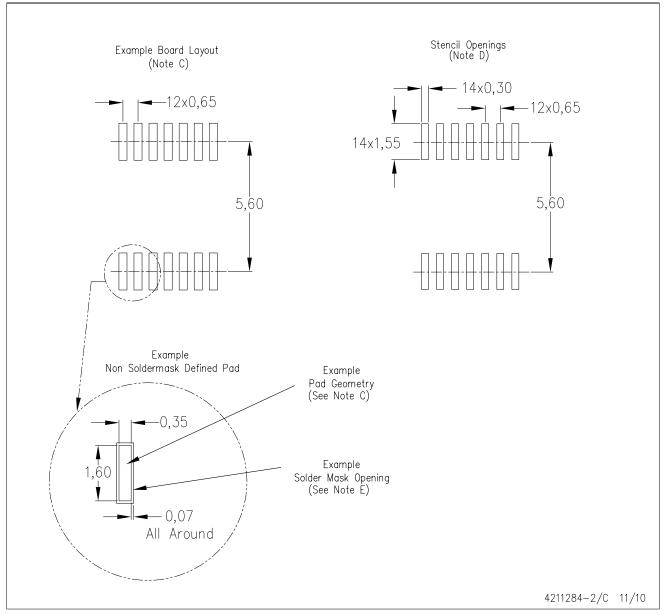
D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

查询"SN54LVC14A-SP"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Communications and www.ti.com/communications Telecom DSP Computers and www.ti.com/computers dsp.ti.com Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Industrial www.ti.com/industrial Logic logic.ti.com Power Mamt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com www.ti.com/security Security **RFID** www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps