Description

The M16C/61 group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.

The M16C/61 group includes a wide range of products with different internal memory types and sizes and various package types.

Features

Memory capacity	ROM (See Figure 1.1.4. ROM Expansion)
	RAM 4K to 10K bytes
Shortest instruction execution time	100ns (f(XIN)=10MHz)
Supply voltage	4.0 to 5.5V (f(XIN)=10MHz)
	2.7 to 5.5V (f(XIN)=7MHz with software one-wait)
Low power consumption	18mW (f(XIN)=7MHz, with software one-wait, VCC = 3V)
Interrupts	20 internal and 5 external interrupt sources, 4 software
	interrupt sources; 7 levels (including key input interrupt)
Multifunction 16-bit timer	5 output timers + 3 input timers
Serial I/O (UART or clock synchronous)	3 channels
• DMAC	2 channels (trigger: 16 sources)
A-D converter	10 bits X 8 channels
	(Expandable up to 10 channels)
D-A converter	8 bits X 2 channels
CRC calculation circuit	1 circuit
Watchdog timer	1 line
Programmable I/O	87 lines
Input port	1 line (P85 shared with NMI pin)
Memory expansion	Available (to a maximum of 1M bytes)
Chip select output	4 lines
Clock generating circuit	2 built-in clock generation circuits
	(built-in feedback resistor, and external ceramic or quartz oscillator)

Applications

Audio, cameras, office equipment, communications equipment, portable equipment

-----Table of Contents-----

Central Processing Unit (CPU)	11
Reset	14
Processor Mode	19
Clock Generating Circuit	30
Protection	39
Interrupts	40
Watchdog Timer	59
DMAC	61

Timer	70
Serial I/O	87
A-D Converter	114
D-A Converter	124
CRC Calculation Circuit	126
Programmable I/O Ports	128
Electrical Characteristics	142

Pin Configuration

Figures 1.1.1 and 1.1.2 show the pin configurations (top view).

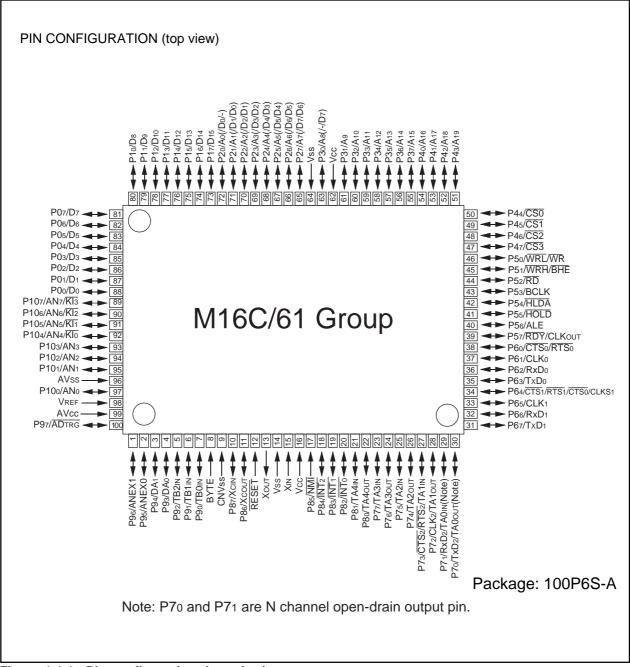


Figure 1.1.1. Pin configuration (top view)

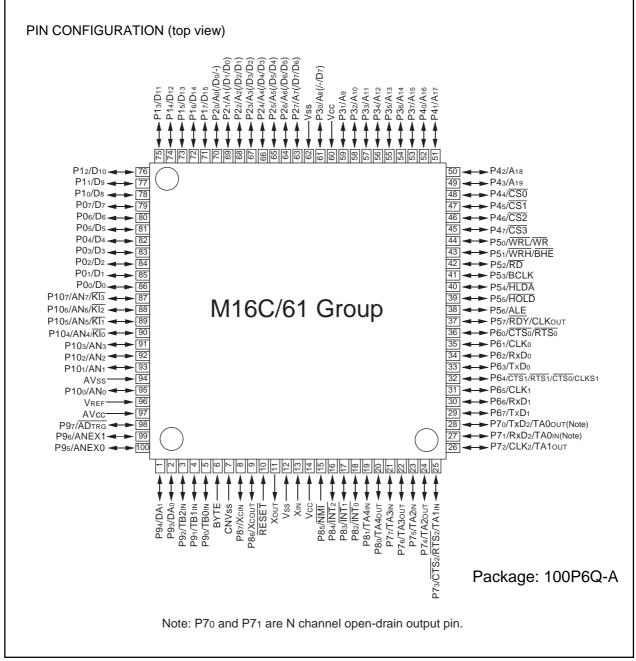


Figure 1.1.2. Pin configuration (top view)

Block Diagram

Figure 1.1.3 is a block diagram of the M16C/61 group.

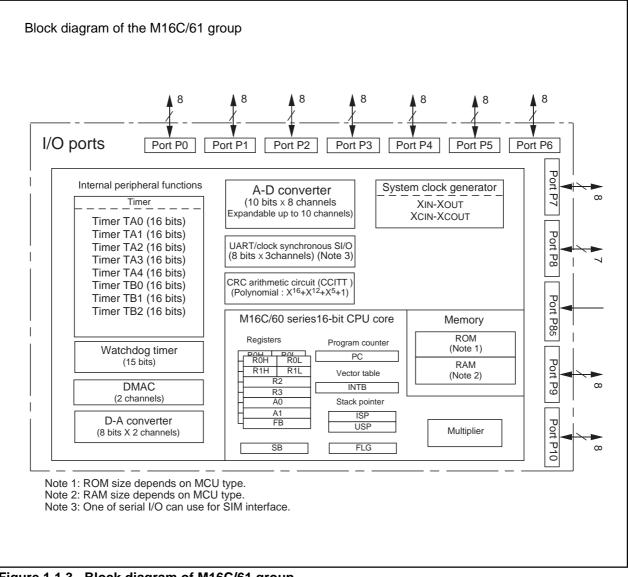


Figure 1.1.3. Block diagram of M16C/61 group

Performance Outline

Table 1.1.1 is a performance outline of M16C/61 group.

Table 1.1.1.	Performance	outline o	f M16C/61	group
--------------	-------------	-----------	-----------	-------

	Item	Performance	
Number of basic instructions		91 instructions	
Shortest instructior	n execution time	100ns(f(XIN)=10MHz)	
Memory	ROM	(See the Figure 4. ROM Expansion)	
capacity	RAM	4K to 10K bytes	
I/O port	P0 to P10 (except P85)	8 bits x 10, 7 bits x 1	
Input port	P85	1 bit x 1	
Multifunction	TA0, TA1, TA2, TA3, TA4	16 bits x 5	
timer	TB0, TB1, TB2	16 bits x 3	
Serial I/O	UART0, UART1, UART2	(UART or clock synchronous) x 3	
A-D converter		10 bits x (8 + 2) channels	
D-A converter		8 bits x 2	
DMAC		2 channels (trigger: 16 sources)	
CRC calculation circuit		CRC - CCITT	
Watchdog timer		15 bits x 1 (with prescaler)	
Interrupt		20 internal and 5 external sources, 4 software sources, 7 levels	
Clock generating circuit		2 built-in clock generation circuits	
		(built-in feedback resistor, and external ceramic or quartz oscillator)	
Supply voltage		4.0 to 5.5V (f(XIN) = 10MHz)	
		2.7 to 5.5V(f(XIN)=7MHz with software one-wait)	
Power consumptio	n	18mW (f(XIN) = 7MHz with software one-wait, VCC = 3V	
I/O	I/O withstand voltage	5V	
characteristics	Output current	5mA	
Memory expansion	I	Available (to a maximum of 1M bytes)	
Device configuration	on	CMOS silicon gate	
Package		100-pin plastic mold QFP	

Mitsubishi plans to release the following products in the M16C/61 group:

- (1) Support for mask ROM version, external ROM version, one-time PROM version, and EPROM version
- (2) ROM capacity
- (3) Package

(c) i donago	
100P6S-A	: Plastic molded QFP (mask ROM version and one-time PROM version)
100P6Q-A	: Plastic molded QFP (mask ROM version and one-time PROM version)
100D0	: Ceramic LCC (EPROM version)

ROM Size(Byte)				
External ROM				M30612SAFP/GP M30610SAFP/GP
128 K	M30610MCA-XXXFP/GP M30612MCA-XXXFP/GP	M30610ECFP/GP	M30610ECFS	
96 K	M30610MAA-XXXFP/GP M30612MAA-XXXFP/GP			
64 K	M30610M8A-XXXFP/GP M30612M8A-XXXFP/GP			
32 K	M30612M4A-XXXFP/GP	M30612E4FP/GP		
	Mask ROM version	One-time PROM version	EPROM version	External ROM version

Figure 1.1.4. ROM expansion

The M16C/61 group products currently supported are listed in Table 2.

Table 1.1.2. M16C/61 group	Table	1.1.2.	M16C/61	group
----------------------------	-------	--------	---------	-------

Apr. 1999

Type No	ROM capacity	RAM capacity	Package type	Remarks
M30612M4A-XXXFP		All huto	100P6S-A	
M30612M4A-XXXGP	32K byte	4K byte	100P6Q-A	-
M30610M8A-XXXFP			100P6S-A	-
M30610M8A-XXXGP		10K byte	100P6Q-A	-
M30612M8A-XXXFP	64K byte		100P6S-A	-
M30612M8A-XXXGP		4K byte	100P6Q-A	-
M30610MAA-XXXFP			100P6S-A	
M30610MAA-XXXGP		10K byte	100P6Q-A	Mask ROM version
M30612MAA-XXXFP	96K byte		100P6S-A	
M30612MAA-XXXGP	_	4K byte	100P6Q-A	-
M30610MCA-XXXFP		10K byte	100P6S-A	
M30610MCA-XXXGP	128K byte	TOR Dyte	100P6Q-A	-
M30612MCA-XXXFP	120K Dyte	5K byte	100P6S-A	
M30612MCA-XXXGP		SK Dyte	100P6Q-A	
M30612E4FP	32K byte	4K byte	100P6S-A	
M30612E4GP	SZK Dyle	4K Dyte	100P6Q-A	
M30610ECFP	100K by to		100P6S-A	One-time PROM version
M30610ECGP	128K byte	10K byte	100P6Q-A	
M30610ECFS	128K byte	10K byte	100D0	EPROM version (Note)
M30610SAFP		10K byte	100P6S-A	
M30610SAGP		TUK Dyle	100P6Q-A	External ROM version
M30612SAFP		4K byte	100P6S-A	
M30612SAGP		4K byte	100P6Q-A	

Note: Do not use the EPROM version for mass production, because it is a tool for program development (for evaluation).

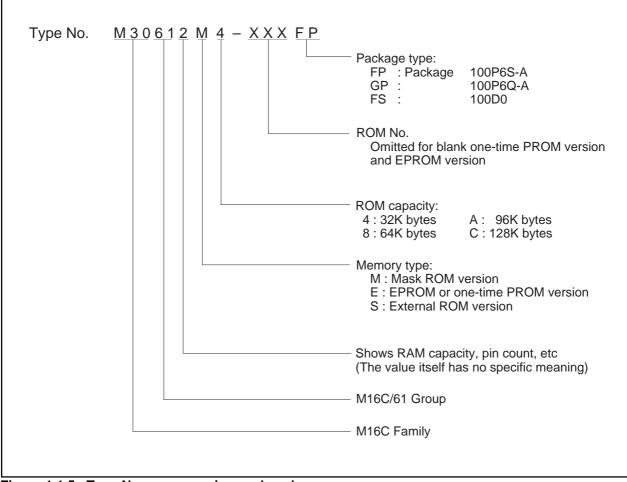


Figure 1.1.5. Type No., memory size, and package

Pin Description

Pin name	Signal name	I/O type	Function
Vcc, Vss	Power supply input		Supply 2.7 to 5.5 V to the Vcc pin. Supply 0 V to the Vss pin.
CNVss	CNVss	Input	This pin switches between processor modes. Connect it to the Vss pin when operating in single-chip or memory expansion mode. Connect it to the Vcc pin when in microprocessor mode.
RESET	Reset input	Input	A "L" on this input resets the microcomputer.
Xin Xout	Clock input Clock output	Input Output	These pins are provided for the main clock generating circuit.Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
BYTE	External data bus width select input	Input	This pin selects the width of an external data bus. A 16-bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". When operating in single-chip mode, connect this pin to Vss.
AVcc	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vcc.
AVss	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vss.
Vref	Reference voltage input	Input	This pin is a reference voltage input for the A-D converter.
P00 to P07	I/O port P0	Input/output	This is an 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually. When used for input in single-chip mode, the port can be set to have or not have a pull-up resistor in units of four bits by software. In memory expansion and microprocessor modes, selection of the internal pull-resistor is not available.
Do to D7	-	Input/output	When set as a separate bus, these pins input and output data (D0–D7).
P10 to P17	I/O port P1	Input/output	This is an 8-bit I/O port equivalent to P0.
D8 to D15	_	Input/output	When set as a separate bus, these pins input and output data (D8-D15).
P20 to P27	I/O port P2	Input/output	This is an 8-bit I/O port equivalent to P0.
Ao to A7	-	Output	These pins output 8 low-order address bits (A ₀ –A ₇).
Ao/Do to A7/D7		Input/output	If the external bus is set as an 8-bit wide multiplexed bus, these pins input and output data (Do–D7) and output 8 low-order address bits (Ao–A7) separated in time by multiplexing.
Ao, A1/Do to A7/D6		Output Input/output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D_0-D_6) and output address (A1-A7) separated in time by multiplexing. They also output address (A0).
P30 to P37	I/O port P3	Input/output	This is an 8-bit I/O port equivalent to P0.
A8 to A15		Output	These pins output 8 middle-order address bits (A8–A15).
A8/D7, A9 to A15		Input/output Output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A9–A15).
P40 to P47	I/O port P4	Input/output	This is an 8-bit I/O port equivalent to P0.
CS0 to CS3, A16 to A19		Output Output	These pins output $\overline{CS_0}$ – $\overline{CS_3}$ signals and A16–A19. $\overline{CS_0}$ – $\overline{CS_3}$ are chip select signals used to specify an access space. A16–A19 are 4 high-order address bits.

Pin Description

Pin name	Signal name	I/O type	Function
P50 to P57	I/O port P5	Input/output	This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by software.
WRL / WR, WRH / BHE, RD, BCLK, HLDA, HOLD, ALE, RDY		Output Output Output Output Input Output Input	 Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE signals. WRL and WRH, and BHE and WR can be switched using software control. WRL, WRH, and RD selected With a 16-bit external data bus, data is written to even addresses when the WRL signal is "L" and to the odd addresses when the WRH signal is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". Data is read when RD is "L". Odd addresses are accessed when BHE is "L". Use this mode when using an 8-bit external data bus. While the input level at the HOLD pin is "L", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs a "L" level. ALE is used to latch the address. While the input level of the RDY pin is "L", the microcomputer is in the ready state.
P60 to P67	I/O port P6	Input/output	This is an 8-bit I/O port equivalent to P0. When used for input in single- chip, memory expansion, and microprocessor modes, the port can be set to have or not have a pull-up resistor in units of four bits by software. Pins in this port also function as UART0 and UART1 I/O pins as selected by software.
P70 to P77	I/O port P7	Input/output	This is an 8-bit I/O port equivalent to P6 (P70 and P71 are N channel open-drain output). Pins in this port also function as timer A0–A3 or UART2 I/O pins as selected by software.
P80 to P84, P86, P87, P85	I/O port P8 I/O port P85	Input/output Input/output Input/output Input	P80 to P84, P86, and P87 are I/O ports with the same functions as P6. Using software, they can be made to function as the I/O pins for timer A4 and the input pins for external interrupts. P86 and P87 can be set using software to function as the I/O pins for a sub clock generation circuit. In this case, connect a quartz oscillator between P86 (XCOUT pin) and P87 (XCIN pin). P85 is an input-only port that also functions for NMI. The NMI interrupt is generated when the input at this pin changes from "H" to "L". The NMI function cannot be cancelled using software. The pull-up cannot be set for this pin.
P90 to P97	I/O port P9	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as Timer B0–B2 input pins, D-A converter output pins, A-D converter extended input pins, or A-D trigger input pins as selected by software.
P100 to P107	I/O port P10	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A-D converter input pins. Furthermore, P104–P107 also function as input pins for the key input interrupt function.

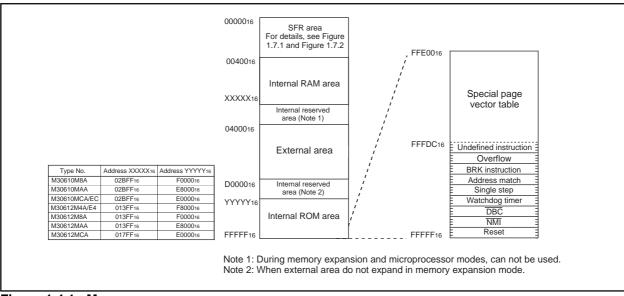
Operation of Functional Blocks

The M16C/61 group accommodates certain units in a single chip. These units include ROM and RAM to store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations. Also included are peripheral units such as timers, serial I/O, D-A converter, DMAC, CRC calculation circuit, A-D converter, and I/O ports.

The following explains each unit.

Memory

Figure 1.4.1 is a memory map of the M16C/61 group. The address space extends the 1M bytes from address 0000016 to FFFF16. From FFFF16 down is ROM. For example, in the M30612M4A-XXXFP, there is 32K bytes of internal ROM from F800016 to FFFF16. The vector table for fixed interrupts such as the reset and $\overline{\text{NMI}}$ are mapped to FFFDC16 to FFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details.


From 0040016 up is RAM. For example, in the M30612M4A-XXXFP, 4K bytes of internal RAM is mapped to the space from 0040016 to 013FF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Any part of the SFR area that is not occupied is reserved and cannot be used for other purposes.

The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps.

In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be used. For example, in the M30612M4A-XXXFP, the following spaces cannot be used.

- The space between 0140016 and 03FFF16
- The space between D000016 and F7FFF16 (When external area do not expand in memory expansion mode)

Do not expand the external area in single chip mode. A part of internal memory cannot be used depending on MCU.

Figure 1.4.1. Memory map

Central Processing Unit (CPU)

The CPU has a total of 13 registers shown in Figure 1.5.1. Seven of these registers (R0, R1, R2, R3, A0, A1, and FB) come in two sets; therefore, these have two register banks.

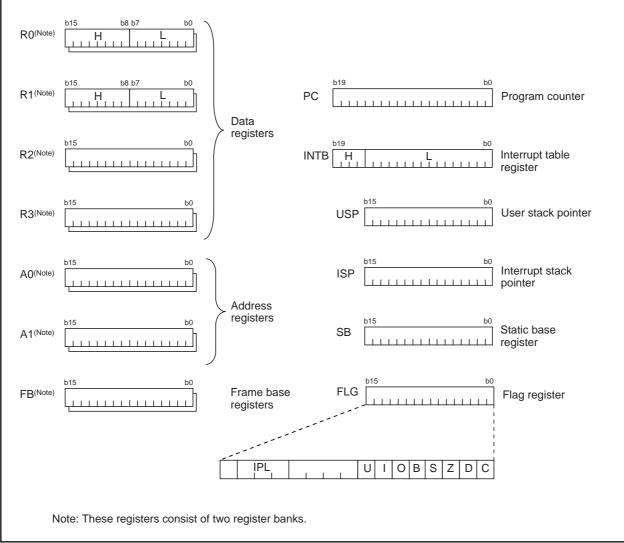


Figure 1.5.1. Central processing unit register

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)

Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations.

Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H), and low-order bits as (R0L/R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0/R3R1).

(2) Address registers (A0 and A1)

Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data registers. These registers can also be used for address register indirect addressing and address register relative addressing.

In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

(3) Frame base register (FB)

Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.

(4) Program counter (PC)

Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.

(5) Interrupt table register (INTB)

Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector table.

(6) Stack pointer (USP/ISP)

Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 16 bits.

Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag). This flag is located at the position of bit 7 in the flag register (FLG).

(7) Static base register (SB)

Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.

(8) Flag register (FLG)

Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.5.2 shows the flag register (FLG). The following explains the function of each flag:

• Bit 0: Carry flag (C flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

• Bit 1: Debug flag (D flag)

This flag enables a single-step interrupt.

When this flag is "1", a single-step interrupt is generated after instruction execution. This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 2: Zero flag (Z flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, cleared to "0".

• Bit 3: Sign flag (S flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, cleared to "0".

• Bit 4: Register bank select flag (B flag)

This flag chooses a register bank. Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

• Bit 5: Overflow flag (O flag)

This flag is set to "1" when an arithmetic operation resulted in overflow; otherwise, cleared to "0".

• Bit 6: Interrupt enable flag (I flag)

This flag enables a maskable interrupt.

An interrupt is disabled when this flag is "0", and is enabled when this flag is "1". This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 7: Stack pointer select flag (U flag)

Interrupt stack pointer (ISP) is selected when this flag is "0"; user stack pointer (USP) is selected when this flag is "1".

This flag is cleared to "0" when a hardware interrupt is acknowledged or an INT instruction of software interrupt Nos. 0 to 31 is executed.

• Bits 8 to 11: Reserved area

• Bits 12 to 14: Processor interrupt priority level (IPL)

Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

• Bit 15: Reserved area

The C, Z, S, and O flags are changed when instructions are executed. See the software manual for details.

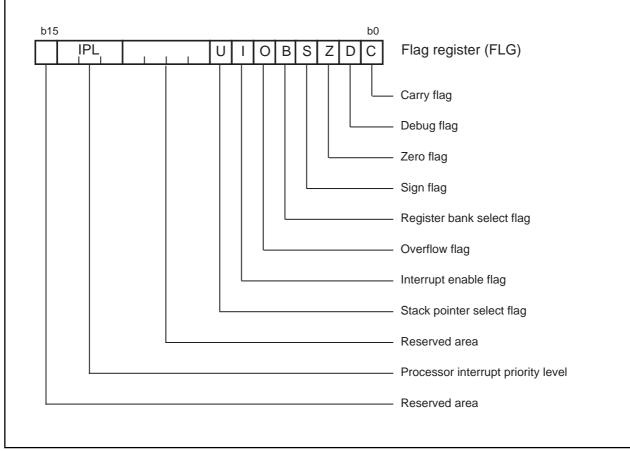
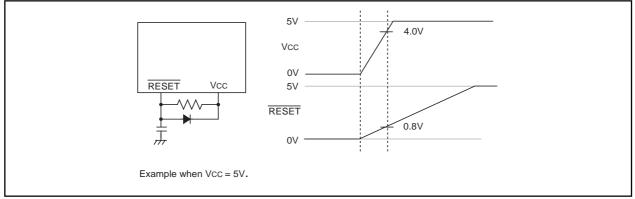


Figure 1.5.2. Flag register (FLG)



Reset

There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See "Software Reset" for details of software resets.) This section explains on hardware resets.

When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the reset pin level "L" (0.2Vcc max.) for at least 20 cycles. When the reset pin level is then returned to the "H" level while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table.

Figure 1.6.1 shows the example reset circuit. Figure 1.6.2 shows the reset sequence.

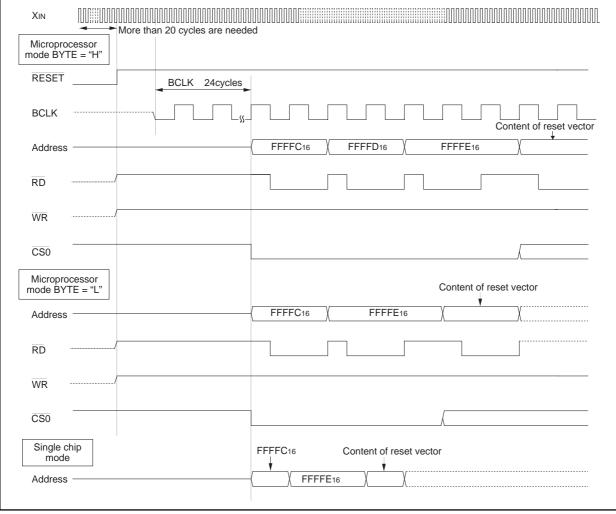


Figure 1.6.2. Reset sequence

Table 1.6.1 shows the statuses of the other pins while the RESET pin level is "L". Figure 1.6.3 shows the internal status of the microcomputer immediately after the reset is cancelled.

	Status			
Pin name		CNVss	s = Vcc	
	CNVSS = VSS	BYTE = Vss	BYTE = Vcc	
P0	Input port (floating)	Data input (floating)	Data input (floating)	
P1	Input port (floating)	Data input (floating)	Input port (floating)	
P2, P3, P40 to P43	Input port (floating)	Address output (undefined)	Address output (undefined)	
P44	Input port (floating)	CS0 output ("H" level is output)	CS0 output ("H" level is output)	
P45 to P47	Input port (floating)	Input port (floating)	Input port (floating)	
P50	Input port (floating)	WR output ("H" level is output)	WR output ("H" level is output)	
P51	Input port (floating)	BHE output (undefined)	BHE output (undefined)	
P52	Input port (floating)	RD output ("H" level is output)	RD output ("H" level is output)	
P53	Input port (floating)	BCLK output	BCLK output	
P54	Input port (floating)	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)	
P55	Input port (floating)	HOLD input (floating)	HOLD input (floating)	
P56	Input port (floating)	ALE output ("L" level is output)	ALE output ("L" level is output)	
P57	Input port (floating)	RDY input (floating)	RDY input (floating)	
P6, P7, P80 to P84, P86, P87, P9, P10	Input port (floating)	Input port (floating)	Input port (floating)	

Table 1.6.1. Pin status when RESET pin level is "L"

Figure 1.6.3. Device's internal status after a reset is cleared

Note: When the VCC level is applied to the CNVSS pin, it is 0316 at a reset.

The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set.

(1) Processor mode register 0 (Note)	(000416)…	0016	(43) Timer A0 mode register	(039616)…	0016
(2) Processor mode register 1	(000516)	00000000	(44) Timer A1 mode register	(039716)…	0016
(3) System clock control register 0	(000616)	01001000	(45) Timer A2 mode register	(039816)…	0016
(4) System clock control register 1	(000716)…	00100000	(46) Timer A3 mode register	(039916)…	0016
(5) Chip select control register	(000816)…	0000001	(47) Timer A4 mode register	(039A16)…	0016
(6) Address match interrupt enable register	(000916)		(48) Timer B0 mode register	(039B16)…	00?\0000
(7) Protect register	(000A16)…		(49) Timer B1 mode register	(039C16)…	00?0000
(8) Watchdog timer control register	(000F16)…	000??????	(50) Timer B2 mode register	(039D16)…	00?\0000
(9) Address match interrupt register 0	(001016)	0016	(51) UART0 transmit/receive mode register	(03A016)…	0016
	(001116)	0016	(52) UART0 transmit/receive control register 0	(03A416)…	00001000
	(001216)…		(53) UART0 transmit/receive control register 1	(03A516)…	0000010
(10) Address match interrupt register 1	(001416)…	0016	(54) UART1 transmit/receive mode register	(03A816)…	0016
	(001516)…	0016	(55) UART1 transmit/receive control register 0	(03AC16)	00001000
	(001616)…		(56) UART1 transmit/receive control register 1	(03AD16)	0000010
(11)DMA0 control register	(002C16)…	00000?00	(57) UART transmit/receive control register 2	(03B016)…	
(12)DMA1 control register	(003C16)…	0000?00	(58) DMA0 cause select register	(03B816)…	0016
(13) Bus collision detection interrupt control register	(004A16)…		(59) DMA1 cause select register	(03BA16)	0016
(14) DMA0 interrupt control register	(004B16)…		(60) A-D control register 2	(03D416)…	0000
(15) DMA1 interrupt control register	(004C16)…		(61) A-D control register 0	(03D616)…	0000???
(16) Key input interrupt control register	(004D16)…		(62) A-D control register 1	(03D716)…	0016
(17) A-D conversion interrupt control register	(004E16)…		(63) D-A control register	(03DC16)	0016
(18) UART2 transmit interrupt control register	(004F16)…		(64) Port P0 direction register	(03E216)…	0016
(19) UART2 receive interrupt control register	(005016)		(65) Port P1 direction register	(03E316)…	0016
(20) UART0 transmit interrupt control register	(005116)…		(66) Port P2 direction register	(03E616)…	0016
(21) UART0 receive interrupt control register	(005216)…		(67) Port P3 direction register	(03E716)…	0016
(22) UART1 transmit interrupt control register	(005316)…		(68) Port P4 direction register	(03EA16)	0016
(23) UART1 receive interrupt control register	(005416)…		(69) Port P5 direction register	(03EB16)…	0016
(24) Timer A0 interrupt control register	(005516)…		(70) Port P6 direction register	(03EE16)…	0016
(25) Timer A1 interrupt control register	(005616)		(71) Port P7 direction register	(03EF16)…	0016
(26) Timer A2 interrupt control register	(005716)…		(72) Port P8 direction register	(03F216)…	0000000
(27) Timer A3 interrupt control register	(005816)…		(73) Port P9 direction register	(03F316)…	0016
(28) Timer A4 interrupt control register	(005916)…		(74) Port P10 direction register	(03F616)…	0016
(29) Timer B0 interrupt control register	(005A16)…	2000	(75) Pull-up control register 0	(03FC16)…	0016
(30) Timer B1 interrupt control register	(005B16)…		(76) Pull-up control register 1	(03FD16)…	0016
(31) Timer B2 interrupt control register	(005C16)…	2000	(77) Pull-up control register 2	(03FE16)…	0016
(32) INT0 interrupt control register	(005D16)…		(78) Data registers (R0/R1/R2/R3)		000016
(33) INT1 interrupt control register	(005E16)…		(79) Address registers (A0/A1)		000016
(34) INT2 interrupt control register	(005F16)…		(80) Frame base register (FB)		000016
(35) UART2 transmit/receive mode register	(037816)…	0016	(81) Interrupt table register (INTB)		0000016
(36) UART2 transmit/receive control register 0	(037C16)…	00001000	(82) User stack pointer (USP)		000016
(37) UART2 transmit/receive control register 1	(037D16)…	0000010	(83) Interrupt stack pointer (ISP)		000016
(38) Count start flag	(038016)…	0016	(84) Static base register (SB)		000016
(39) Clock prescaler reset flag	(038116)…		(85) Flag register (FLG)		000016
(40) One-shot start flag	(038216)…	0000000	x : Nothing is mapped to this bit		
(41) Trigger select flag	(038316)…	0016	? : Undefined		
(42) Up-down flag	(038416)…	0016			

000016	
000116	
000216	
000316	
000416	Processor mode register 0 (PM0)
000516	Processor mode register 1(PM1)
000616	System clock control register 0 (CM0)
000716	System clock control register 1 (CM1)
000816	Chip select control register (CSR)
000916	Address match interrupt enable register (AIER)
000A16	Protect register (PRCR)
000B16	
000C16 000D16	
-	
000E16	Watchdog timer start register (WDTS)
001016	Watchdog timer control register (WDC)
001018	Address metch interment register (CMADO)
001216	Address match interrupt register 0 (RMAD0)
001218	
001416	
001516	Address match interrupt register 1 (RMAD1)
001616	
001716	
001816	
001916	
001A16	
001B16	
001C16	
001D16	
001E16	
001F16	
002016	
002116	DMA0 source pointer (SAR0)
002216	
002316	
002416	
002516	DMA0 destination pointer (DAR0)
002616	
002716	
002816	DMA0 transfer counter (TCR0)
002916	
002A16 002B16	
002B16 002C16	DMA0 control register (DM0CON)
002C16	
002D18	
002E10	
003016	
003116	DMA1 source pointer (SAR1)
003216	· · · /
003316	
003416	
003516	DMA1 destination pointer (DAR1)
003616	
003716	
003816	DMA1 transfer as unter (TOD1)
003916	DMA1 transfer counter (TCR1)
003A16	
003B16	
003C16	DMA1 control register (DM1CON)
003D16	- · · ·
003E16	
003F16	
-	

04016	
04116	
04216	
04316	
04416	
04516	
04616	
04716	
04816	
04916 04A16	Bus collision detection interrupt control register (BCNIC)
04A16	DMA0 interrupt control register (DM0IC)
04C16	DMA1 interrupt control register (DM1IC)
04D16	Key input interrupt control register (KUPIC)
04E16	A-D conversion interrupt control register (ADIC)
04F16	UART2 transmit interrupt control register (S2TIC)
05016	UART2 receive interrupt control register (S2RIC)
05116	UART0 transmit interrupt control register (S0TIC)
05216	UART0 receive interrupt control register (S0RIC)
05316	UART1 transmit interrupt control register (S1TIC)
05416	UART1 receive interrupt control register (S1RIC)
05516	Timer A0 interrupt control register (TA0IC) Timer A1 interrupt control register (TA1IC)
05616	Timer A2 interrupt control register (TATIC)
05716 05816	Timer A3 interrupt control register (TA3IC)
05816	Timer A4 interrupt control register (TA4IC)
05916 05A16	Timer B0 interrupt control register (TB0IC)
005B16	Timer B1 interrupt control register (TB1IC)
005C16	Timer B2 interrupt control register (TB2IC)
005D16	INT0 interrupt control register (INT0IC)
005E16	INT1 interrupt control register (INT1IC)
005F16	INT2 interrupt control register (INT2IC)
~	
126240	
36416	
)36416)36516	
)36416)36516)36616	
)36416)36516)36616)36716	
)36416)36516)36616)36716)36816	
)36416)36516)36616)36716)36816)36916)36A16	
)36416)36516)36616)36716)36816)36916)36A16)36B16	
)36416)36516)36616)36716)36816)36916)36916)36A16)36B16	
)36416)36516)36616)36716)36816)36916)36A16)36A16)36B16)36C16	
)36416)36516)36616)36716)36816)36916)36916)36B16)36B16)36C16)36D16	
036416 036516 036616 036716 036816 036916 036A16 036B16 036C16 036E16 036F16	
036416 036516 036616 036716 036816 036816 036816 036816 036616 036616 036F16 037016	
)36416)36516)36616)36716)36816)36916)36816)36816)36616)36616)36F16)37016)37116	
)36416)36516)36616)36716)36816)36916)36816)36816)36616)36616)36616)36616)37016)37016)37116	
036416 036516 036616 036716 036816 036916 036816 036816 036616 036616 036616 036716 037016 037116 037216 037316	
366416 336516 336516 336716 336716 336716 336716 336716 336716 336416 336416 336416 336416 336416 336416 336416 336416 336416 336416 336416 336416 337016 337116 337316 337416	
)36416 (36516) (36616) (336716) (336316) (336316) (336316) (336316) (336316) (33616) (33716) (33716) (33716) (33716) (33716)	
)36416)36516)36616)36716 (36816)36816)36616)36616)36616)36616)36616)37016)37716)37716)37716)37716)37716	
036316 036416 036616 036716 036816 036816 036816 036616 036616 036616 036616 036616 036716 037716 037716 037716 037716	UART2 transmit/receive mode register (U2MR)
)36416)36516)36616)36616)36816)36816)36816)36816)36816)36816)36816)36716)37716)37716)37716)37716)37716)37716	UART2 transmit/receive mode register (U2MR) UART2 bit rate generator (U2BRG)
)36416)36516)36616)36616)36816)36816)36816)36816)36616 (336616)36616 (337016)37716)37716)37716)37716)37716)37716)37716	UART2 bit rate generator (U2BRG)
)36416)36516)36616)36716)36816 (336916)36816 (336916)36616 (33616 (337016)37716 (337316)37716 (337316)37716 (337316)37716 (337316)37716 (337316	UART2 bit rate generator (U2BRG) UART2 transmit buffer register (U2TB)
)36416)36516)36616)36716)36816)36816)36816)36816)36616)36616)36616)36616)36616)37716	UART2 bit rate generator (U2BRG) UART2 transmit buffer register (U2TB) UART2 transmit/receive control register 0 (U2C0)
)36416)36516)36616)36716)36816)36816)36816)36616)36616)36616)36616)36616)36716)37716)37716)37716)37716)37716)37716)37716)37716)37716	UART2 bit rate generator (U2BRG) UART2 transmit buffer register (U2TB)

Figure 1.7.1. Location of peripheral unit control registers

r	
038016	Count start flag (TABSR)
038116	Clock prescaler reset flag (CPSRF)
038216	One-shot start flag (ONSF)
038316	Trigger select register (TRGSR)
038416	Up-down flag (UDF)
038516	
038616	Timer A0 (TA0)
038716 038816	
038816	Timer A1 (TA1)
038A16	
038B16	Timer A2 (TA2)
038C16	
038D16	Timer A3 (TA3)
038E16	
038F16	Timer A4 (TA4)
039016	
039116	Timer B0 (TB0)
039216	Time of D4 (TD4)
039316	Timer B1 (TB1)
039416	
039516	Timer B2 (TB2)
039616	Timer A0 mode register (TA0MR)
039716	Timer A1 mode register (TA1MR)
039816	Timer A2 mode register (TA2MR)
039916	Timer A3 mode register (TA3MR)
039A16	Timer A4 mode register (TA4MR)
039B16	Timer B0 mode register (TB0MR)
039C16	Timer B1 mode register (TB1MR)
039D16 039E16	Timer B2 mode register (TB2MR)
039E16	
03A016	UART0 transmit/receive mode register (U0MR)
03A116	UARTO transmitteceive mode register (00MK)
03A216	OARTO bit fale generator (OOBRO)
03A316	UART0 transmit buffer register (U0TB)
03A416	UART0 transmit/receive control register 0 (U0C0)
03A516	UART0 transmit/receive control register 1 (U0C1)
03A616	
03A716	UART0 receive buffer register (U0RB)
03A816	UART1 transmit/receive mode register (U1MR)
03A916	UART1 bit rate generator (U1BRG)
03AA16	UART1 transmit buffer register (U1TB)
03AB16	
03AC16	UART1 transmit/receive control register 0 (U1C0)
03AD16	UART1 transmit/receive control register 1 (U1C1)
03AE16	UART1 receive buffer register (U1RB)
03AF16	- · · · /
03B016	UART transmit/receive control register 2 (UCON)
03B116	
03B216	
03B316	
03B416	
03B516 03B616	
03B016	
03B816	DMA0 cause select register (DM0SL)
03B916	DMA0 cause select register (DM0SL)
03BA16	DMA1 cause select register (DM1SL)
03BB16	DIMITION CONSIGNING CONTINUE
03BC16	
03BD16	CRC data register (CRCD)
03BE16	CRC input register (CRCIN)
03BF16	
L	

03C016	A-D register 0 (AD0)
3C116	
3C216	A-D register 1 (AD1)
3C416	
3C516	A-D register 2 (AD2)
3C616	A-D register 3 (AD3)
3C716	
3C816 3C916	A-D register 4 (AD4)
3CA16	A D register $E(ADE)$
3CB16	A-D register 5 (AD5)
03CC16	A-D register 6 (AD6)
3CD16	0 ()
3CE16 3CF16	A-D register 7 (AD7)
3D016	
3D116	
)3D216	
3D316	A D control register 2 (ADCON2)
)3D416)3D516	A-D control register 2 (ADCON2)
03D616	A-D control register 0 (ADCON0)
03D716	A-D control register 1 (ADCON1)
)3D816	D-A register 0 (DA0)
03D916 03DA16	$D \wedge register 1 (D \wedge 1)$
03DB16	D-A register 1 (DA1)
03DC16	D-A control register (DACON)
3DD16	
)3DE16	
03DF16 03E016	
3E116	Port P0 (P0) Port P1 (P1)
)3E216	Port P0 direction register (PD0)
03E316	Port P1 direction register (PD1)
)3E416	Port P2 (P2)
)3E516)3E616	Port P3 (P3)
03E716	Port P2 direction register (PD2) Port P3 direction register (PD3)
03E816	Port P4 (P4)
03E916	Port P5 (P5)
03EA16	Port P4 direction register (PD4)
3EB16	Port P5 direction register (PD5)
03EC16 03ED16	Port P6 (P6) Port P7 (P7)
3EE16	Port P6 direction register (PD6)
3EF16	Port P7 direction register (PD7)
3F016	Port P8 (P8)
)3F116	Port P9 (P9)
)3F216)3F316	Port P8 direction register (PD8) Port P9 direction register (PD9)
3F416	Port P10 (P10)
3F516	
3F616	Port P10 direction register (PD10)
3F716 3F816	
3F816 3F916	
3FA16	
3FB16	
03FC16	Pull-up control register 0 (PUR0)
3FD16	Pull-up control register 1 (PUR1)
)3FE16	Pull-up control register 2 (PUR2)
03FF16	

Figure 1.7.2. Location of peripheral unit control registers

Software Reset

Writing "1" to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has almost the same effect as a hardware reset. The contents of internal RAM are preserved.

Processor Mode

(1) Types of Processor Mode

One of three processor modes can be selected: single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, the memory map, and the access space differ according to the selected processor mode.

Single-chip mode

In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be accessed. Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal peripheral functions.

Memory expansion mode

In memory expansion mode, external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM).

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

Microprocessor mode

In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The internal ROM area cannot be accessed.

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

(2) Setting Processor Modes

The processor mode is set using the CNVss pin and the processor mode bits (bits 1 and 0 at address 000416). Do not set the processor mode bits to "102".

Regardless of the level of the CNVss pin, changing the processor mode bits selects the mode. Therefore, never change the processor mode bits when changing the contents of other bits. Also do not attempt to shift to or from the microprocessor mode within the program stored in the internal ROM area.

• Applying Vss to CNVss pin

The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode is selected by writing "012" to the processor mode is selected bits.

• Applying Vcc to CNVss pin

The microcomputer starts to operate in microprocessor mode after being reset.

Figure 1.8.1 shows the processor mode register 0 and 1. Figure 1.9.1 shows the memory maps applicable for each of the modes.

	Symbol PM0		When reset 016 (Note 2)	
	Bit symbol	Bit name	Function	RW
	PM00	Processor mode bit	0 0: Single-chip mode 0 1: Memory expansion mode	00
	PM01		1 0: Inhibited 1 1: Microprocessor mode	00
	PM02	R/W mode select bit	0 : <u>RD,BHE,WR</u> 1 : RD,WRH,WRL	00
	PM03	Software reset bit	The device is reset when this bit is set to "1". The value of this bit is "0" when read.	00
	PM04	Multiplexed bus space select bit	0 0 : Multiplexed bus is not used 0 1 : Allocated to CS2 space	00
	PM05		1 0 : Allocated to CS1 space 1 1 : Allocated to entire space (Note4)	00
· · · · · · · · · · · · · · · · · · ·	PM06	Port P40 to P43 function select bit (Note 3)	0 : Address output 1 : Port function (Address is not output)	00
	PM07	BCLK output disable bit	0 : BCLK is output 1 : BCLK is not output (Pin is left floating)	00
	mode The h	igher-order address beco	perates using the separate bus af nultiplexed bus cannot be chosen omes a port if the entire space mu	in mic Itiplex
Processor mode regis	mode The h bus is	igher-order address becc chosen, so only 256 byt 1) Address	ultiplexed bus cannot be chosen	in mic Itiplex
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol	igher-order address becc chosen, so only 256 byt 1) Address	nultiplexed bus cannot be chosen omes a port if the entire space mu es can be used in each chip selec When reset	in mic Itiplex
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol PM1 Bit symbol	igher-order address becc chosen, so only 256 byt 1) Address 000516 Bit name	iultiplexed bus cannot be chosen omes a port if the entire space mu es can be used in each chip selec When reset 00XXXXX02 Function	Itiplex t.
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol PM1	igher-order address becc chosen, so only 256 byt 1) Address 000516 Bit name	oultiplexed bus cannot be chosen omes a port if the entire space mu es can be used in each chip selec When reset 00XXXXX02	in mic Itiplex t.
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol PM1 Bit symbol Reserved bit Nothing is ass	igher-order address becc chosen, so only 256 byt 1) Address 000516 Bit name signed. to write to these bits, write f	iultiplexed bus cannot be chosen omes a port if the entire space mu es can be used in each chip selec When reset 00XXXXX02 Function	Itiplex t.
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol PM1 Bit symbol Reserved bit Nothing is ass In an attempt	igher-order address becc chosen, so only 256 byt 1) Address 000516 Bit name signed. to write to these bits, write '	Multiplexed bus cannot be chosen omes a port if the entire space mules es can be used in each chip select When reset 00XXXXX02 Function Must always be set to "0"	Itiplex t.
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol PM1 Bit symbol Reserved bit Nothing is ass In an attempt indeterminate	igher-order address becc chosen, so only 256 byt 1) Address 000516 Bit name signed. to write to these bits, write '	Jultiplexed bus cannot be chosen pmes a port if the entire space mules can be used in each chip select When reset J0XXXXX02 Function Must always be set to "0" '0". The value, if read, turns out to be	Itiplex t.
b7 b6 b5 b4 b3 b2 b1 b0	mode The h bus is ster 1 (Note Symbol PM1 Bit symbol Reserved bit Nothing is ass In an attempt indeterminate Reserved bit	igher-order address becc chosen, so only 256 byt 1) Address 000516 Bit name signed. to write to these bits, write f External memory area	fulliplexed bus cannot be chosen omes a port if the entire space mules can be used in each chip select When reset 00XXXXX02 Function Must always be set to "0" '0". The value, if read, turns out to be Must always be set to "0" 0 : Do not expand	R W O O

Figure 1.8.1. Processor mode register 0 and 1

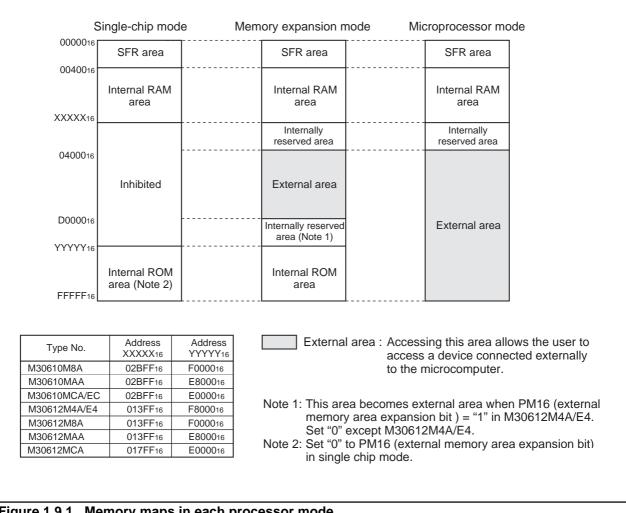


Figure 1.9.1. Memory maps in each processor mode

Bus Settings

The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus settings.

Table 1.10.1 shows the factors used to change the bus settings.

Table 1.10.1. Factors for switching bus settings

Bus setting	Switching factor		
Switching external address bus width	Bit 6 of processor mode register 0		
Switching external data bus width	BYTE pin		
Switching between separate and multiplex bus	Bits 4 and 5 of processor mode register 0		

(1) Selecting external address bus width

The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64K bytes address space) or 20 bits (1M bytes address space). When bit 6 of the processor mode register 0 is set to "1", the external address bus width is set to 16 bits, and P2 and P3 become part of the address bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set to "0", the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the address bus.

(2) Selecting external data bus width

The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be set.) When the BYTE pin is "L", the bus width is set to 16 bits; when "H", it is set to 8 bits. (The internal bus width is permanently set to 16 bits.) While operating, fix the BYTE pin either to "H" or to "L".

(3) Selecting separate/multiplex bus

The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.

Separate bus

In this mode, the data and address are input and output separately. The data bus can be set using the BYTE pin to be 8 or 16 bits. When the BYTE pin is "H", the data bus is set to 8 bits and P0 functions as the data bus and P1 as a programmable I/O port. When the BYTE pin is "L", the data bus is set to 16 bits and P0 and P1 are both used for the data bus.

When the separate bus is used for access, a software wait can be selected.

• Multiplex bus

In this mode, data and address I/O are time multiplexed. With an 8-bit data bus selected (BYTE pin = "H"), the 8 bits from D₀ to D₇ are multiplexed with A₀ to A₇.

With a 16-bit data bus selected (BYTE pin = "L"), the 8 bits from Do to D7 are multiplexed with A1 to A8. D8 to D15 are not multiplexed. In this case, the external devices connected to the multiplexed bus are mapped to the microcomputer's even addresses (every 2nd address). To access these external devices, access the even addresses as bytes.

The ALE signal latches the address. It is output from P56.

Before using the multiplex bus for access, be sure to insert a software wait.

If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.

The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode.

The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.

Processor mode	Single-chip mode	Memory ex	Memory expansion mode/microprocessor m			Memory expansion mode
Multiplexed bus space select bit		"01", "10" Either CS1 or CS2 is for multiplexed bus and others are for separate bus		"00" (separate bus)		"11" (Note 1) multiplexed bus for the entire space
Data bus width BYTE pin level		8 bits "H"	16 bits "L"	8 bits "H"	16 bits "L"	8 bit "H"
P00 to P07	I/O port	Data bus	Data bus	Data bus	Data bus	I/O port
P10 to P17	I/O port	I/O port	Data bus	I/O port	Data bus	I/O port
P20	I/O port	Address bus /data bus(Note 2)	Address bus	Address bus	Address bus	Address bus /data bus
P21 to P27	I/O port	Address bus /data bus(Note 2)	Address bus /data bus(Note 2)	Address bus	Address bus	Address bus /data bus
P30	I/O port	Address bus /data bus(Note 2)	Address bus	Address bus	Address bus	A8/D7
P31 to P37	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port
P40 to P43 Port P40 to P43 function select bit = 1	I/O port	I/O port	I/O port	/O port	I/O port	I/O port
P40 to P43 Port P40 to P43 function select bit = 0	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port
P44 to P47	I/O port	CS (chip select (For de) or programmat tails, refer to "Bu	ole I/O port us control")		
P50 to P53	I/O port	Outputs RD, W (For de	Outputs RD, WRL, WRH, and BCLK or RD, BHE, WR, and BCLK (For details, refer to "Bus control")			
P54	I/O port	HLDA	HLDA	HLDA	HLDA	HLDA
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD
P56	I/O port	ALE	ALE	ALE	ALE	ALE
P57	I/O port	RDY	RDY	RDY	RDY	RDY

Table 1.10.2. Pin functions for each processor mode

Note 1: If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width. The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode.

The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.

Note 2: Address bus when in separate bus mode.

Bus Control

The following explains the signals required for accessing external devices and software waits. The signals required for accessing the external devices are valid when the processor mode is set to memory expansion mode and microprocessor mode. The software waits are valid in all processor modes.

(1) Address bus/data bus

The address bus consists of the 20 pins A0 to A19 for accessing the 1M bytes of address space.

The data bus consists of the pins for data I/O. When the BYTE pin is "H", the 8 ports D₀ to D₇ function as the data bus. When BYTE is "L", the 16 ports D₀ to D₁₅ function as the data bus.

Both the address and data bus retain their previous states when internal ROM or RAM is accessed. Also, when a change is made from single-chip mode to memory expansion mode, the value of the address bus is undefined until external memory is accessed.

(2) Chip select signal

The chip select signal is output using the same pins as P44 to P47. Bits 0 to 3 of the chip select control register (address 000816) set each pin to function as a port or to output the chip select signal. The chip select control register is valid in memory expansion mode and microprocessor mode. In single-chip mode, P44 to P47 function as programmable I/O ports regardless of the value in the chip select control register.

In microprocessor mode, only $\overline{CS0}$ outputs the chip select signal after the reset state has been cancelled. $\overline{CS1}$ to $\overline{CS3}$ function as input ports. Therefore, when using $\overline{CS1}$ to $\overline{CS3}$, external pull-up resistors are required. Figure 1.11.1 shows the chip select control register.

The chip select signal can be used to split the external area into as many as four blocks. Table 1.11.1 shows the external memory areas specified using the chip select signal.

Chin coloct	Specified address range						
Chip select	Memory expansion mode	Microprocessor mode					
	3000016 to CFFFF16 (640K)	3000016 to FFFFF16 (832K)					
CS0	3000016 to F7FFF16 (800K) (Note)	3000018101111116 (8321()					
CS1	2800016 to 2FFFF16 (32K)	2800016 to 2FFFF16 (32K)					
CS2	0800016 to 27FFF16 (128K)	0800016 to 27FFF16 (128K)					
CS3	0400016 to 07FFF16 (16K)	0400016 to 07FFF16 (16K)					
ote: When PM16 (External memory area expansion bit) = "1". (Only M30612M4A/E4 is valid.)							

Table 1.11.1. External areas specified by the chip select signals

Chip select control register Symbol Address When reset h3 b2 b1 b0 CSR 000816 0116 RW Bit symbol Bit name Function 00 CS0 CS0 output enable bit 0 : Chip select output disabled 0:0 CS1 CS1 output enable bit (Normal port pin) : Chip select output enabled 0:0 CS2 CS2 output enable bit 00 CS3 CS3 output enable bit CS0W 00 CS0 wait bit 0 : Wait state inserted CS1W 00 CS1 wait bit 1 : No wait state CS2W 00 CS2 wait bit CS3W 0:0 CS3 wait bit

Figure 1.11.1. Chip select control register

(3) Read/write signals

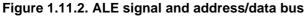
With a 16-bit data bus (BYTE pin ="L"), bit 2 of the processor mode register 0 (address 000416) select the combinations of \overline{RD} , \overline{BHE} , and \overline{WR} signals or \overline{RD} , \overline{WRL} , and \overline{WRH} signals. With an 8-bit data bus (BYTE pin = "H"), use the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals. (Set bit 2 of the processor mode register 0 (address 000416) to "0".) Tables 1.11.2 and 1.11.3 show the operation of these signals.

After a reset has been cancelled, the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals is automatically selected. When switching to the \overline{RD} , \overline{WRL} , and \overline{WRH} combination, do not write to external memory until bit 2 of the processor mode register 0 (address 000416) has been set (Note).

Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A16) to "1".

Table 1.11.2. Operation of RD, WRL, and WRH signals

Data bus width	RD	WRL	WRH	Status of external data bus
	L	Н	Н	Read data
16-bit	H L H Write 1 byte of data to even address			
(BYTE = "L")	Н	Н	L	Write 1 byte of data to odd address
	Н	L	L	Write data to both even and odd addresses


Table 1.11.3. Operation of RD, WR, and BHE signals

Data bus width	RD	WR	BHE	A0	Status of external data bus
	Н	L	L	Н	Write 1 byte of data to odd address
	L	Н	L	Н	Read 1 byte of data from odd address
16-bit	Н	L	Н	L	Write 1 byte of data to even address
(BYTE = "L")	L	Н	Н	L	Read 1 byte of data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8-bit	Н	L	Not used	H/L	Write 1 byte of data
(BYTE = "H")	L	Н	Not used	H/L	Read 1 byte of data

(4) ALE signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls.

When E	BYTE pin = "H"	When BYTE pin = "L"				
ALE		ALE	Γ			
D0/A0 to D7/A7	Address Data (Note 1)	Ao	Address			
A8 to A19	Address (Note 2)	D0/A1 to D7/A8	Address Data (Note 1)			
		A9 to A19	Address			
	Note 1: Floating when reading. Note 2: When multiplexed bus for th	e entire space is sel	lected, these are I/O ports.			

(5) The RDY signal

 $\overline{\text{RDY}}$ is a signal that facilitates access to an external device that requires long access time. As shown in Figure 1.11.3, if an "L" is being input to the $\overline{\text{RDY}}$ at the BCLK falling edge, the bus turns to the wait state. If an "H" is being input to the $\overline{\text{RDY}}$ pin at the BCLK falling edge, the bus cancels the wait state. Table 1.11.4 shows the state of the microcomputer with the bus in the wait state, and Figure 1.11.3 shows an example in which the $\overline{\text{RD}}$ signal is prolonged by the $\overline{\text{RDY}}$ signal.

The $\overline{\text{RDY}}$ signal is valid when accessing the external area during the bus cycle in which bits 4 to 7 of the chip select control register (address 000816) are set to "0". The $\overline{\text{RDY}}$ signal is invalid when setting "1" to all bits 4 to 7 of the chip select control register (address 000816), but the $\overline{\text{RDY}}$ pin should be treated as properly as in non-using.

Table 1.11.4. Microcomputer status in ready state (Note)

Item	Status		
Oscillation	On		
R/\overline{W} signal, address bus, data bus, \overline{CS}	Maintain status when RDY signal received		
ALE signal, HLDA, programmable I/O ports			
Internal peripheral circuits	On		

Note: The RDY signal cannot be received immediately prior to a software wait.

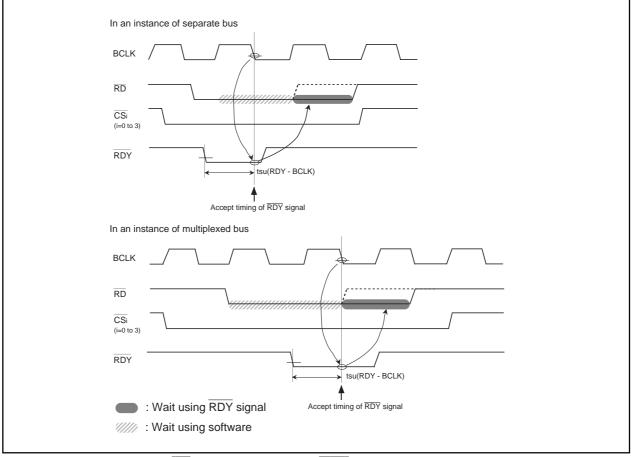


Figure 1.11.3. Example of RD signal extended by RDY signal

(6) Hold signal

The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting "L" to the $\overline{\text{HOLD}}$ pin places the microcomputer in the hold state at the end of the current bus access. This status is maintained and "L" is output from the $\overline{\text{HLDA}}$ pin as long as "L" is input to the $\overline{\text{HOLD}}$ pin. Table 1.11.5 shows the microcomputer status in the hold state.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence.

\overline{HOLD} > DMAC > CPU

Figure 1.11.4. Bus-using priorities

Table 1.11.5. Microcomputer status in hold state

Ite	m	Status		
Oscillation		ON		
R/W signal, address bus, data l	ous, CS, BHE	Floating		
Programmable I/O ports	P0, P1, P2, P3, P4, P5	Floating		
	P6, P7, P8, P9, P10	Maintains status when hold signal is received		
HLDA		Output "L"		
Internal peripheral circuits		ON (but watchdog timer stops)		
ALE signal		Undefined		

(7) External bus status when the internal area is accessed

Table 1.11.6 shows the external bus status when the internal area is accessed.

Item		SFR accessed	Internal ROM/RAM accessed
Address bus	i i	Address output	Maintain status before accessed
			address of external area
Data bus	When read	Floating	Floating
	When write	Output data	Undefined
RD, WR, WF	RL, WRH	$\overline{RD}, \overline{WR}, \overline{WRL}, \overline{WRH}$ output	Output "H"
BHE		BHE output	Maintain status before accessed
			status of external area
CS		Output "H"	Output "H"
ALE		Output "L"	Output "L"

(8) BCLK output

The user can choose the BCLK output by use of bit 7 of processor mode register 0 (000416) (Note). When set to "1", the output floating.

Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A16) to "1".

(9) Software wait

A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address 000516) (Note) and bits 4 to 7 of the chip select control register (address 000816).

A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the wait bit of the processor mode register 1. When set to "0", each bus cycle is executed in one BCLK cycle. When set to "1", each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been reset, this bit defaults to "0". When set to "1", a wait is applied to all memory areas (two or three BCLK cycles), regardless of the contents of bits 4 to 7 of the chip select control register. Set this bit after referring to the recommended operating conditions (main clock input oscillation frequency) of the electric characteristics. However, when the user is using the \overline{RDY} signal, the relevant bit in the chip select control register's bits 4 to 7 must be set to "0".

When the wait bit of the processor mode register 1 is "0", software waits can be set independently for each of the 4 areas selected using the chip select signal. Bits 4 to 7 of the chip select control register correspond to chip selects $\overline{CS0}$ to $\overline{CS3}$. When one of these bits is set to "1", the bus cycle is executed in one BCLK cycle. When set to "0", the bus cycle is executed in two or three BCLK cycles. These bits default to "0" after the microcomputer has been reset.

The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also, insert a software wait if using the multiplex bus to access the external memory area.

Table 1.11.7 shows the software wait and bus cycles. Figure 1.11.5 shows example bus timing when using software waits.

Note: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect register (address 000A16) to "1".

Area	Bus status	Wait bit Bits 4 to 7 of chip select control register		Bus cycle	
SFR		Invalid	Invalid	2 BCLK cycles	
Internal		0	Invalid	1 BCLK cycle	
ROM/RAM	1		Invalid	2 BCLK cycles	
	Separate bus	0	1	1 BCLK cycle	
External	Separate bus 0		0	2 BCLK cycles	
memory area	Separate bus	1	0 (Note)	2 BCLK cycles	
	Multiplex bus	0	0	3 BCLK cycles	
	Multiplex bus	1	0 (Note)	3 BCLK cycles	

Table 1.11.7. Software waits and bus cycles

Note: When using the \overline{RDY} signal, always set to "0".

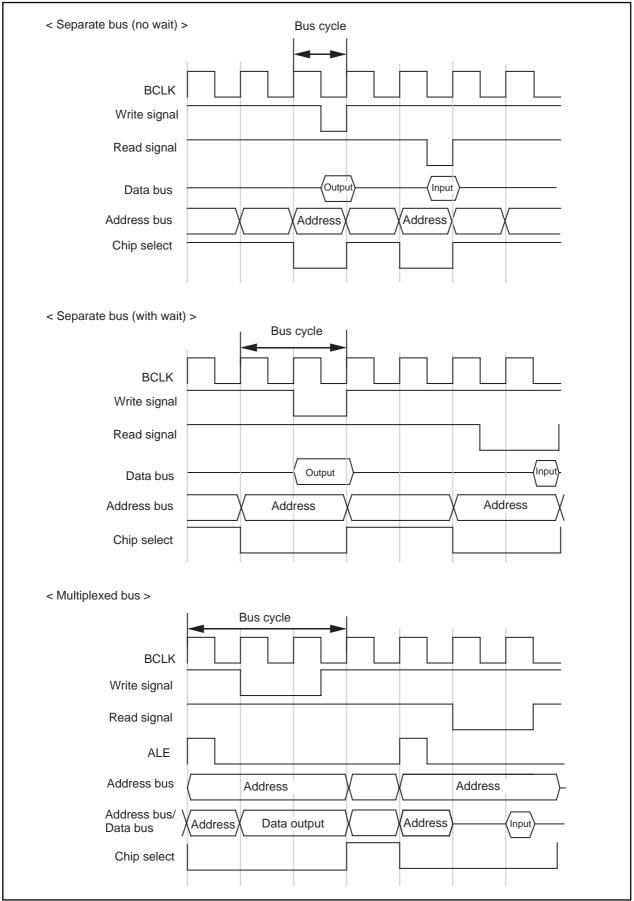


Figure 1.11.5. Typical bus timings using software wait

Clock Generating Circuit

The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the CPU and internal peripheral units.

	Main clock generating circuit	Sub-clock generating circuit	
Use of clock	CPU's operating clock source	 CPU's operating clock source 	
	 Internal peripheral units' 	Timer A/B's count clock	
	operating clock source	source	
Usable oscillator	Ceramic or crystal oscillator	Crystal oscillator	
Pins to connect oscillator	Xin, Xout	XCIN, XCOUT	
Oscillation stop/restart function	Available	Available	
Oscillator status immediately after reset	Oscillating	Stopped	
Other	Externally derived clock can be input		

Table 1.12.1. Main clock and sub-clock generating circuits

Example of oscillator circuit

Figure 1.12.1 shows some examples of the main clock circuit, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Figure 1.12.2 shows some examples of sub-clock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Circuit constants in Figures 1.12.1 and 1.12.2 vary with each oscillator used. Use the values recommended by the manufacturer of your oscillator.

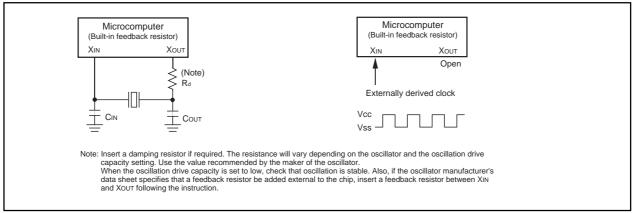


Figure 1.12.1. Examples of main clock

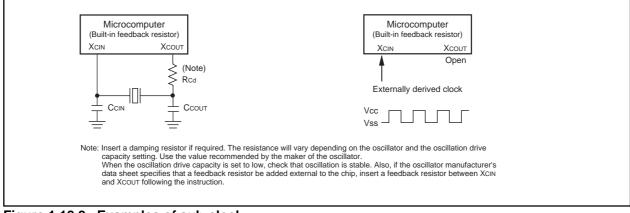


Figure 1.12.2. Examples of sub-clock

Clock Control

Figure 1.12.3 shows the block diagram of the clock generating circuit.

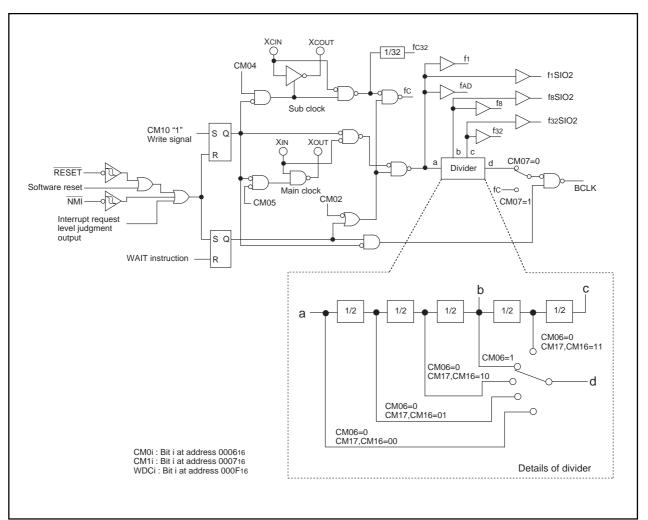


Figure 1.12.3. Clock generating circuit

The following paragraphs describes the clocks generated by the clock generating circuit.

(1) Main clock

The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation. After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716). Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(2) Sub-clock

The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset. After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure that the sub-clock oscillation has fully stabilized before switching.

After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616). Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting to stop mode and at a reset.

(3) BCLK

The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by 1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expansion and the microprocessor modes.

The main clock division select bit 0(bit 6 at address 000616) changes to "1" when shifting from high-speed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(4) Peripheral function clock(f1, f8, f32, f1SIO2, f8SIO2, f32SIO2, fAD)

The clock for the peripheral devices is derived from the main clock or by dividing it by 1, 8, or 32. The peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function clock stop bit (bit 2 at 000616) to "1" and then executing a WAIT instruction.

(5) fC32

This clock is derived by dividing the sub-clock by 32. It is used for the timer A and timer B counts.

(6) fC

This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.

Figure 1.12.4 shows the system clock control registers 0 and 1.

	b4 b3 b2	ĻĻ	Symbol CM0	Address 000616	When reset 4816	
			Bit symbol	Bit name	Function	RV
· · · · · · · · · · · · · · · · · · ·		CM00	Clock output function select bit	0 0 : I/O port P57		
		CM01	(Valid only in single-chip mode)	0 1 : fc output 1 0 : f8 output 1 1 : f32 output	00	
		CM02	WAIT peripheral function clock stop bit	0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode (Note 8)	00	
			CM03	XCIN-XCOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	
			CM04	Port Xc select bit	0 : I/O port 1 : XCIN-XCOUT generation	00
			CM05	Main clock (XIN-XOUT) stop bit (Note 3, 4, 5)	0 : On 1 : Off	00
L			CM06	Main clock division select bit 0 (Note 7)	0 : CM16 and CM17 valid 1 : Division by 8 mode	00
			CM07	System clock select bit (Note 6)	0 : XIN, XOUT 1 : XCIN, XCOUT	0
Note 6: S E n Note 7: T s	bulled up Set port 2 Do not w main cloo This bit c shifting fi	to XOU Xc selevrite to b ck oscil hanges rom low	JT ("H") via th ct bit (CM04) poth bits at th lating before to "1" when y-speed/low p	e feedback resistor. to "1" and stabilize the su e same time. And also, so setting this bit from "1" to shifting from high-speed/r	back resistor remains being connected, so XIN turns b-clock oscillating before setting to this bit from "0" at the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. N stop mode, the value before stop mode is retained	to " e the Whe
Note 6: S I Note 7: T S Note 8: fo System 7 b6 b5 t	bulled up Set port 2 Do not w main cloo Fhis bit c shifting fi C32 is no clock c	o to XOL Xc sele- rrite to b ck oscil hanges rom low ot incluc	JT ("H") via th ct bit (CM04) poth bits at th lating before to "1" when y-speed/low p	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1)	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. V	to " e the Whe
Note 6: S I Note 7: T S Note 8: fo System 7 b6 b5 t	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	JT ("H") via th ct bit (CM04) poth bits at th lating before t to "1" when r-speed/low p led. register 1 Symbol CM1	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. V stop mode, the value before stop mode is retained When reset	to "' e the Whe
Note 6: S Note 7: T S Note 8: fo System	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	UT ("H") via th ct bit (CM04) ooth bits at th lating before to "1" when -speed/low p led. register 1 Symbol	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. N stop mode, the value before stop mode is retained When reset 2016	to " e the Whe
Note 6: S I Note 7: T S Note 8: fo System	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	i⊤ ("H") via th ct bit (CM04) ooth bits at th lating before to "1" when -speed/low p led. register 1 Symbol CM1 Bit symbol	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4)	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. V stop mode, the value before stop mode is retained When reset 2016 Function 0 : Clock on	to " e the Whe
Note 6: S I Note 7: T S Note 8: fo System	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	i⊤ ("H") via th ct bit (CM04) ooth bits at th lating before to "1" when speed/low p led. register 1 Symbol CM1 Bit symbol CM10	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4) bit	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. W stop mode, the value before stop mode is retained When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode)	to " the the Whe I.
Note 6: S I Note 7: T S Note 8: fo System	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	i⊤ ("H") via th ct bit (CM04) ooth bits at th lating before to "1" when -speed/low p led. register 1 Symbol CM1 Bit symbol CM10 Reserved	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4) bit	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. V stop mode, the value before stop mode is retained When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode) Always set to "0"	to " e the Whe I.
Note 6: S I Note 7: T S Note 8: fo System 7 b6 b5 t	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	i⊤ ("H") via th ct bit (CM04) poth bits at th lating before t to "1" when r-speed/low p led. register 1 Symbol CM1 Bit symbol CM10 Reserved Reserved	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4) bit bit	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. W stop mode, the value before stop mode is retained When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode) Always set to "0"	to " e the Whe
Note 6: S I Note 7: T S Note 8: fo System 7 b6 b5 t	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	JT ("H") via th ct bit (CM04) poth bits at th lating before t o "1" when r-speed/low p led. register 1 Symbol CM1 Bit symbol CM10 Reserved Reserved	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4) bit bit	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. A stop mode, the value before stop mode is retained When reset 2016 Uhen reset 2016 Clock on 1 : All clocks off (stop mode) Always set to "0" Always set to "0" Always set to "0" O : LOW 1 : HIGH	to " e the Whe I. O (O (O (O (O (O (O (O (O (O (
Note 6: S I Note 7: T S Note 8: fo System	bulled up Set port 3 Do not w main cloo This bit c shifting fi C32 is no clock c	to XOL Xc sele vrite to b ck oscil hanges rom low ot incluc control	JT ("H") via th ct bit (CM04) poth bits at th lating before t to "1" when r-speed/low p led. register 1 Symbol CM1 Bit symbol CM10 Reserved Reserved Reserved Reserved	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/r ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4) bit bit bit XIN-XOUT drive capacity	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. A stop mode, the value before stop mode is retained When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode) Always set to "0" Always set to "0" Always set to "0" 0 : LOW 1 : HIGH	to " e the Whe
Note 6: S Note 7: T S Note 8: fo System	bulled up Set port 3 Do not w main cloc chis bit c shifting fi c32 is no clock c 0 0 0 0	b to XoL Xc sele rrite to b ck oscil hanges rom low ot incluc control	JT ("H") via th ct bit (CM04) poth bits at th lating before t o "1" when r-speed/low p led. register 1 Symbol CM10 Reserved Reserved Reserved CM15 CM16 CM17	e feedback resistor. to "1" and stabilize the su e same time. And also, se setting this bit from "1" to shifting from high-speed/n ower dissipation mode to (Note 1) Address 000716 Bit name All clock stop control bit (Note4) bit bit bit XIN-XOUT drive capacity select bit (Note 2) Main clock division select bit 1 (Note 3)	b-clock oscillating before setting to this bit from "0" et the main clock stop bit (CM05) to "0" and stabilize "0". nedium-speed mode to stop mode and at a reset. It stop mode, the value before stop mode is retained When reset 2016 Function 0 : Clock on 1 : All clocks off (stop mode) Always set to "0" Always set to "0" Always set to "0" 0 : LOW 1 : HIGH ^{b766} 0 0 : No division mode	to "' e the Whe

Figure 1.12.4. Clock control registers 0 and 1

Clock Output

In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f32, or fC to be output from the P57/CLKOUT pin. When the WAIT peripheral function clock stop bit (bit 2 at address 000616) is set to "1", the output of f8 and f32 stops when a WAIT instruction is executed.

Stop Mode

Writing "1" to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC remains above 2V.

Because the oscillation, BCLK, f1 to f32, f1SIO2 to f32SIO2, fC, fC32, and fAD stops in stop mode, peripheral functions such as the A-D converter and watchdog timer do not function. However, timer A and timer B operate provided that the event counter mode is set to an external pulse, and UARTi(i = 0 to 2) functions provided an external clock is selected. Table 1.12.2 shows the status of the ports in stop mode.

Stop mode is cancelled by a hardware reset or interrupt. If an interrupt is to be used to cancel stop mode, that interrupt must first have been enabled.

When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division select bit 0 (bit 6 at address 000616) is set to "1". When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

Pin		Memory expansion mode Microprocessor mode	Single-chip mode
Address bus	s, data bus, $\overline{CS0}$ to $\overline{CS3}$	Retains status before stop mode	
RD, WR, BH	IE, WRL, WRH	"Н"	
HLDA, BCLK		"H"	
ALE		"H"	
Port		Retains status before stop mode	Retains status before stop mode
CLKOUT	When fc selected	Valid only in single-chip mode	"H"
	When f8, f32 selected	Valid only in single-chip mode	Retains status before stop mode

Table 1.12.2. Port status during stop mode

Wait Mode

When a WAIT instruction is executed, BCLK stops and the microcomputer enters the wait mode. In this mode, oscillation continues but BCLK and watchdog timer stop. Writing "1" to the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions, allowing power dissipation to be reduced. Table 1.12.3 shows the status of the ports in wait mode.

Wait mode is cancelled by a hardware reset or an interrupt. If an interrupt is used to cancel wait mode, the microcomputer restarts from the interrupt routine using as BCLK, the clock that had been selected when the WAIT instruction was executed.

	Pin	Memory expansion mode	Single-chip mode
		Microprocessor mode	
Address bus, dat	a bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	Retains status before wait mode	
RD, WR, BHE, W	/RL, WRH	"H"	
HLDA,BCLK		"H"	
ALE		"H"	
Port		Retains status before wait mode	Retains status before wait mode
CLKOUT	When fC selected	Valid only in single-chip mode	Does not stop
	When f8, f32 selected	Valid only in single-chip mode	Does not stop when the WAIT
			peripheral function clock stop
			bit is "0".
			When the WAIT peripheral
			function clock stop bit is "1",
			the status immediately prior
			to entering wait mode is main-
			tained.

Table 1.12.3. Port status during wait mode

Status Transition Of BCLK

Power dissipation can be reduced and low-voltage operation achieved by changing the count source for BCLK. Table 1.13.4 shows the operating modes corresponding to the settings of system clock control registers 0 and 1.

When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address 000616) changes to "1" when shifting from high-speed/medium-speed to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. The following shows the operational modes of BCLK.

(1) Division by 2 mode

The main clock is divided by 2 to obtain the BCLK.

(2) Division by 4 mode

The main clock is divided by 4 to obtain the BCLK.

(3) Division by 8 mode

The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4 mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption mode, make sure the sub-clock is oscillating stably.

(4) Division by 16 mode

The main clock is divided by 16 to obtain the BCLK.

(5) No-division mode

The main clock is divided by 1 to obtain the BCLK.

(6) Low-speed mode

fc is used as the BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the subclock starts. Therefore, the program must be written to wait until this clock has stabilized immediately after powering up and after stop mode is cancelled.

(7) Low power dissipation mode

fc is the BCLK and the main clock is stopped.

Note : Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably. Allow a wait time in software for the oscillation to stabilize before switching over the clock.

CM17	CM16	CM07	CM06	CM05	CM04	Operating mode of BCLK	
0	1	0	0	0	Invalid	Division by 2 mode	
1	0	0	0	0	Invalid	Division by 4 mode	
Invalid	Invalid	0	1	0	Invalid	Division by 8 mode	
1	1	0	0	0	Invalid	Division by 16 mode	
0	0	0	0	0	Invalid	No-division mode	
Invalid	Invalid	1	Invalid	0	1	Low-speed mode	
Invalid	Invalid	1	Invalid	1	1	Low power dissipation mode	

Power control

The following is a description of the three available power control modes:

Modes

Power control is available in three modes.

(a) Normal operation mode

• High-speed mode

Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the internal clock selected. Each peripheral function operates according to its assigned clock.

• Medium-speed mode

Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the BCLK. The CPU operates according to the internal clock selected. Each peripheral function operates according to its assigned clock.

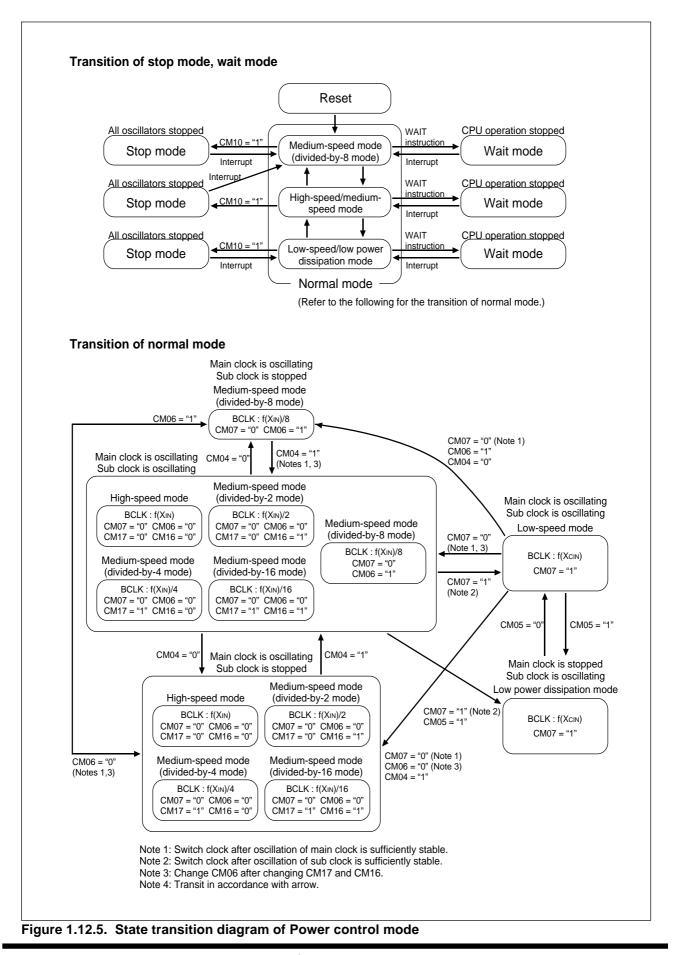
Low-speed mode

fc becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. Each peripheral function operates according to its assigned clock.

• Low power consumption mode

The main clock operating in low-speed mode is stopped. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. The only peripheral functions that operate are those with the sub-clock selected as the count source.

(b) Wait mode


The CPU operation is stopped. The oscillators do not stop.

(c) Stop mode

All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three modes listed here, is the most effective in decreasing power consumption.

Figure 1.12.5 is the state transition diagram of the above modes.

Protection

The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 1.12.6 shows the protect register. The values in the processor mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716) and port P9 direction register (address 03F316) can only be changed when the respective bit in the protect register is set to "1". Therefore, important outputs can be allocated to port P9.

If, after "1" (write-enabled) has been written to the port P9 direction register write-enable bit (bit 2 at address 000A16), a value is written to any address, the bit automatically reverts to "0" (write-inhibited). However, the system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and 1 write-enable bit (bit 1 at 000A16) do not automatically return to "0" after a value has been written to an address. The program must therefore be written to return these bits to "0".

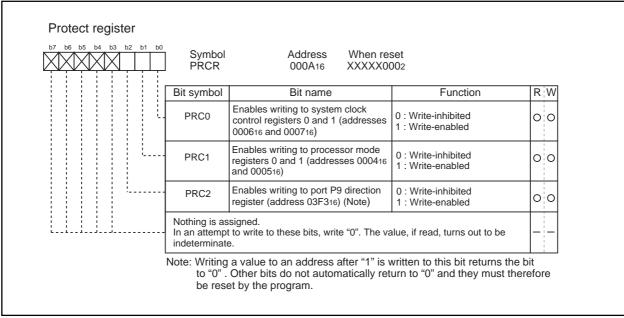


Figure 1.12.6. Protect register

Overview of Interrupt

Type of Interrupts

Figure 1.13.1 lists the types of interrupts.



Figure 1.13.1. Classification of interrupts

Maskable interrupt : An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>can be changed</u> by priority level.
 Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>cannot be changed</u> by priority level.

Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

Undefined instruction interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

Overflow interrupt

An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to "1". The following are instructions whose O flag changes by arithmetic:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

BRK interrupt

A BRK interrupt occurs when executing the BRK instruction.

• INT interrupt

An INT interrupt occurs when assiging one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/O interrupt does.

The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is involved.

So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to "0" and select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift.

Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are non-maskable interrupts.

Reset

Reset occurs if an "L" is input to the $\overline{\text{RESET}}$ pin.

NMI interrupt

An $\overline{\text{NMI}}$ interrupt occurs if an "L" is input to the $\overline{\text{NMI}}$ pin.

DBC interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances.

Watchdog timer interrupt

Generated by the watchdog timer.

Single-step interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug flag (D flag) set to "1", a single-step interrupt occurs after one instruction is executed.

Address match interrupt

An address match interrupt occurs immediately before the instruction held in the address indicated by the address match interrupt register is executed with the address match interrupt enable bit set to "1". If an address other than the first address of the instruction in the address match interrupt register is set, no address match interrupt occurs. For address match interrupt, see 2.11 Address match Interrupt.

(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 0 through 31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.

Bus collision detection interrupt

This is an interrupt that the serial I/O bus collision detection generates.

DMA0 interrupt, DMA1 interrupt

These are interrupts that DMA generates.

• Key-input interrupt

A key-input interrupt occurs if an "L" is input to the $\overline{\text{KI}}$ pin.

A-D conversion interrupt

This is an interrupt that the A-D converter generates.

- UART0, UART1 and UART2 transmission interrupt
- These are interrupts that the serial I/O transmission generates.
- UART0, UART1 and UART2 reception interrupt

These are interrupts that the serial I/O reception generates.

- Timer A0 interrupt through timer A4 interrupt These are interrupts that timer A generates
- Timer B0 interrupt through timer B2 interrupt These are interrupts that timer B generates.

• INT0 interrupt through INT2 interrupt

An INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin.

Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 1.13.2 shows the format for specifying the address.

Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.

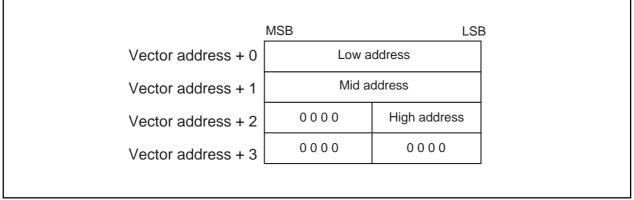


Figure 1.13.2. Format for specifying interrupt vector addresses

• Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFDC16 to FFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 1.13.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Table 1.13.1.	. Interrupts assigned to the fixed vector tables and addresses of vector tables
---------------	---

Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction
BRK instruction	FFFE416 to FFFE716	If the vector contains FF16, program execution starts from
		the address shown by the vector in the variable vector table
Address match	FFFE816 to FFFEB16	There is an address-matching interrupt enable bit
Single step (Note)	FFFEC16 to FFFEF16	Do not use
Watchdog timer	FFFF016 to FFFF316	
DBC (Note)	FFFF416 to FFFF716	Do not use
NMI	FFFF816 to FFFFB16	External interrupt by input to NMI pin
Reset	FFFFC16 to FFFFF16	

Note: Interrupts used for debugging purposes only.

Variable vector tables

The addresses in the variable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 1.13.2 shows the interrupts assigned to the variable vector tables and addresses of vector tables.

Table 1.13.2. Interrupts assigned to the variable vector tables and addresses of vector tables

Software interrupt number	Vector table address Address (L) to address (H)	Interrupt source	Remarks
Software interrupt number 0	+0 to +3 (Note)	BRK instruction	Cannot be masked I flag
Software interrupt number 10	+40 to +43 (Note)	Bus collision detection	
Software interrupt number 11	+44 to +47 (Note)	DMA0	
Software interrupt number 12	+48 to +51 (Note)	DMA1	
Software interrupt number 13	+52 to +55 (Note)	Key input interrupt	
Software interrupt number 14	+56 to +59 (Note)	A-D	
Software interrupt number 15	+60 to +63 (Note)	UART2 transmit	
Software interrupt number 16	+64 to +67 (Note)	UART2 receive	
Software interrupt number 17	+68 to +71 (Note)	UART0 transmit	
Software interrupt number 18	+72 to +75 (Note)	UART0 receive	
Software interrupt number 19	+76 to +79 (Note)	UART1 transmit	
Software interrupt number 20	+80 to +83 (Note)	UART1 receive	
Software interrupt number 21	+84 to +87 (Note)	Timer A0	
Software interrupt number 22	+88 to +91 (Note)	Timer A1	
Software interrupt number 23	+92 to +95 (Note)	Timer A2	
Software interrupt number 24	+96 to +99 (Note)	Timer A3	
Software interrupt number 25	+100 to +103 (Note)	Timer A4	
Software interrupt number 26	+104 to +107 (Note)	Timer B0	
Software interrupt number 27	+108 to +111 (Note)	Timer B1	
Software interrupt number 28	+112 to +115 (Note)	Timer B2	
Software interrupt number 29	+116 to +119 (Note)	ĪNT0	
Software interrupt number 30	+120 to +123 (Note)	INT1	
Software interrupt number 31	+124 to +127 (Note)	ĪNT2	
Software interrupt number 32 to Software interrupt number 63	+128 to +131 (Note) to +252 to +255 (Note)	Software interrupt	Cannot be masked I flag

Note: Address relative to address in interrupt table register (INTB)

Interrupt Control

Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the priority to be accepted. What is described here does not apply to non-maskable interrupts.

Enable or disable a non-maskable interrupt using the interrupt enable flag (I flag), interrupt priority level selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the IPL are located in the flag register (FLG).

Figure 1.13.3 shows the memory map of the interrupt control registers.

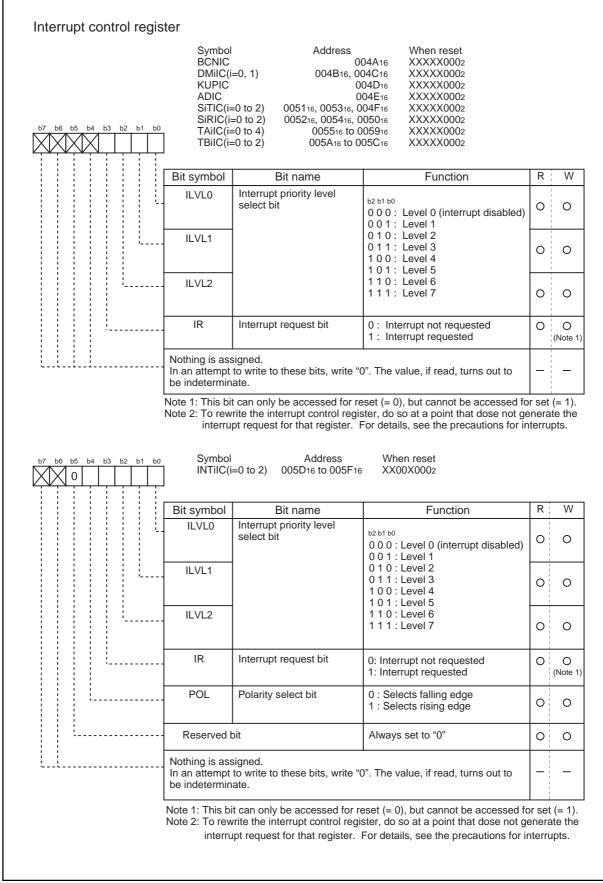


Figure 1.13.3. Interrupt control registers

Interrupt Enable Flag (I flag)

The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this flag to "1" enables all maskable interrupts; setting it to "0" disables all maskable interrupts. This flag is set to "0" after reset.

Interrupt Request Bit

The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is accepted and jumps to the corresponding interrupt vector, the request bit is set to "0" by hardware. The interrupt request bit can also be set to "0" by software. (Do not set this bit to "1").

Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)

Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL. Therefore, setting the interrupt priority level to "0" disables the interrupt.

Table 1.13.3 shows the settings of interrupt priority levels and Table 1.13.4 shows the interrupt levels enabled, according to the consist of the IPL.

The following are conditions under which an interrupt is accepted:

- · interrupt enable flag (I flag) = 1
- \cdot interrupt request bit = 1
- interrupt priority level > IPL

The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are independent, and they are not affected by one another.

Table 1.13.3. Settings of interrupt priority levels

Interrupt priority level select bit	Interrupt priority level	Priority order
b2 b1 b0		
0 0 0	Level 0 (interrupt disabled)	
0 0 1	Level 1	Low
0 1 0	Level 2	
0 1 1	Level 3	
1 0 0	Level 4	
1 0 1	Level 5	
1 1 0	Level 6	
1 1 1	Level 7	High

Table 1.13.4. Interrupt levels enabled according to the contents of the IPL

IPL		Enabled interrupt priority levels
IPL2 IPL1 IPL	.0	
0 0 0		Interrupt levels 1 and above are enabled
0 0 1		Interrupt levels 2 and above are enabled
0 1 0		Interrupt levels 3 and above are enabled
0 1 1		Interrupt levels 4 and above are enabled
1 0 0		Interrupt levels 5 and above are enabled
1 0 1		Interrupt levels 6 and above are enabled
1 1 0		Interrupt levels 7 and above are enabled
1 1 1		All maskable interrupts are disabled

Rewrite the interrupt control register

To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

/ITCF	ł1:	
R	1	; Disable interrupts.
D.B	#00h, 0055h	; Clear TA0IC int. priority level and int. request bit.
Ρ		; Four NOP instructions are required when using HOLD function.
Ρ		
ΞT	1	; Enable interrupts.
	LR D.B P P	D.B #00h, 0055h

Example 2:

I

INT	_SWITCH	-12:	
	FCLR	1	; Disable interrupts.
	AND.B	#00h, 0055h	; Clear TA0IC int. priority level and int. request bit.
	MOV.W	MEM, R0	; Dummy read.
	FSET	1	; Enable interrupts.

Example 3: INT SWITC

NT	_SWITCH	1 3:	
	PUSHC	FLG	; Push Flag register onto stack
	FCLR	1	; Disable interrupts.
	AND.B	#00h, 0055h	; Clear TA0IC int. priority level and int. request bit.
	POPC	FLG	; Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

- (1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016.
- (2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
- (3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
- (4) Saves the content of the temporary register (Note 1) within the CPU in the stack area.
- (5) Saves the content of the program counter (PC) in the stack area.
- (6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.

Note: This register cannot be utilized by the user.

Interrupt Response Time

'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 1.13.4 shows the interrupt response time.

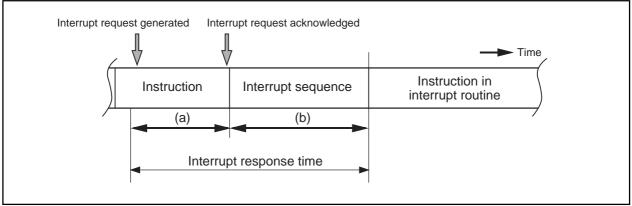


Figure 1.13.4. Interrupt response time

Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the DIVX instruction (without wait).

Time (b) is as shown in Table 1.13.5.

Table 1.13.5.	Time required for executing the interrupt sequence
---------------	--

Interrupt vector address	Stack pointer (SP) value	16-Bit bus, without wait	8-Bit bus, without wait
Even	Even	18 cycles (Note 1)	20 cycles (Note 1)
Even	Odd	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Even	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Odd	20 cycles (Note 1)	20 cycles (Note 1)

Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence interrupt or of a single-step interrupt.

Note 2: Locate an interrupt vector address in an even address, if possible.

BCLK	
Address bus	Address Indeterminate SP-2 SP-4 vec vec+2 PC
Data bus	Interrupt Indeterminate SP-2 SP-4 vec vec+2 contents contents
R	
W	
	The indeterminate segment is dependent on the queue buffer. If the queue buffer is ready to take an instruction, a read cycle occurs.

Figure 1.13.5. Time required for executing the interrupt sequence

Variation of IPL when Interrupt Request is Accepted

If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL. If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown in Table 1.13.6 is set in the IPL.

Interrupt sources without priority levels	Value set in the IPL
Watchdog timer, NMI	7
Reset	0
Other	Not changed

Saving Registers

In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter (PC) are saved in the stack area.

First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8 lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the program counter. Figure 1.13.6 shows the state of the stack as it was before the acceptance of the interrupt request, and the state the stack after the acceptance of the interrupt request.

Save other necessary registers at the beginning of the interrupt routine using software. Using the PUSHM instruction alone can save all the registers except the stack pointer (SP).

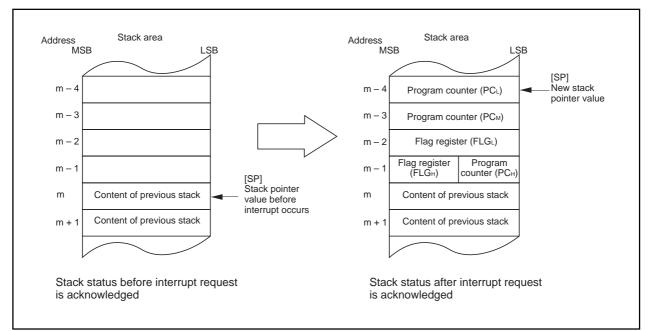


Figure 1.13.6. State of stack before and after acceptance of interrupt request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the content of the stack pointer, at the time of acceptance of an interrupt request, is even or odd. If the content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at a time. Figure 1.13.7 shows the operation of the saving registers. Note: Stack pointer indicated by U flag.

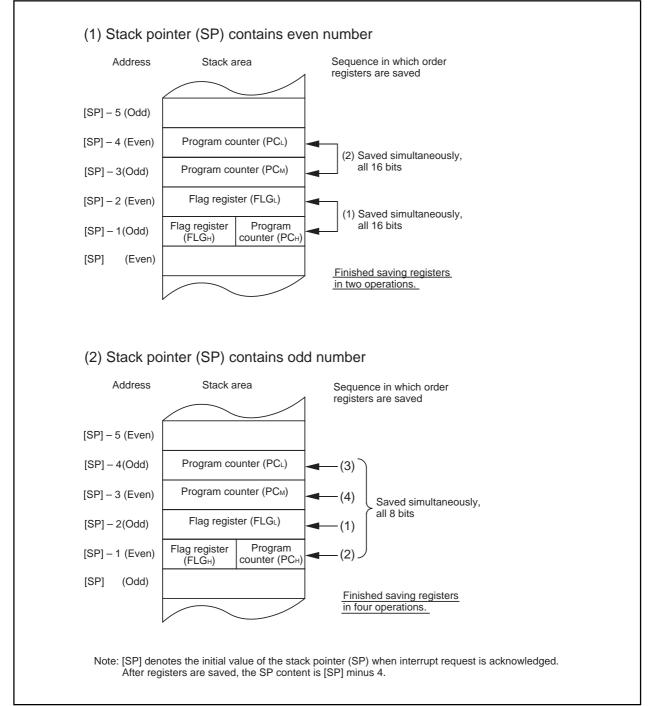


Figure 1.13.7. Operation of saving registers

Returning from an Interrupt Routine

Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register (FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter (PC), both of which have been saved in the stack area. Then control returns to the program that was being executed before the acceptance of the interrupt request, so that the suspended process resumes. Return the other registers saved by software within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Interrupt Priority

If there are two or more interrupt requests occurring at a point in time within a single sampling (checking whether interrupt requests are made), the interrupt assigned a higher priority is accepted.

Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware priority is accepted.

Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority), watchdog timer interrupt, etc. are regulated by hardware.

Figure 1.13.8 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

Reset > $\overline{\text{NMI}}$ > $\overline{\text{DBC}}$ > Watchdog timer > Peripheral I/O > Single step > Address match

Figure 1.13.8. Hardware interrupts priorities

Interrupt resolution circuit

When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest priority level. Figure 1.13.9 shows the circuit that judges the interrupt priority level.

Interfupt M30612M8A-XXXFP"供应商

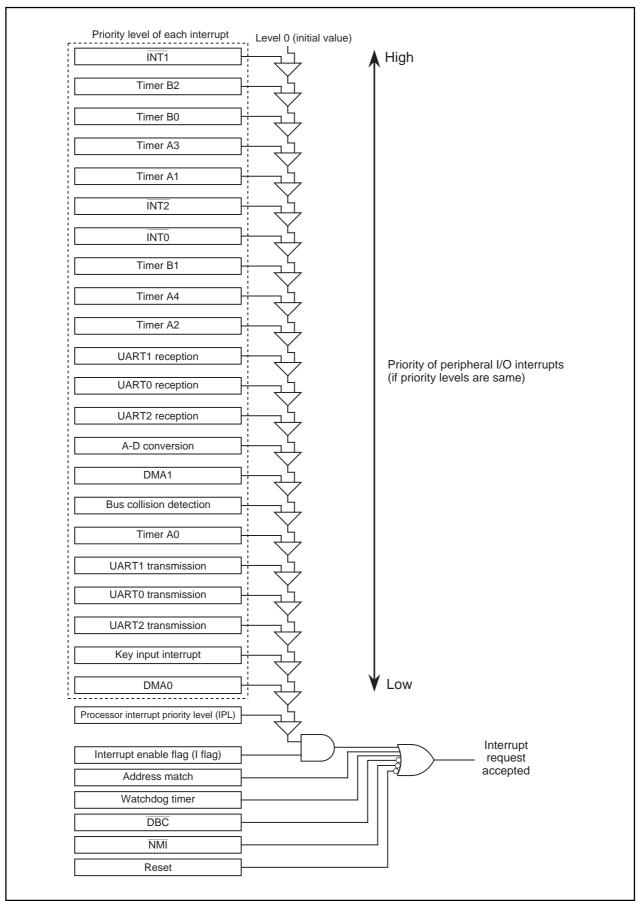


Figure 1.13.9. Maskable interrupts priorities (peripheral I/O interrupts)

INT Interrupt

INTO to INT2 are triggered by the edges of external inputs. The edge polarity is selected using the polarity select bit.

NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when the input to the P85/ $\overline{\text{NMI}}$ pin changes from "H" to "L". The $\overline{\text{NMI}}$ interrupt is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address 03F016).

This pin cannot be used as a normal port input.

Key Input Interrupt

If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as A-D input ports. Figure 1.13.10 shows the block diagram of the key input interrupt. Note that if an "L" level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an interrupt.

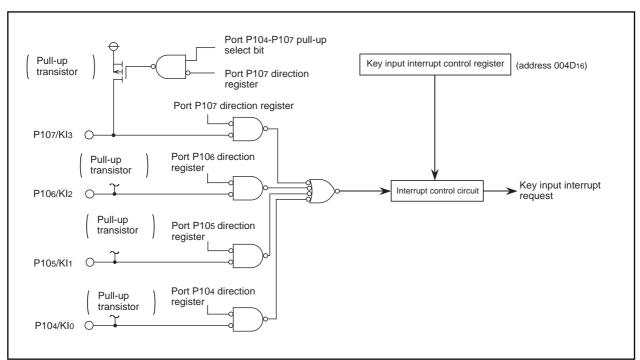


Figure 1.13.10. Block diagram of key input interrupt

Address Match Interrupt

An address match interrupt is generated when the address match interrupt address register contents match the program counter value. Two address match interrupts can be set, each of which can be enabled and disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL). The value of the program counter (PC) for an address match interrupt varies depending on the instruction being executed. Figure 1.13.11 shows the address match interrupt-related registers.

Address match interrupt enable register Symbol Address When reset AIER 000916 XXXXXX002 Bit symbol Bit name Function RW Address match interrupt 0 AIER0 0 : Interrupt disabled 00 enable bit 1 : Interrupt enabled AIER1 Address match interrupt 1 0 : Interrupt disabled 00 enable bit 1 : Interrupt enabled Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminated. Address match interrupt register i (i = 0, 1)(b19) (b16)(b15) (b23) (b8) Symbol Address When reset b0 b7 RMAD0 001216 to 001016 X000016 X0000016 RMAD1 001616 to 001416 Function Values that can be set R W 0000016 to FFFFF16 00 Address setting register for address match interrupt Nothing is assigned. In an attempt to write to these bits, write "0". The value, if read, turns out to be indeterminated.

Figure 1.13.11. Address match interrupt-related registers

Precautions for Interrupts

(1) Reading address 0000016

• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.

The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0".

Though the interrupt is generated, the interrupt routine may not be executed.

Do not read address 0000016 by software.

(2) Setting the stack pointer

• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the NMI interrupt is prohibited.

(3) The NMI interrupt

- As for the NMI interrupt pin, an interrupt cannot be disabled. Connect it to the Vcc pin via a resistor (pull-up) if unused. Be sure to work on it.
- The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
- Do not reset the CPU with the input to the $\overline{\text{NMI}}$ pin being in the "L" state.
- Do not attempt to go into stop mode with the input to the NMI pin being in the "L" state. With the input to the NMI being in the "L" state, the CM10 is fixed to "0", so attempting to go into stop mode is turned down.
- Do not attempt to go into wait mode with the input to the NMI pin being in the "L" state. With the input to the NMI pin being in the "L" state, the CPU stops but the oscillation does not stop, so no power is saved. In this instance, the CPU is returned to the normal state by a later interrupt.
- Signals input to the $\overline{\text{NMI}}$ pin require an "L" level of 1 clock or more, from the operation clock of the CPU.

(4) External interrupt

- Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INTo through INT2 regardless of the CPU operation clock.
- When the polarity of the INTo to INT2 pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 1.13.12 shows the procedure for changing the INT interrupt generate factor.

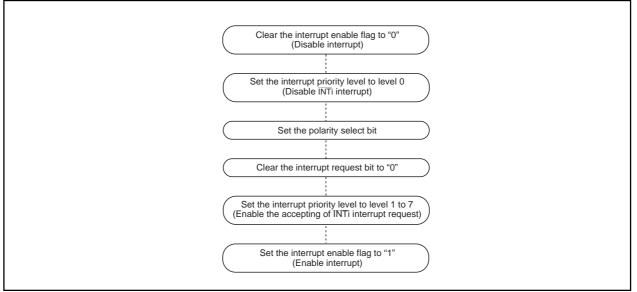


Figure 1.13.12. Switching condition of INT interrupt request

(5) Rewrite the interrupt control register

• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1: INT_SWITCH FCLR AND.B NOP NOP FSET	I	; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts.
AND.B	I	; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Dummy read. ; Enable interrupts.
POPC	FLG I #00h, 0055h FLG	; Push Flag register onto stack ; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Enable interrupts.
The reason why	two NOP instru	uctions (four when using the HOLD function) or dummy read are ins

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

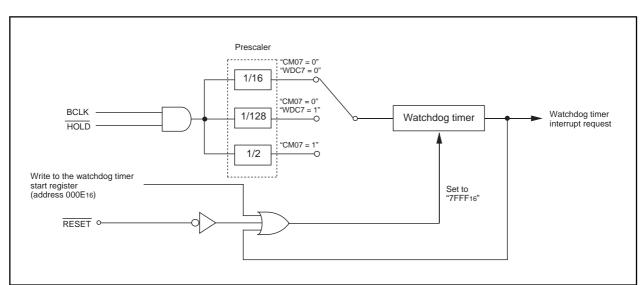
• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

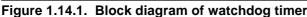
Instructions : AND, OR, BCLR, BSET

Watchdog Timer

The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is selected for the BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7 of the watchdog timer control register (address 000F16). Thus the watchdog timer's period can be calculated as given below. The watchdog timer's period is, however, subject to an error due to the pre-scaler.

With XIN chosen for BCLK


Watchdog timer period =	pre-scaler dividing ratio (16 or 128) X watchdog timer count (32768)				
	BCLK				
With XCIN chosen for BCLK					


Watchdog timer period = <u>pre-scaler dividing ratio (2) X watchdog timer count (32768)</u> BCLK

For example, suppose that BCLK runs at 10 MHz and that 16 has been chosen for the dividing ratio of the pre-scaler, then the watchdog timer's period becomes approximately 52.4 ms.

The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by writing to the watchdog timer start register (address 000E16).

Figure 1.14.1 shows the block diagram of the watchdog timer. Figure 1.14.2 shows the watchdog timer-related registers.

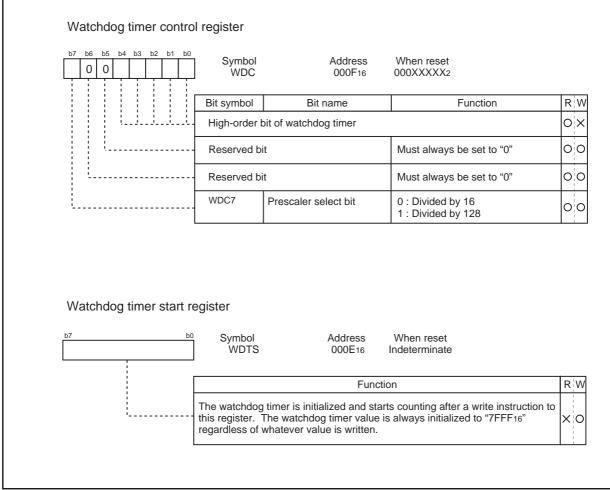


Figure 1.14.2. Watchdog timer control and start registers

DMAC

This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16-bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure 1.15.1 shows the block diagram of the DMAC. Table 1.15.1 shows the DMAC specifications. Figure 1.15.2 to Figure 1.15.3 show the registers used by the DMAC.

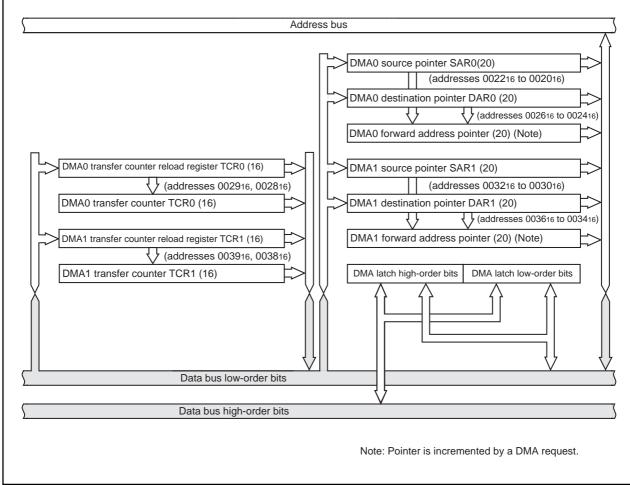


Figure 1.15.1. Block diagram of DMAC

Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level. The DMA transfer doesn't affect any interrupts either.

If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the number of transfers. For details, see the description of the DMA request bit.

Table 1.15.1. DMAC specifications

Item	Specification				
No. of channels	2 (cycle steal method)				
Transfer memory space	 From any address in the 1M bytes space to a fixed address 				
	 From a fixed address to any address in the 1M bytes space 				
	 From a fixed address to a fixed address 				
	(Note that DMA-related registers [002016 to 003F16] cannot be accessed)				
Maximum No. of bytes transferred					
DMA request factors (Note)	Falling edge of INT0 or INT1 (INT0 can be selected by DMA0, INT1 by DMA1)				
	Timer A0 to timer A4 interrupt requests				
	Timer B0 to timer B2 interrupt requests				
	UART0 transmission and reception interrupt requests				
	UART1 transmission and reception interrupt requests (UART1 trans-				
	mission can be selected by DMA0, UART1 reception by DMA1)				
	UART2 transmission and reception interrupt requests				
	A-D conversion interrupt requests				
	Software triggers				
Channel priority	DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously				
Transfer unit	8 bits or 16 bits				
Transfer address direction	forward/fixed (forward direction cannot be specified for both source and				
	destination simultaneously)				
Transfer mode	Single transfer mode				
	After the transfer counter underflows, the DMA enable bit turns to				
	"0", and the DMAC turns inactive				
	Repeat transfer mode				
	After the transfer counter underflows, the value of the transfer counter				
	reload register is reloaded to the transfer counter.				
	The DMAC remains active unless a "0" is written to the DMA enable bit.				
DMA interrupt request generation timing	When an underflow occurs in the transfer counter				
Active	When the DMA enable bit is set to "1", the DMAC is active.				
Active	When the DMAC is active, data transfer starts every time a DMA				
	transfer request signal occurs.				
Inactive	When the DMA enable bit is set to "0", the DMAC is inactive.				
macuve	 After the transfer counter underflows in single transfer mode 				
Forward address pointer and	At the time of starting data transfer immediately after turning the DMAC active, re				
•					
load timing for transfer	the value of one of source pointer and destination pointer - the one specified for the				
counter	forward direction - is reloaded to the forward direction address pointer, and the value				
	of the transfer counter reload register is reloaded to the transfer counter.				
Writing to register	Registers specified for forward direction transfer are always write enabled.				
	Registers specified for fixed address transfer are write-enabled when				
	the DMA enable bit is "0".				
Reading the register	Can be read at any time.				
	However, when the DMA enable bit is "1", reading the register set up as the				
	forward register is the same as reading the value of the forward address pointer. e to any interrupt, DMA transfer is affected neither by the interrupt enable				

Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level.

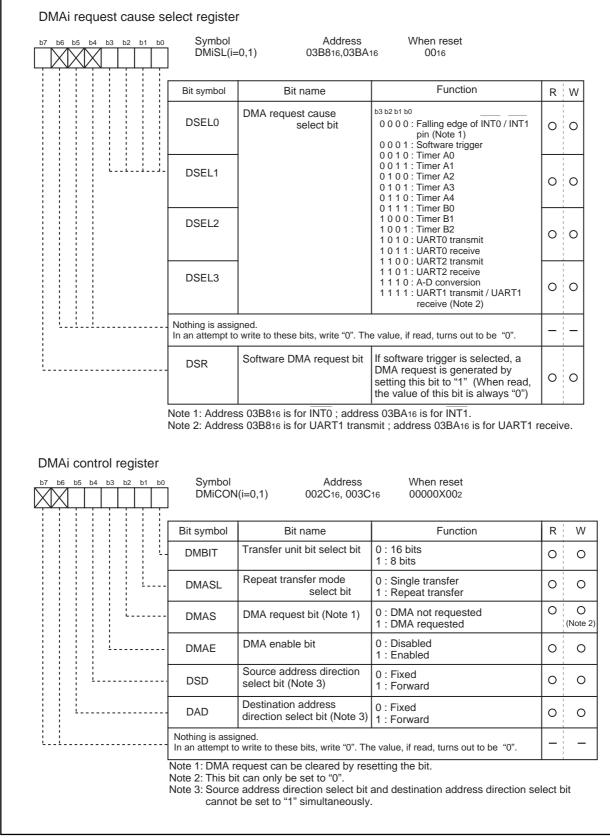


Figure 1.15.2. DMAC register (1)

DM查询"M30612M8A-XXXFP"供应商

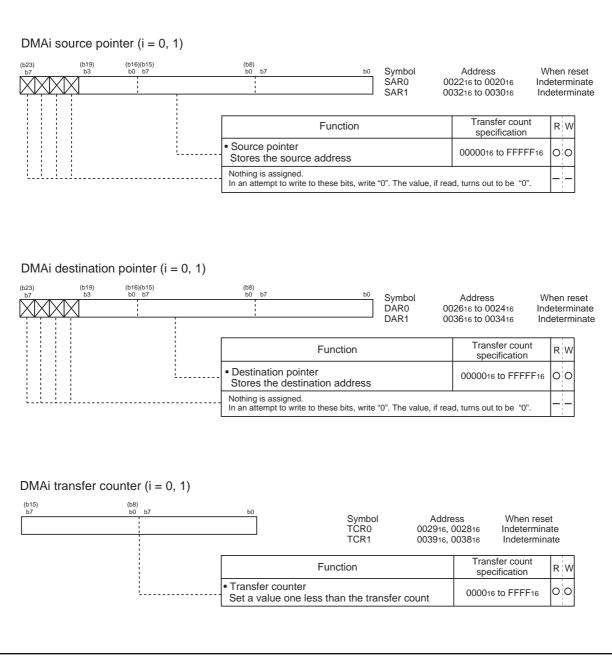


Figure 1.15.3. DMAC register (2)

(1) Transfer cycle

The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area (source read) and the bus cycle in which the data is written to memory or to the SFR area (destination write). The number of read and write bus cycles depends on the source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.

(a) Effect of source and destination addresses

When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd addresses, there are one more source read cycle and destination write cycle than when the source and destination both start at even addresses.

(b) Effect of BYTE pin level

When transferring 16-bit data over an 8-bit data bus (BYTE pin = "H") in memory expansion mode and microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are required for reading the data and two are required for writing the data. Also, in contrast to when the CPU accesses internal memory, when the DMAC accesses internal memory (internal ROM, internal RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin.

(c) Effect of software wait

When the SFR area or a memory area with a software wait is accessed, the number of cycles is increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.

Figure 1.15.4 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 36, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source read cycle and the destination write cycle.

DM查询"M30612M8A-XXXFP"供应商

BCLK	
Address	CPU use Destination Dummy CPU use
RD signal	
- VR signal	
Data bus	CPU use Source Destination CPU use CPU use
16-bit tra	ansfers and the source address is odd rring 16-bit data on an 8-bit data bus (In this case, there are also two destination write cy
ا Address ⁻ ous	CPU use Source + 1 Dummy cycle CPU use
RD signal	
- VR signal	
Data	CPU use Source + 1 Destination Dummy CPU use
One wait	t is inserted into the source read under the conditions in (1)
BCLK	
Address	CPU use Source Destination Dummy CPU use CPU use
RD signal	
- VR signal	
Data - ous -	CPU use Source Destination Dummy CPU use
Onewait	t is inserted into the source read under the conditions in (2)
(When 10	6-bit data is transferred on an 8-bit data bus, there are two destination write cycles).
BCLK	
Address	CPU use Source Source + 1 Cestination Dummy CPU use
RD signal	
VR signal	

Figure 1.15.4. Example of the transfer cycles for a source read

(2) DMAC transfer cycles

Any combination of even or odd transfer read and write addresses is possible. Table 1.15.2 shows the number of DMAC transfer cycles.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

			Single-chip mode		Memory expa	ansion mode
Transfer unit	Bus width	Access address			Microprocessor mode	
			No. of read No. of write		No. of read	No. of write
			cycles	cycles	cycles	cycles
	16-bit	Even	1	1	1	1
8-bit transfers	(BYTE= "L")	Odd	1	1	1	1
(DMBIT= "1")	8-bit	Even	_	_	1	1
	(BYTE = "H")	Odd	_	_	1	1
	16-bit	Even	1	1	1	1
16-bit transfers	(BYTE = "L")	Odd	2	2	2	2
(DMBIT= "0")	8-bit	Even		—	2	2
	(BYTE = "H")	Odd	_	—	2	2

Coefficient j, k

Internal memory			External memory		
Internal ROM/RAM Internal ROM/RAM SFR area Separate bus Separate bus Multiple				Multiplex	
No wait	With wait		No wait	With wait	bus
1	2	2	1	2	3

DMA enable bit

Setting the DMA enable bit to 1 makes the DMAC active. The DMAC carries out the following operations at the time data transfer starts immediately after DMAC is turned active.

- (1) Reloads the value of one of the source pointer and the destination pointer the one specified for the forward direction to the forward direction address pointer.
- (2) Reloads the value of the transfer counter reload register to the transfer counter.

Thus overwriting 1 to the DMA enable bit with the DMAC being active carries out the operations given above, so the DMAC operates again from the initial state at the instant 1 is overwritten to the DMA enable bit.

DMA request bit

The DMAC can generate a DMA transfer request signal triggered by a factor chosen in advance out of DMA request factors for each channel.

DMA request factors include the following.

- * Factors effected by using the interrupt request signals from the built-in peripheral functions and software DMA factors (internal factors) effected by a program.
- * External factors effected by utilizing the input from external interrupt signals.

For the selection of DMA request factors, see the descriptions of the DMAi factor selection register.

The DMA request bit turns to 1 if the DMA transfer request signal occurs regardless of the DMAC's state (regardless of whether the DMA enable bit is set 1 or to 0). It turns to 0 immediately before data transfer starts.

In addition, it can be set to 0 by use of a program, but cannot be set to 1.

There can be instances in which a change in DMA request factor selection bit causes the DMA request bit to turn to 1. So be sure to set the DMA request bit to 0 after the DMA request factor selection bit is changed. The DMA request bit turns to 1 if a DMA transfer request signal occurs, and turns to 0 immediately before data transfer starts. If the DMAC is active, data transfer starts immediately, so the value of the DMA request bit, if read by use of a program, turns out to be 0 in most cases. To examine whether the DMAC is active, read the DMA enable bit.

Here follows the timing of changes in the DMA request bit.

(1) Internal factors

Except the DMA request factors triggered by software, the timing for the DMA request bit to turn to 1 due to an internal factor is the same as the timing for the interrupt request bit of the interrupt control register to turn to 1 due to several factors.

Turning the DMA request bit to 1 due to an internal factor is timed to be effected immediately before the transfer starts.

(2) External factors

An external factor is a factor caused to occur by the leading edge of input from the INTi pin (i depends on which DMAC channel is used).

Selecting the INTi pins as external factors using the DMA request factor selection bit causes input from these pins to become the DMA transfer request signals.

The timing for the DMA request bit to turn to 1 when an external factor is selected synchronizes with the signal's edge applicable to the function specified by the DMA request factor selection bit (synchronizes with the trailing edge of the input signal to each INTi pin, for example).

With an external factor selected, the DMA request bit is timed to turn to 0 immediately before data transfer starts similarly to the state in which an internal factor is selected.

(3) The priorities of channels and DMA transfer timing

If a DMA transfer request signal falls on a single sampling cycle (a sampling cycle means one period from the leading edge to the trailing edge of BCLK), the DMA request bits of applicable channels concurrently turn to 1. If the channels are active at that moment, DMA0 is given a high priority to start data transfer. When DMA0 finishes data transfer, it gives the bus right to the CPU. When the CPU finishes single bus access, then DMA1 starts data transfer and gives the bus right to the CPU.

An example in which DMA transfer is carried out in minimum cycles at the time when DMA transfer request signals due to external factors concurrently occur.

Figure 1.15.5 An example of DMA transfer effected by external factors.

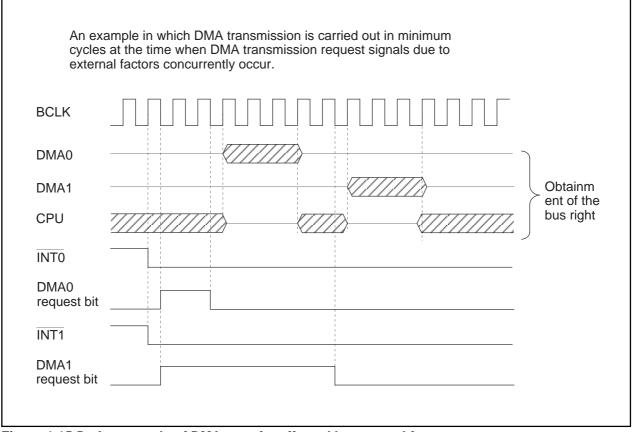


Figure 1.15.5. An example of DMA transfer effected by external factors

Timer

There are eight 16-bit timers. These timers can be classified by function into timers A (five) and timers B (three). All these timers function independently. Figure 1.16.1 shows the block diagram of timers.

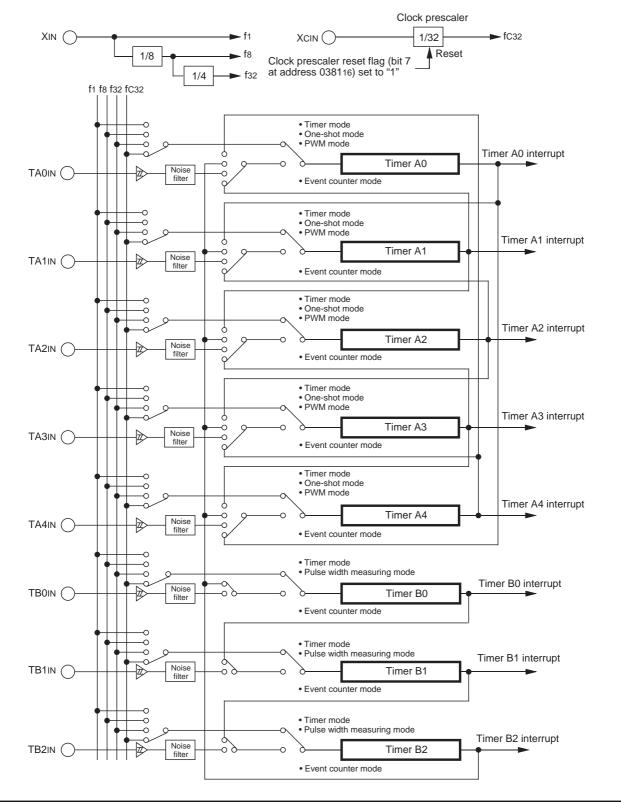
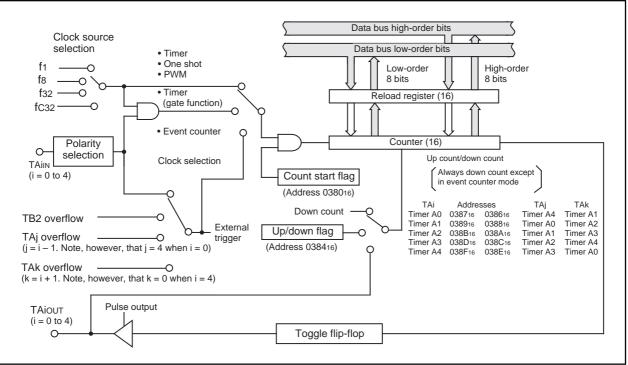
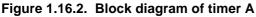


Figure 1.16.1. Block diagram of timer


Timer A


Figure 1.16.2 shows the block diagram of timer A. Figures 1.16.3 to 1.16.5 show the timer A-related registers.

Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode register (i = 0 to 4) bits 0 and 1 to choose the desired mode.

Timer A has the four operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer over flow.
- One-shot timer mode: The timer stops counting when the count reaches "000016".
- Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.

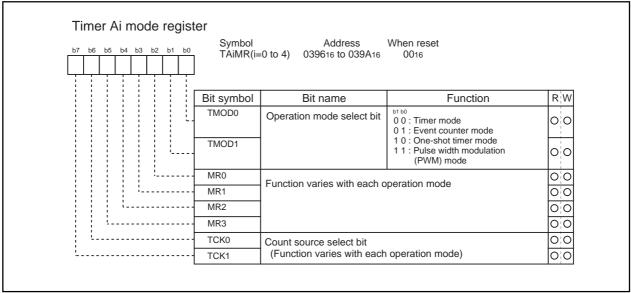
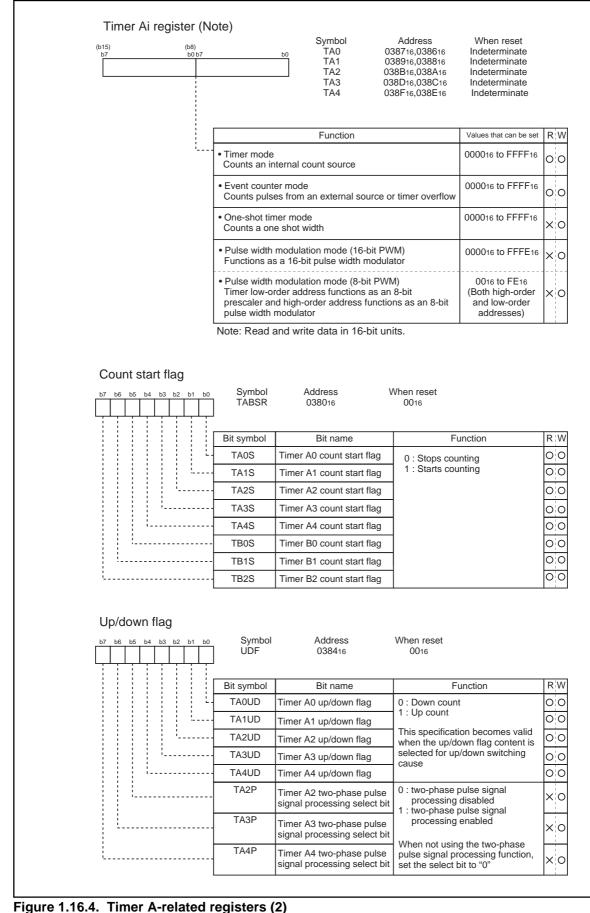



Figure 1.16.3. Timer A-related registers (1)

Tir查询AM30612M8A-XXXFP"供应商

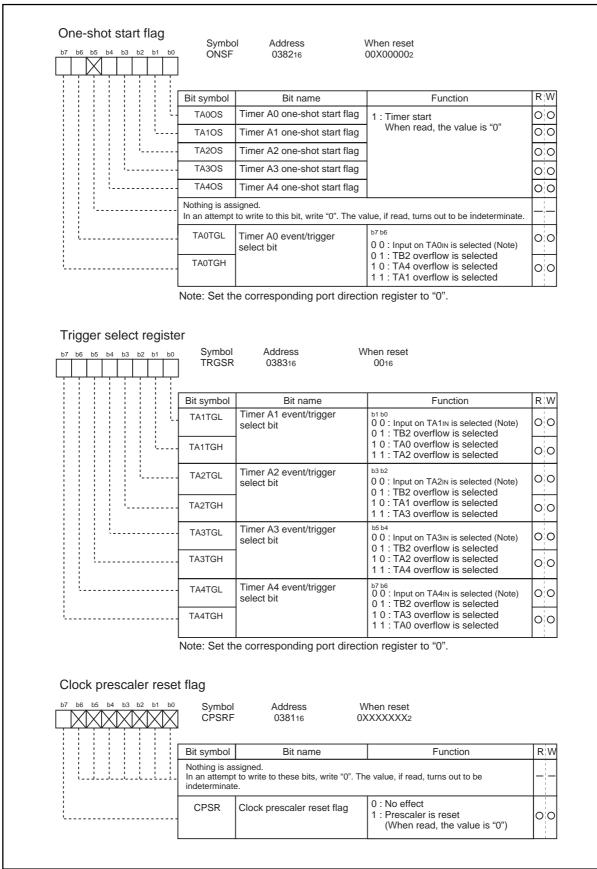


Figure 1.16.5. Timer A-related registers (3)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 1.16.1.) Figure 1.16.6 shows the timer Ai mode register in timer mode.

Table 1.16.1.	Specifications	of timer mode
---------------	----------------	---------------

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	Down count
	• When the timer underflows, it reloads the reload register contents before continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	When the timer underflows
TAilN pin function	Programmable I/O port or gate input
TAiout pin function	Programmable I/O port or pulse output
Read from timer	Count value can be read out by reading timer Ai register
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload register and counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)
Select function	Gate function
	Counting can be started and stopped by the TAiIN pin's input signal
	Pulse output function
	Each time the timer underflows, the TAiOUT pin's polarity is reversed

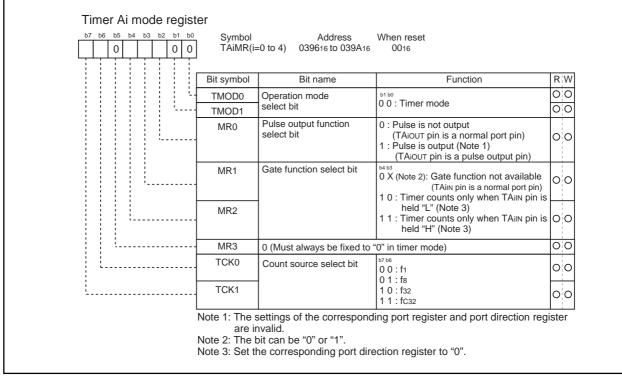


Figure 1.16.6. Timer Ai mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. Timers A0 and A1 can count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase external signal. Table 1.16.2 lists timer specifications when counting a single-phase external signal. Figure 1.16.7 shows the timer Ai mode register in event counter mode.

Table 1.16.3 lists timer specifications when counting a two-phase external signal. Figure 1.16.8 shows the timer Ai mode register in event counter mode.

Item	Specification
Count source	 External signals input to TAin pin (effective edge can be selected by software)
	 TB2 overflow, TAj overflow
Count operation	Up count or down count can be selected by external signal or software
	• When the timer overflows or underflows, it reloads the reload register con
	tents before continuing counting (Note)
Divide ratio	1/ (FFFF16 - n + 1) for up count
	1/ (n + 1) for down count n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer overflows or underflows
TAilN pin function	Programmable I/O port or count source input
TAIOUT pin function	Programmable I/O port, pulse output, or up/down count select input
Read from timer	Count value can be read out by reading timer Ai register
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload register and counter
	 When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)
Select function	Free-run count function
	Even when the timer overflows or underflows, the reload register content is not reloaded to it
	Pulse output function
	Each time the timer overflows or underflows, the TAiOUT pin's polarity is reversed

	-			
Table 1.16.2.	Timer specifications in event	t counter mode (when not	processing two-phase	pulse signal)

Note: This does not apply when the free-run function is selected.

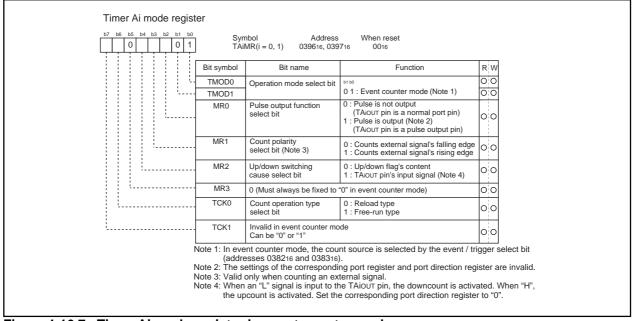


Figure 1.16.7. Timer Ai mode register in event counter mode

Table 1.16.3. Timer specifications in event counter mode (when processing two-phase pulsesignal with timers A2, A3, and A4)

Item	Specification			
Count source	Two-phase pulse signals input to TAiιN or TAiO∪T pin			
Count operation	• Up count or down count can be selected by two-phase pulse signal			
	• When the timer overflows or underflows, the reload register content is			
	reloaded and the timer starts over again (Note)			
Divide ratio	1/ (FFFF16 - n + 1) for up count			
	1/ (n + 1) for down count n : Set value			
Count start condition	Count start flag is set (= 1)			
Count stop condition	Count start flag is reset (= 0)			
Interrupt request generation timing	Timer overflows or underflows			
TAilN pin function	Two-phase pulse input			
TAiout pin function	Two-phase pulse input			
Read from timer	Count value can be read out by reading timer A2, A3, or A4 register			
Write to timer	When counting stopped			
	When a value is written to timer A2, A3, or A4 register, it is written to both			
	reload register and counter			
	When counting in progress			
	When a value is written to timer A2, A3, or A4 register, it is written to only			
	reload register. (Transferred to counter at next reload time.)			
Select function	Normal processing operation			
Select function	The timer counts up rising edges or counts down falling edges on the TAiN			
	pin when input signal on the TAiOUT pin is "H"			
	(I=2,3) Up Up Up Down Down Down count count count count count count			
	Multiply-by-4 processing operation			
	If the phase relationship is such that the TAilN pin goes "H" when the input			
	signal on the TAiOUT pin is "H", the timer counts up rising and falling edges			
	on the TAioUT and TAiN pins. If the phase relationship is such that the			
	TAIN pin goes "L" when the input signal on the TAIOUT pin is "H", the timer			
	counts down rising and falling edges on the TAIOUT and TAIN pins.			
	counts down insing and failing edges on the TAIOUT and TAIN pins.			
	Count up all edges Count down all edges			
	Count up all edges Count down all edges			
Note: This does not apply y	when the free-run function is selected.			

Note: This does not apply when the free-run function is selected.

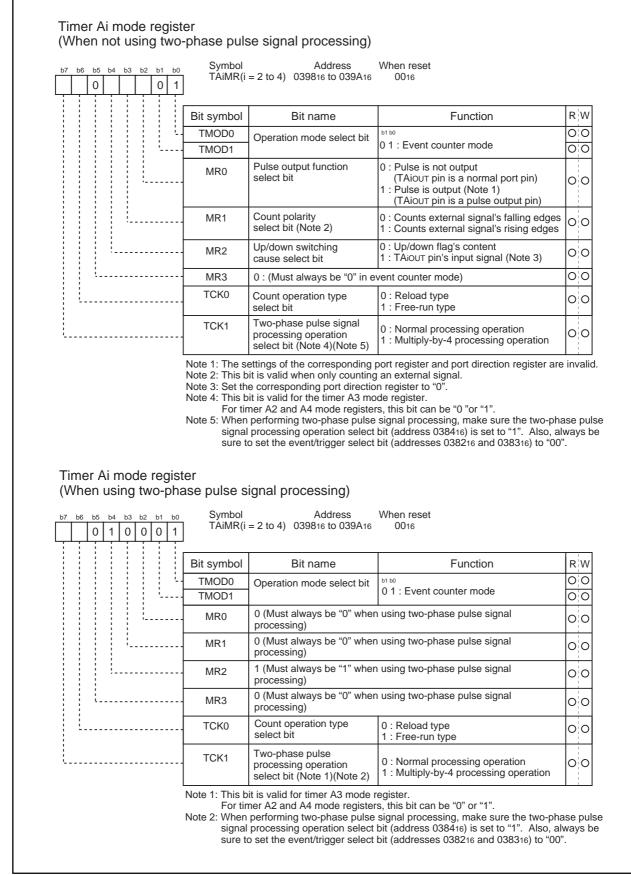


Figure 1.16.8. Timer Ai mode register in event counter mode

(3) One-shot timer mode

In this mode, the timer operates only once. (See Table 1.16.4.) When a trigger occurs, the timer starts up and continues operating for a given period. Figure 1.16.9 shows the timer Ai mode register in one-shot timer mode.

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	The timer counts down
	• When the count reaches 000016, the timer stops counting after reloading a new count
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	1/n n : Set value
Count start condition	An external trigger is input
	The timer overflows
	• The one-shot start flag is set (= 1)
Count stop condition	 A new count is reloaded after the count has reached 000016
	• The count start flag is reset (= 0)
Interrupt request generation timing	The count reaches 000016
TAilN pin function	Programmable I/O port or trigger input
TAio∪⊤ pin function	Programmable I/O port or pulse output
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload
	register and counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)

 Table 1.16.4.
 Timer specifications in one-shot timer mode

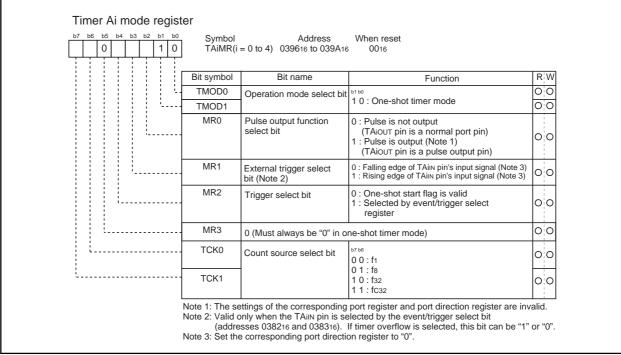


Figure 1.16.9. Timer Ai mode register in one-shot timer mode

(4) Pulse width modulation (PWM) mode

In this mode, the timer outputs pulses of a given width in succession. (See Table 1.16.5.) In this mode, the counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 1.16.10 shows the configuration of the timer Ai mode register in pulse width modulation mode. Figure 1.16.11 shows an example of how a 16-bit pulse width modulator operates. Figure 1.16.12 shows an example of how an 8-bit pulse width modulator operates.

Table 1.16.5. Timer specifications in pulse width modulation mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	• The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)
	• The timer reloads a new count at a rising edge of PWM pulse and continues counting
	 The timer is not affected by a trigger that occurs when counting
16-bit PWM	High level width n / fi n : Set value
	Cycle time (2 ¹⁶ - 1) / fi fixed
8-bit PWM	• High level width n X (m+1) / fi n: values set to timer Ai register's high-order address
	• Cycle time (2 ⁸ - 1) X (m +1) / fim : values set to timer Ai register's low-order address
Count start condition	External trigger is input
	The timer overflows
	 The count start flag is set (= 1)
Count stop condition	• The count start flag is reset (= 0)
Interrupt request generation timing	PWM pulse goes "L"
TAilN pin function	Programmable I/O port or trigger input
TAiout pin function	Pulse output
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload
	register and counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)

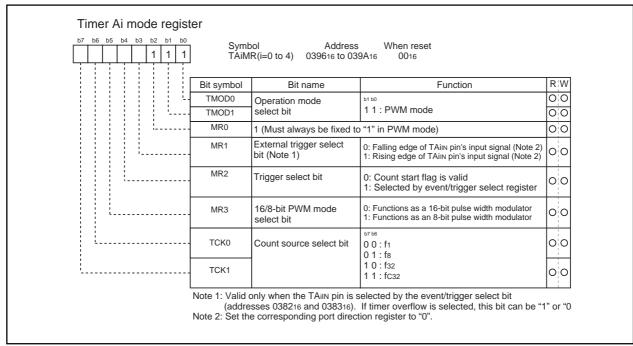


Figure 1.16.10. Configuration of timer Ai mode register in pulse width modulation mode

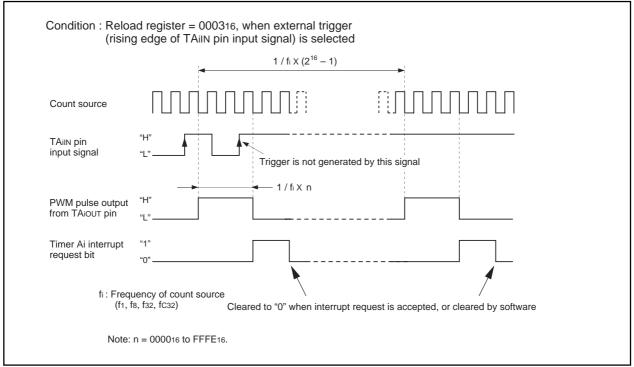


Figure 1.16.11. Example of how a 16-bit pulse width modulator operates

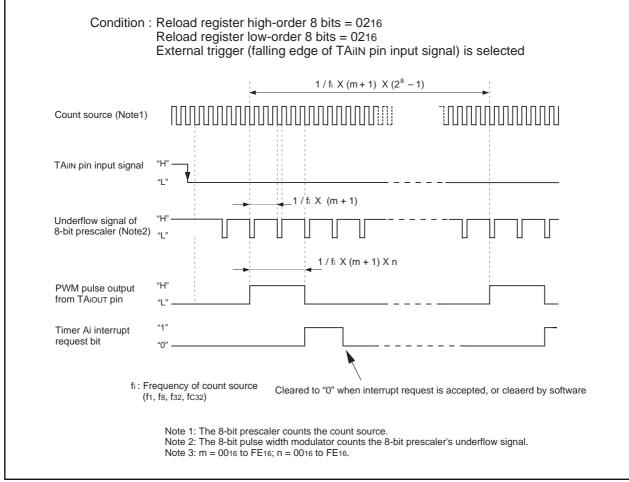


Figure 1.16.12. Example of how an 8-bit pulse width modulator operates

Timer B

Figure 1.16.13 shows the block diagram of timer B. Figures 1.16.14 and 1.16.15 show the timer B-related registers.

Use the timer Bi mode register (i = 0 to 2) bits 0 and 1 to choose the desired mode.

Timer B has three operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer overflow.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

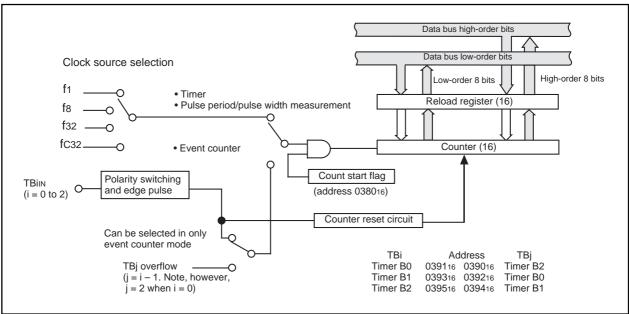


Figure 1.16.13. Block diagram of timer B

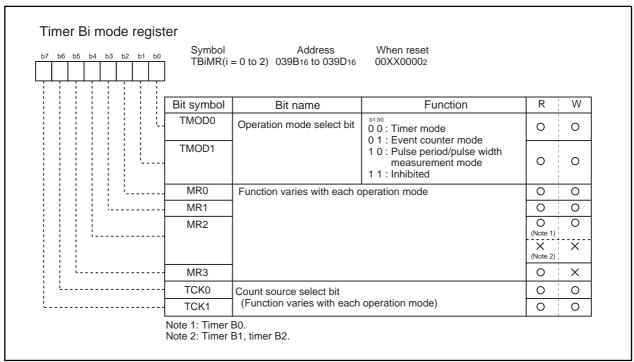


Figure 1.16.14. Timer B-related registers (1)

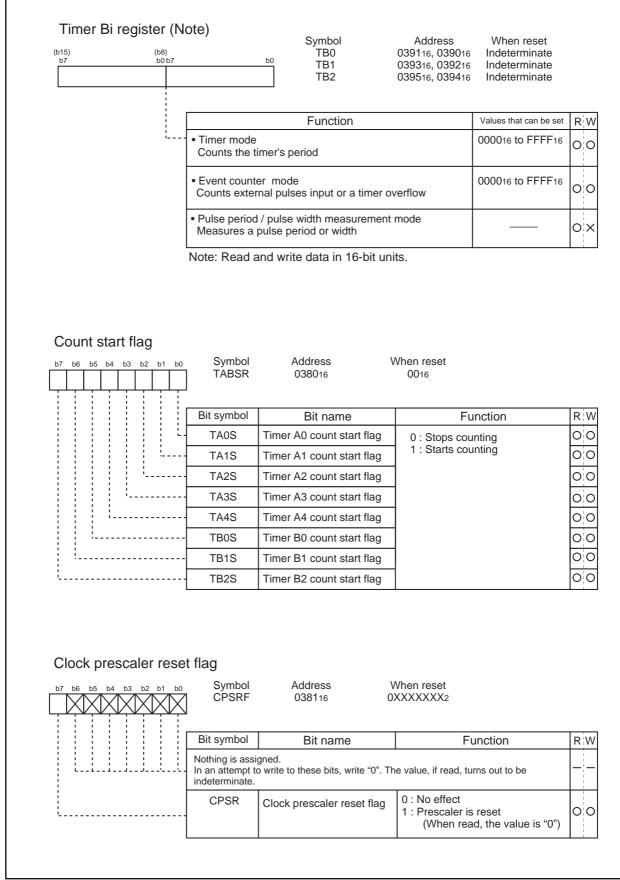


Figure 1.16.15. Timer B-related registers (2)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 1.16.6.) Figure 1.16.16 shows the timer Bi mode register in timer mode.

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	Counts down
	When the timer underflows, it reloads the reload register contents before
	continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBilN pin function	Programmable I/O port
Read from timer	Count value is read out by reading timer Bi register
Write to timer	When counting stopped
	When a value is written to timer Bi register, it is written to both reload register and counter
	When counting in progress
	When a value is written to timer Bi register, it is written to only reload register
	(Transferred to counter at next reload time)

Table 1.16.6.	Timer specifications in timer mode
---------------	------------------------------------

7 b6 b5 b4 b3 b2 b1 b0 I I I I I 0 0	Symbol TBiMR(i=	Address =0 to 2) 039B16 to 039D16	When reset 00XX00002		
	Bit symbol	Bit name	Function	R	W
	TMOD0	Operation mode select bit	0 0 : Timer mode	0	0
· · · · · · · · ·	TMOD1			0	0
	MR0	Invalid in timer mode		0	0
· · · · · · · · · · · · · · · · · · ·	MR1	MR1 Can be "0" or "1"		0	0
	MR2	0 (Fixed to "0" in timer mod	e ; i = 0)	O (Note 1)	0
		Nothing is assiigned (i = 1,2). In an attempt to write to this bit to be indeterminate.	, write "0" . The value, if read, turns out	X (Note 2)	×
	MR3	Invalid in timer mode. In an attempt to write to this timer mode, turns out to be	s bit, write "0" . The value, if read in indeterminate.	0	×
· · · · · · · · · · · · · · · · · · ·	TCK0	Count source select bit	b7 b6 0 0 : f1 0 1 : f8	0	0
	TCK1		1 0 : f32 1 1 : fC32	0	0

Figure 1.16.16. Timer Bi mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.16.7.) Figure 1.16.17 shows the timer Bi mode register in event counter mode.

Item	Specification
Count source	• External signals input to TBin pin
	• Effective edge of count source can be a rising edge, a falling edge, or falling
	and rising edges as selected by software
Count operation	Counts down
	• When the timer underflows, it reloads the reload register contents before
	continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBiin pin function	Count source input
Read from timer	Count value can be read out by reading timer Bi register
Write to timer	When counting stopped
	When a value is written to timer Bi register, it is written to both reload register and counter
	When counting in progress
	When a value is written to timer Bi register, it is written to only reload register
	(Transferred to counter at next reload time)

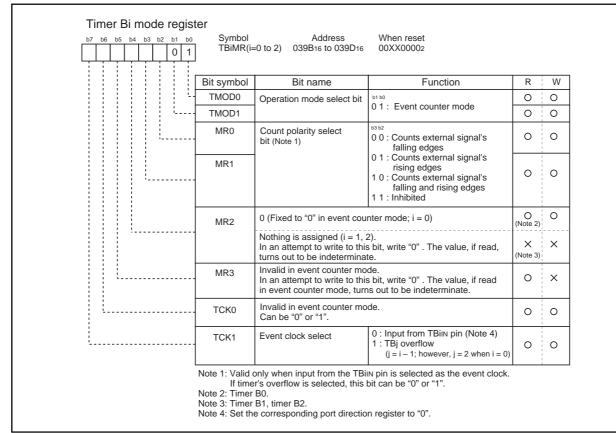


Figure 1.16.17. Timer Bi mode register in event counter mode

(3) Pulse period/pulse width measurement mode

In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.16.8.) Figure 1.16.18 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure 1.16.19 shows the operation timing when measuring a pulse period. Figure 1.16.20 shows the operation timing when measuring a pulse period.

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	Up count
	Counter value "000016" is transferred to reload register at measurement
	pulse's effective edge and the timer continues counting
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	When measurement pulse's effective edge is input (Note 1)
	When an overflow occurs. (Simultaneously, the timer Bi overflow flag
	changes to "1". The timer Bi overflow flag changes to "0" when the count
	start flag is "1" and a value is written to the timer Bi mode register.)
TBilN pin function	Measurement pulse input
Read from timer	When timer Bi register is read, it indicates the reload register's content
	(measurement result) (Note 2)
Write to timer	Cannot be written to

Table 1.16.8.	Timer specifications in pulse period/pulse width measurement mode
---------------	---

Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.

Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.



Figure 1.16.18. Timer Bi mode register in pulse period/pulse width measurement mode

When measur	ing measurement pulse time interval from falling edge to falling edge
Count source	ບບບັບບບບບັບບບບບບບບບບບບບບບບບບບ
Measurement pulse	"H" "L" Transfer (indeterminate value) (measured value)
Reload register ← cou transfer timing	Inter
Timing at which counter reaches "000016"	er
Count start flag	"1" "0"
Timer Bi interrupt request bit	"1" "0"
Timer Bi overflow flag	Cleared to "0" when interrupt request is accepted, or cleared by software. "1" "0"
	er is initialized at completion of measurement. has overflowed.

Figure 1.16.19. Operation timing when measuring a pulse period

Count source	
Measurement pulse	"H" "L" Transfer Transfer Transfer Transfer (indeterminate (measured value) (measured value)
Reload register ← coun transfer timing	ter
Timing at which counte reaches "000016"	r(Note 1)(Note 1)(Note 1)(Note 2)
Count start flag	"1" "0"
Timer Bi interrupt request bit	"1" "0"
Timer Bi overflow flag	"1" Cleared to "0" when interrupt request is accepted, or cleared by software.
Note 1: Counter is Note 2: Timer has	initialized at completion of measurement.

Figure 1.16.20. Operation timing when measuring a pulse width

Serial I/O

Serial I/O is configured as three channels: UART0, UART1 and UART2. UART0, UART1 and UART2 each have an exclusive timer to generate a transfer clock, so they operate independently of each other.

Figure 1.17.1 shows the block diagram of UART0, UART1 and UART2. Figure 1.17.2 and figure 1.17.3 show the block diagram of the transmit/receive unit.

UARTi (i = 0 to 2) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses 03A016, 03A816 and 037816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART.

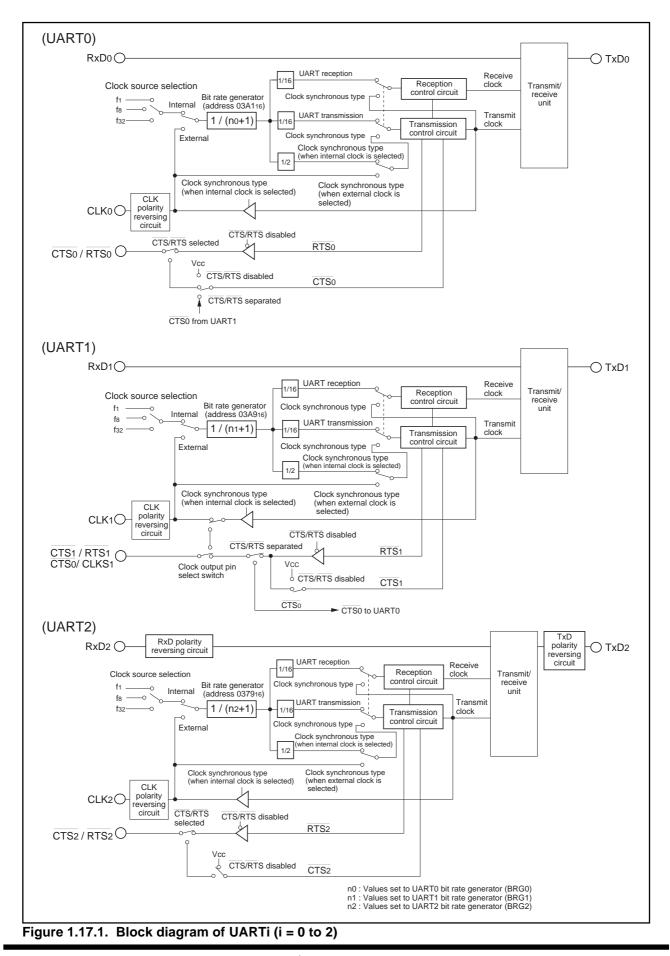
UART0 through UART2 are almost equal in their functions with minor exceptions. UART2, in particular, is compliant with the SIM interface with some extra settings added in clock-asynchronous serial I/O mode (Note). It also has the bus collision detection function that generates an interrupt request if the TxD pin and the RxD pin are different in level.

Note: SIM : Subscriber Identity Module

Table 1.17.1 shows the comparison of functions of UART0 through UART2, and Figures 1.17.4 through 1.17.8 show the registers related to UARTi.

Function	UAF	RT0	UA	RT1	UA	RT2
CLK polarity selection	Possible	(Note 1)	Possible	(Note 1)	Possible	(Note 1)
LSB first / MSB first selection	Possible	(Note 1)	Possible	(Note 1)	Possible	(Note 2)
Continuous receive mode selection	Possible	(Note 1)	Possible	(Note 1)	Possible	(Note 1)
Transfer clock output from multiple pins selection	Impossible		Possible	(Note 1)	Impossible	,
Separate CTS/RTS pins	Possible		Impossible	e	Impossible)
Serial data logic switch	Impossible		Impossible	е	Possible	(Note 4)
Sleep mode selection	Possible	(Note 3)	Possible	(Note 3)	Impossible	;
TxD, RxD I/O polarity switch	Impossible		Impossible	е	Possible	
TxD, RxD port output format	CMOS out	put	CMOS ou	tput	N-channel output	open-drain
Parity error signal output	Impossible		Impossible	е	Possible	(Note 4)
Bus collision detection	Impossible		Impossible	e	Possible	

Table 1.17.1. Comparison of functions of UART0 through UART2


Note 1: Only when clock synchronous serial I/O mode.

Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode.

Note 3: Only when UART mode.

Note 4: Using for SIM interface.

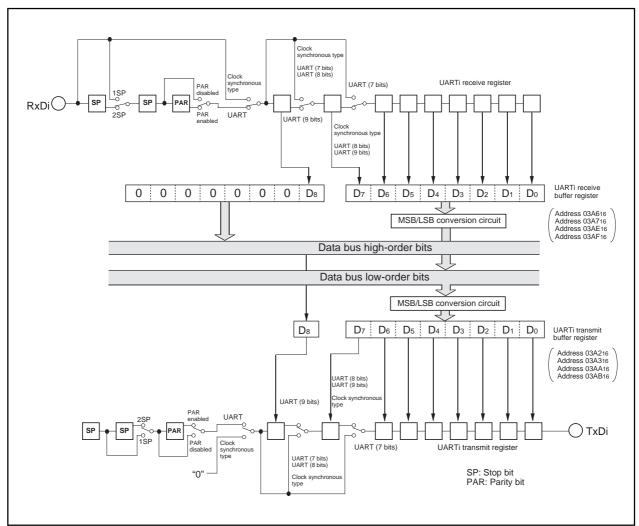


Figure 1.17.2. Block diagram of UARTi (i = 0, 1) transmit/receive unit

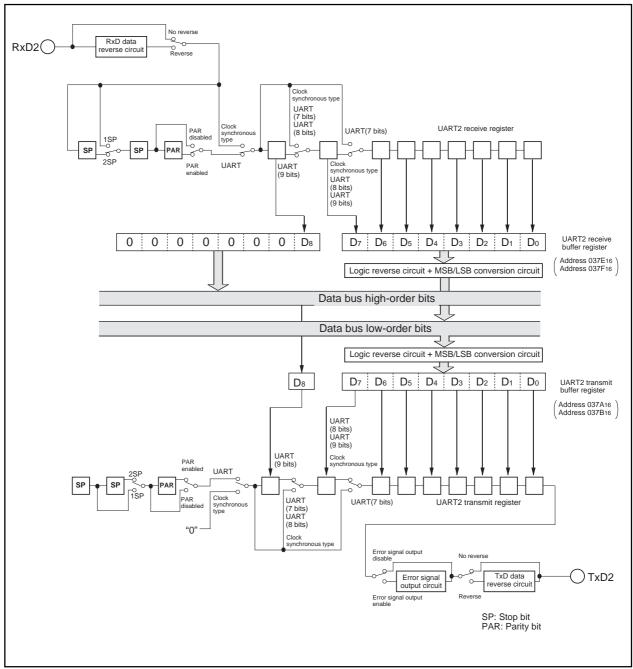
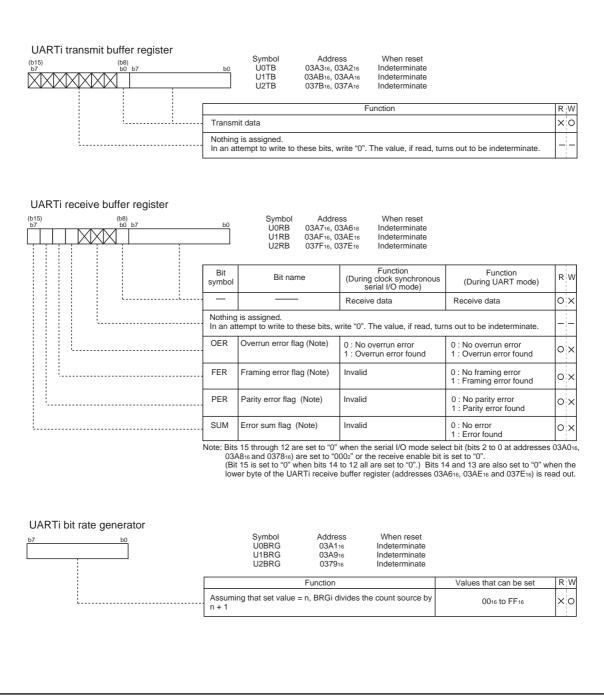
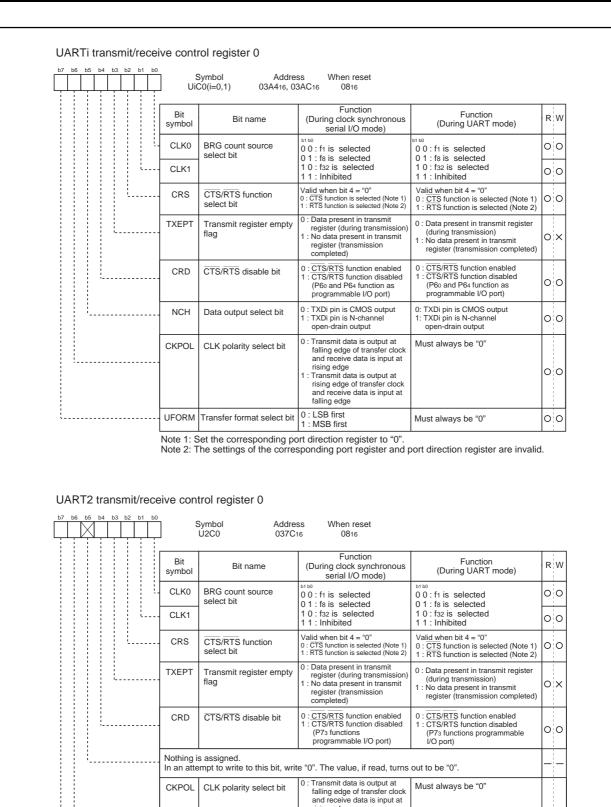


Figure 1.17.3. Block diagram of UART2 transmit/receive unit

Se查询//A30612M8A-XXXFP"供应商




Figure 1.17.4. Serial I/O-related registers (1)

06 b5 b4 b3 b2 b1 b0	Symbol Addre UiMR(i=0,1) 03A016, 0			
Bit symt	bl Bit name	Function (During clock synchronous serial I/O mode)	Function (During UART mode)	RW
L. SME	⁰ Serial I/O mode select bit	Must be fixed to 001	^{b2 b1 b0} 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long	00
SME		0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited	1 1 0 : Transfer data 9 bits long 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited	00
SMI	2		0 1 1 : Inhibited 1 1 1 : Inhibited	0
скр	R Internal/external clock select bit	0 : Internal clock 1 : External clock	0 : Internal clock 1 : External clock	00
STF	Stop bit length select bit	Invalid	0 : One stop bit 1 : Two stop bits	0
PR'	Odd/even parity select bit	Invalid	Valid when bit 6 = "1" 0 : Odd parity 1 : Even parity	00
PRY	E Parity enable bit	Invalid	0 : Parity disabled 1 : Parity enabled	0
				+
RT2 transmit/receive n			0 : Sleep mode deselected 1 : Sleep mode selected	00
RT2 transmit/receive n	node register Symbol Addre	ss When reset 6 0016		
RT2 transmit/receive n	ode register Symbol Addre U2MR 0378	ss When reset	1 : Sleep mode selected Function (During UART mode)	
RT2 transmit/receive n	ode register Symbol Addre U2MR 0378 Bit name D Serial I/O mode select bit	SS When reset 16 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001 b20100	1 : Sleep mode selected	R
RT2 transmit/receive n	ode register Symbol Addre U2MR 0378 Bit name D Serial I/O mode select bit	ss When reset 6 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001	Function (During UART mode) 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 0 0 : Serial I/O invalid	R
RT2 transmit/receive n	ode register Symbol Addre U2MR 0378 Bit name D Serial I/O mode select bit	SS When reset 16 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001 b2b1b0 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited	Function (During UART mode) b2 b1 b0 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long	R
RT2 transmit/receive n	ode register Symbol Addre U2MR 0378 DI Bit name D Serial I/O mode select bit 1 2	SS When reset 16 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001 b2b1 b0 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited	Function (During UART mode) b2 b1 b0 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 0 : Serial I/O invalid 0 1 0 : Inhibited	R 0 0
RT2 transmit/receive n	Inode register Symbol Addre U2MR 0378- DI Bit name DI Serial I/O mode select bit 1	SS When reset 16 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001 b2b1 b0 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited 0 : Internal clock	Function (During UART mode) b2 b1 b0 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited	R 0 0
RT2 transmit/receive n	Inode register Symbol Addre U2MR 0378- Di Bit name Di Serial I/O mode select bit 1 Internal/external clock select bit 2 Stop bit length select bit	SS When reset 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001 ^{b2b1 b0} 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited 0 : Internal clock 1 : External clock Invalid	Function (During UART mode) b2 b1 b0 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited 1 1 1 : Inhibited 0 1 0 : One stop bit	R 1 0 0 0 0
RT2 transmit/receive n	Incode register Symbol Addre U2MR 0378- DI Bit name DI Serial I/O mode select bit 1 2 R Internal/external clock select bit Stop bit length select bit Odd/even parity select bit	SS When reset 0016 Function (During clock synchronous serial I/O mode) Must be fixed to 001 ^{b2b1 b0} 0 0 0 : Serial I/O invalid 0 1 0 : Inhibited 0 1 1 : Inhibited 1 1 1 : Inhibited 0 : Internal clock 1 : External clock Invalid	Function (During UART mode) b2b1b0 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 0 0 : Serial I/O invalid 0 1 0 : Inhibited 1 1 1 : Inhibited 1 1 1 : Inhibited Must always be "0" 0 : One stop bit 1 : Two stop bits Valid when bit 6 = "1" 0 : Odd parity	R \\ 0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (

Figure 1.17.5. Serial I/O-related registers (2)

Transfer format select bit

Note 1: Set the corresponding port direction register to "0"

(Note 3)

UFORM

Figure 1.17.6. Serial I/O-related registers (3)

rising edge

0 : LSB first

1 : MSB first

 Transmit data is output at rising edge of transfer clock and receive data is input at falling edge

Note 2: The settings of the corresponding port register and port direction register are invalid. Note 3: Only clock synchronous serial I/O mode and 8-bit UART mode are valid.

0 : LSB first

1 : MSB first

00

00

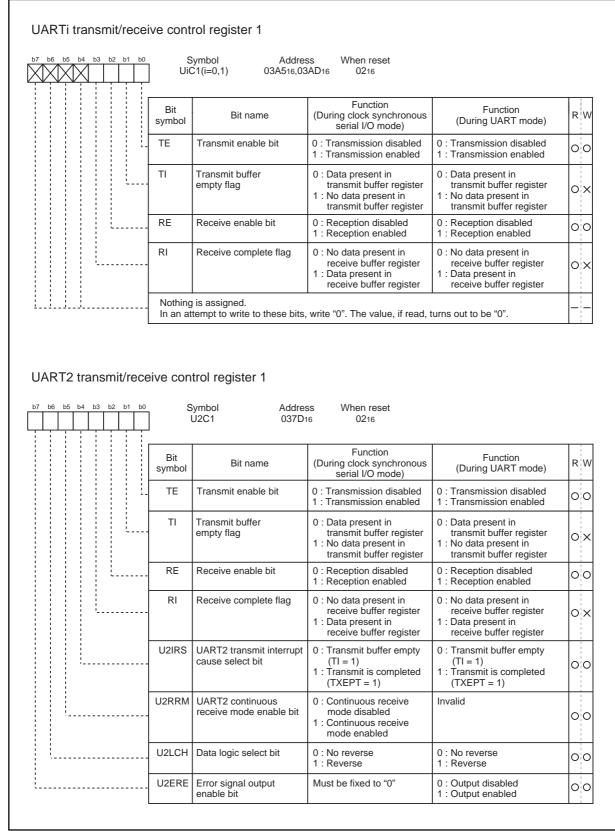


Figure 1.17.7. Serial I/O-related registers (4)

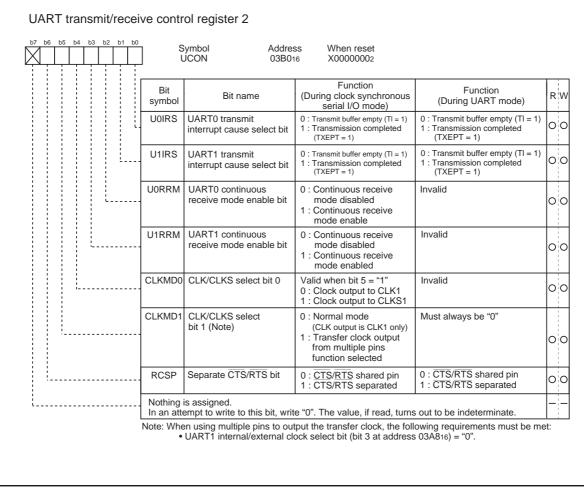


Figure 1.17.8. Serial I/O-related registers (5)

(1) Clock synchronous serial I/O mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 1.17.2 and table 1.17.3 list the specifications of the clock synchronous serial I/O mode. Figure 1.17.9 shows the UARTi transmit/receive mode register.

ltem	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816
	= "0") : fi/ 2(n+1) (Note 1) fi = f1, f8, f32
	• When external clock is selected (bit 3 at addresses 03A016, 03A816, 037816
	= "1") : Input from CLKi pin
Transmission/reception control	 CTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	 To start transmission, the following requirements must be met:
	 Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1"
	 Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0"
	– When $\overline{\text{CTS}}$ function selected, $\overline{\text{CTS}}$ input level = "L"
	• Furthermore, if external clock is selected, the following requirements must also be met:
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "0":
	CLKi input level = "H"
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1":
	CLKi input level = "L"
Reception start condition	 To start reception, the following requirements must be met:
	– Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1"
	 Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1"
	 Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0"
	• Furthermore, if external clock is selected, the following requirements must
	also be met:
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "0":
	CLKi input level = "H"
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1":
	CLKi input level = "L"
Interrupt request	When transmitting
generation timing	 Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at
	address 037D16) = "0": Interrupts requested when data transfer from UARTi
	transfer buffer register to UARTi transmit register is completed
	 Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at
	address 037D16) = "1": Interrupts requested when data transmission from
	UARTi transfer register is completed
	When receiving
	- Interrupts requested when data transfer from UARTi receive register to
	UARTi receive buffer register is completed
Error detection	Overrun error (Note 2)
	This error occurs when the next data is ready before contents of UARTi
	receive buffer register are read out

 Table 1.17.2.
 Specifications of clock synchronous serial I/O mode (1)

Note 1: "n" denotes the value 0016 to FF16 that is set to the UART bit rate generator.

Note 2: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".

Item	Specification
Select function	CLK polarity selection
	Whether transmit data is output/input at the rising edge or falling edge of the
	transfer clock can be selected
	LSB first/MSB first selection
	Whether transmission/reception begins with bit 0 or bit 7 can be selected
	Continuous receive mode selection
	Reception is enabled simultaneously by a read from the receive buffer register
	Transfer clock output from multiple pins selection (UART1) (Note)
	UART1 transfer clock can be chosen by software to be output from one of
	the two pins set
	Separate CTS/RTS pins (UART0) (Note)
	UART0 CTS and RTS pins each can be assigned to separate pins
	Switching serial data logic (UART2)
	Whether to reverse data in writing to the transmission buffer register or
	reading the reception buffer register can be selected.
	• TxD, RxD I/O polarity reverse (UART2)
	This function is reversing TxD port output and RxD port input. All I/O data
	level is reversed.

Table 1.17.3. Specifications of clock synchronous serial I/O mode (2)

Note: The transfer clock output from multiple pins and the separate CTS/RTS pins functions cannot be selected simultaneously.

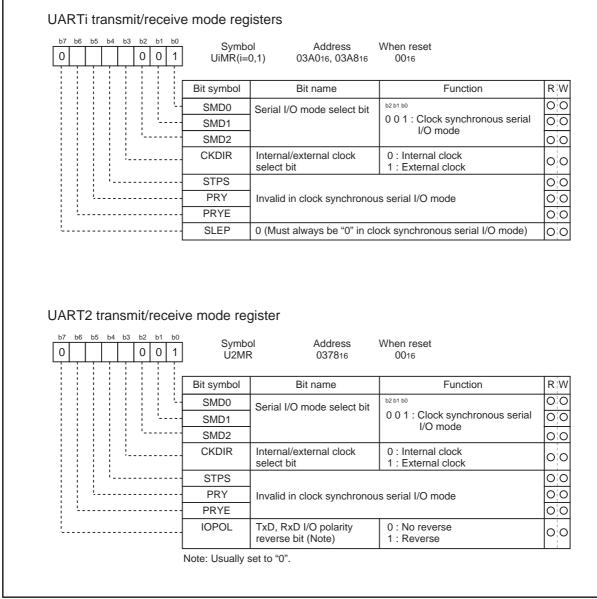


Figure 1.17.9. UARTi transmit/receive mode register in clock synchronous serial I/O mode

Table 1.17.4 lists the functions of the input/output pins during clock synchronous serial I/O mode. This table shows the pin functions when the transfer clock output from multiple pins and the separate \overline{CTS} / \overline{RTS} pins functions are <u>not selected</u>. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.)

Pin name	Function	Method of selection
TxDi (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= "0" (Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "0"
(P61, P65, P72)	Transfer clock input	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "1" Port P61, P65 and P72 direction register (bits 1 and 5 at address 03EE16, bit 2 at address 03EF16) = "0"
CTSi/RTSi (P60, P64, P73)	CTS input	$\frac{\overline{\text{CTS}/\text{RTS}}}{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "0" Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) = "0"
	RTS output	CTS/RTSdisable bit (bit 4 at address 03A416, 03AC16, 037C16) = "0"CTS/RTSfunction select bit (bit 2 at address 03A416, 03AC16, 037C16) = "1"
	Programmable I/O port	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "1"

Table 1.17.4.	Input/output pin functions in clock synchronous serial I/O mode
---------------	---

(when transfer clock output from multiple pins and separate CTS/RTS pins functions are not selected)

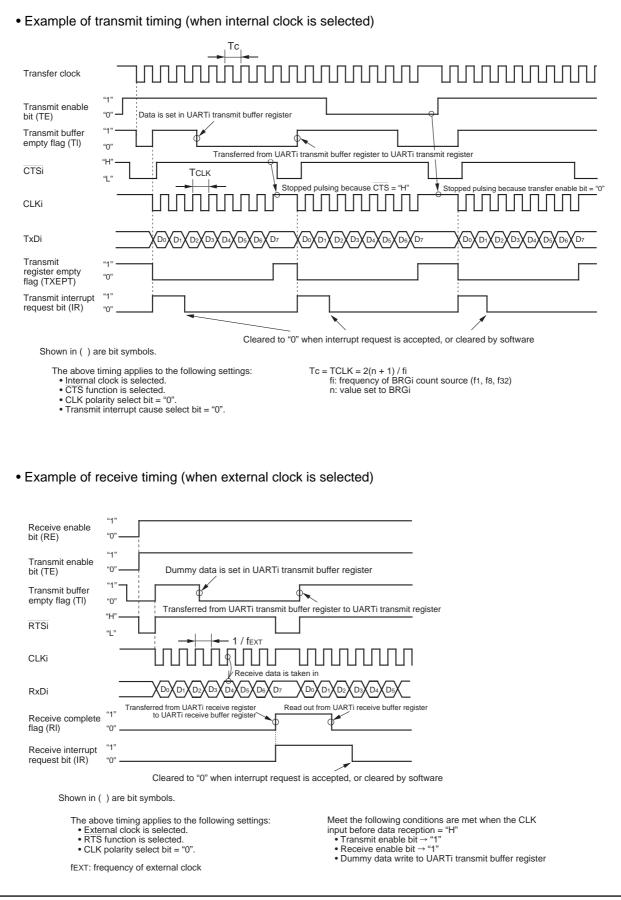


Figure 1.17.10. Typical transmit/receive timings in clock synchronous serial I/O mode

(a) Polarity select function

As shown in Figure 1.17.11, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) allows selection of the polarity of the transfer clock.

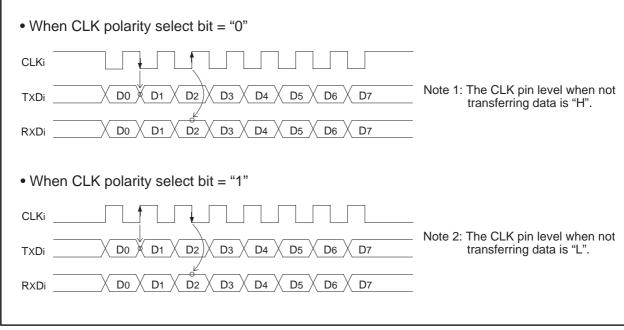
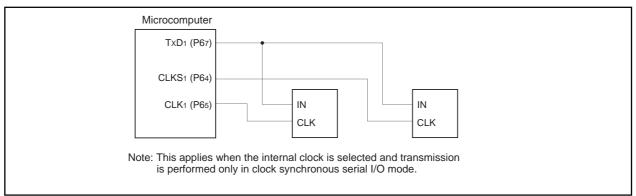
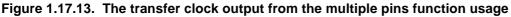


Figure 1.17.11. Polarity of transfer clock

(b) LSB first/MSB first select function


As shown in Figure 1.17.12, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16, 037C16) = "0", the transfer format is "LSB first"; when the bit = "1", the transfer format is "MSB first".


CLKi		
TXDi	D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7	➡ LSB first
RXDi	D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7	
CLKi	transfer format select bit = "1"	-
CLKi		-
TXDi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0	→ MSB first
·		-
RXDi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0	-

(c) Transfer clock output from multiple pins function (UART1)

This function allows the setting two transfer clock output pins and choosing one of the two to output a clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 1.17.13.) The multiple pins function is valid only when the internal clock is selected for UART1. Note that when this function is selected, UART1 CTS/RTS function cannot be used.

(d) Continuous receive mode

If the continuous receive mode enable bit (bits 2 and 3 at address 03B016, bit 5 at address 037D16) is set to "1", the unit is placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to the transmit buffer register back again.

(e) Separate CTS/RTS pins function (UART0)

This function works the same way as in the clock asynchronous serial I/O (UART) mode. The method of setting and the input/output pin functions are both the same, so refer to select function in the next section, "(2) Clock asynchronous serial I/O (UART) mode." Note that this function is <u>invalid</u> if the transfer clock output from the multiple pins function is selected.

(f) Serial data logic switch function (UART2)

When the data logic select bit (bit6 at address $037D_{16}$) = "1", and writing to transmit buffer register or reading from receive buffer register, data is reversed. Figure 1.17.14 shows the example of serial data logic switch timing.

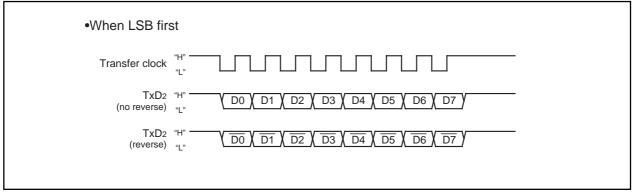


Figure 1.17.14. Serial data logic switch timing

(2) Clock asynchronous serial I/O (UART) mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Table 1.17.5 and table 1.17.6 list the specifications of the UART mode. Figure 1.17.15 shows the UARTi transmit/receive mode register.

Item	Specification
Transfer data format	 Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected
	Start bit: 1 bit
	 Parity bit: Odd, even, or nothing as selected
	 Stop bit: 1 bit or 2 bits as selected
Transfer clock	• When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = "0") :
	fi/16(n+1) (Note 1) fi = f1, f8, f32
	 When external clock is selected (bit 3 at addresses 03A016, 03A816 = "1"):
	fEXT/16(n+1) (Note 1) (Note 2) (Do not set external clock for UART2)
Transmission/reception control	 CTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	 To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0"
	- When $\overline{\text{CTS}}$ function selected, $\overline{\text{CTS}}$ input level = "L"
Reception start condition	 To start reception, the following requirements must be met:
	- Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1"
	- Start bit detection
Interrupt request	When transmitting
generation timing	- Transmit interrupt cause select bits (bits 0,1 at address 03B016, bit4 at
	address 037D16) = "0": Interrupts requested when data transfer from UARTi
	transfer buffer register to UARTi transmit register is completed
	- Transmit interrupt cause select bits (bits 0, 1 at address 03B016, bit4 at
	address 037D16) = "1": Interrupts requested when data transmission from
	UARTi transfer register is completed
	When receiving
	- Interrupts requested when data transfer from UARTi receive register to
	UARTi receive buffer register is completed
Error detection	Overrun error (Note 3)
	This error occurs when the next data is ready before contents of UARTi
	receive buffer register are read out
	• Framing error
	This error occurs when the number of stop bits set is not detected
	• Parity error
	This error occurs when if parity is enabled, the number of 1's in parity and
	character bits does not match the number of 1's set
	• Error sum flag
	This flag is set (= 1) when any of the overrun, framing, and parity errors is
	encountered

Table 1.17.5. Specifications of UART Mode (1)

Note 1: 'n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.

Note 2: fEXT is input from the CLKi pin.

Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".

Item	Specification
Select function	Separate CTS/RTS pins (UART0)
	UART0 $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ pins each can be assigned to separate pins
	 Sleep mode selection (UART0, UART1)
	This mode is used to transfer data to and from one of multiple slave micro-
	computers
	Serial data logic switch (UART2)
	This function is reversing logic value of transferring data. Start bit, parity bit
	and stop bit are not reversed.
	• TxD, RxD I/O polarity switch
	This function is reversing TxD port output and RxD port input. All I/O data
	level is reversed.

Table 1.17.6. Specifications of UART Mode (2)

b6 b5 b4 b3 b2 b1 b0	Symbo UiMR(i=0		When reset 0016
	Bit symbol	Bit name	Function
	SMD0	Serial I/O mode select bit	b2 b1 b0
	- SMD1		1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long
	SMD2		1 1 0 : Transfer data 9 bits long
· · · · ·		Internal / external clock select bit	0 : Internal clock 1 : External clock
	STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits
	PRY	Odd / even parity select bit	Valid when bit 6 = "1" 0 : Odd parity 1 : Even parity
, , ,	PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled
	SLEP	Sleep select bit	0 : Sleep mode deselected 1 : Sleep mode selected
T2 transmit / rece	eive mode r	egister	
T2 transmit / rece		Address	When reset 0016
b6 b5 b4 b3 b2 b1 b0	_ Symbo	Address	When reset
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR	Address 037816	When reset 0016 Function
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR Bit symbol SMD0 SMD1	Address 037816 Bit name	When reset 0016 Function 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR Bit symbol SMD0 SMD1 SMD2	Address 037816 Bit name Serial I/O mode select bit	When reset 0016 Function 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR Bit symbol SMD0 SMD1	Address 037816 Bit name	When reset 0016 Function 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR Bit symbol SMD0 SMD1 SMD2	Address 037816 Bit name Serial I/O mode select bit Internal / external clock	When reset 0016 Function 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR Bit symbol SMD0 SMD1 SMD2 CKDIR	Address 037816 Bit name Serial I/O mode select bit Internal / external clock select bit	When reset 0016 Function 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long Must always be "0" 0 : One stop bit
b6 b5 b4 b3 b2 b1 b0	Symbo U2MR Bit symbol SMD0 SMD1 SMD2 CKDIR STPS	Address 037816 Bit name Serial I/O mode select bit Internal / external clock select bit Stop bit length select bit Odd / even parity	When reset 0016 Function 1 0 0 : Transfer data 7 bits long 1 0 1 : Transfer data 8 bits long 1 1 0 : Transfer data 9 bits long Must always be "0" 0 : One stop bit 1 : Two stop bits Valid when bit 6 = "1" 0 : Odd parity

Table 1.17.7 lists the functions of the input/output pins during UART mode. This table shows the pin functions when the separate $\overline{\text{CTS}}/\overline{\text{RTS}}$ pins function is <u>not selected</u>. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.)

Table 1.17.7.	Input/output pin functions in UART mode
---------------	---

Pin name	Function	Method of selection
TxDi (P63, P67, P70)	Serial data output	
RxDi (P62, P66, P71)	Serial data input	Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= "0" (Can be used as an input port when performing transmission only)
CLKi (P61, P65, P72)	Programmable I/O port	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "0"
	Transfer clock input	Internal/external clock select bit (bit 3 at address 03A016, 03A816) = "1" Port P61, P65 direction register (bits 1 and 5 at address 03EE16) = "0" (Do not set external clock for UART2)
CTSi/RTSi (P60, P64, P73)	CTS input	$\frac{\overline{\text{CTS}}/\overline{\text{RTS}}}{\text{CTS}/\overline{\text{RTS}}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" $\overline{\text{CTS}}/\overline{\text{RTS}}$ function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "0" Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) = "0"
	RTS output	$\frac{\overline{\text{CTS}}/\overline{\text{RTS}}}{\overline{\text{CTS}}/\overline{\text{RTS}}}$ disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "0" $\overline{\text{CTS}}/\overline{\text{RTS}}$ function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "1"
	Programmable I/O port	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "1"

(when separate CTS/RTS pins function is not selected)

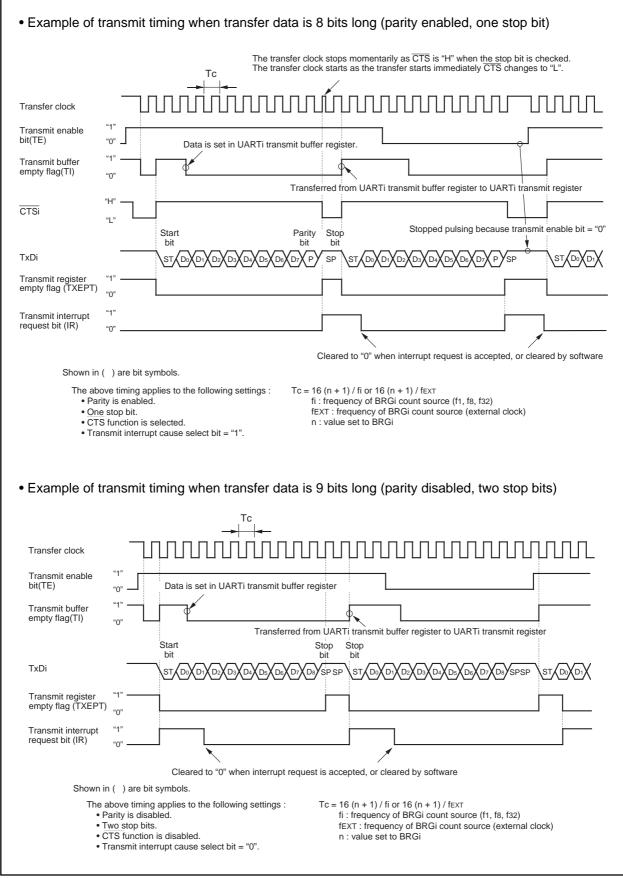


Figure 1.17.16. Typical transmit timings in UART mode (UART0, UART1)

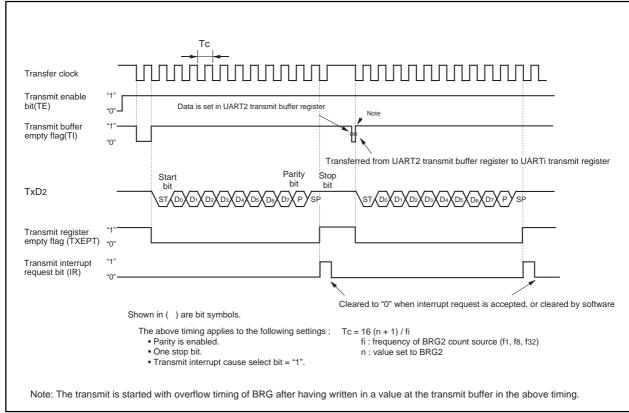


Figure 1.17.17. Typical transmit timings in UART mode (UART2)

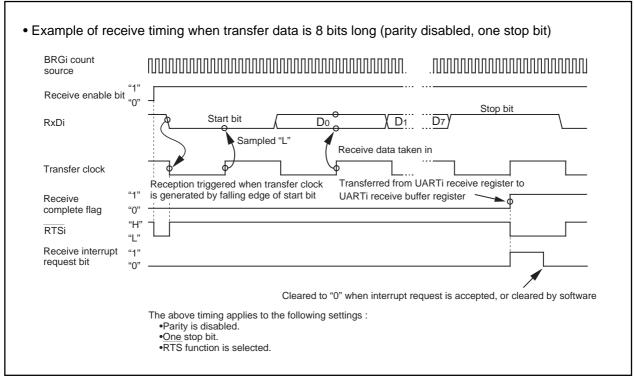


Figure 1.17.18. Typical receive timing in UART mode

(a) Separate CTS/RTS pins function (UART0)

Setting the $\overline{\text{CTS}/\text{RTS}}$ separate bit (bit 6 of address 03B016) to "1" inputs/outputs the $\overline{\text{CTS}}$ signal and $\overline{\text{RTS}}$ signal from different pins. Choose which to use, $\overline{\text{CTS}}$ or $\overline{\text{RTS}}$, by use of the $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 of address 03A416). This function is effective in UART0 only. With this function chosen, the user cannot use the $\overline{\text{CTS}/\text{RTS}}$ function. Set "0" both to the $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 of address 03AC16) and to the $\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 of address 03AC16).

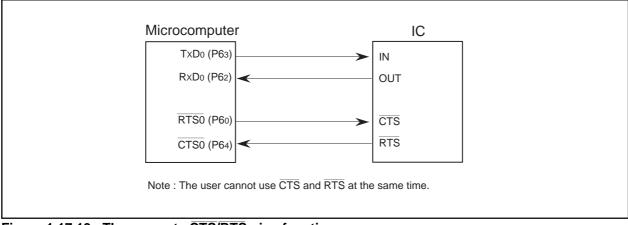


Figure 1.17.19. The separate CTS/RTS pins function usage

(b) Sleep mode (UART0, UART1)

This mode is used to transfer data between specific microcomputers among multiple microcomputers connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses 03A016, 03A816) is set to "1" during reception. In this mode, the unit performs receive operation when the MSB of the received data = "1" and does not perform receive operation when the MSB = "0".

(c) Function for switching serial data logic (UART2)

When the data logic select bit (bit 6 of address 037D16) is assigned 1, data is inverted in writing to the transmission buffer register or reading the reception buffer register. Figure 1.17.20 shows the example of timing for switching serial data logic.

• When LSB	first, parity enabled, one stop bit
Transfer clock	
TxD2 (no reverse)	"H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
TxD2 (reverse)	"H" <u>ST (D0) D1) D2) D3) D4) D5) D6) D7) P</u> SP
	ST : Start bit P : Even parity SP : Stop bit

Figure 1.17.20. Timing for switching serial data logic

(d) TxD, RxD I/O polarity reverse function (UART2)

This function is to reverse TxD pin output and RxD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) is reversed. Set this function to "0" (not to reverse) for usual use.

(e) Bus collision detection function (UART2)

This function is to sample the output level of the TxD pin and the input level of the RxD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 1.17.21 shows the example of detection timing of a buss collision (in UART mode).

Transfer clock	"H"			<u> </u>
TxD2	"H"	ST /		SP
RxD2	"H" ————	ST		SP
Bus collision detection interrupt request signal	"1" "0"		×/	
Bus collision detection interrupt request bit	"1" "0" ————————————————			 ST : Start bit SP : Stop bit

Figure 1.17.21. Detection timing of a bus collision (in UART mode)

(3) Clock-asynchronous serial I/O mode (compliant with the SIM interface)

The SIM interface is used for connecting the microcomputer with a memory card or the like; adding some extra settings in UART2 clock-asynchronous serial I/O mode allows the user to effect this function. Table 1.17.8 shows the specifications of clock-asynchronous serial I/O mode (compliant with the SIM interface).

Table 1.17.8.	Specifications of clock-as	which rohous serial I/O mode ((compliant with the SIM interface)
	opcontoutions of olook as	gnom onous seriar i, o moue	

Transfer data 8-bit UART mode (bit 2 through bit 0 of address 037816 = "1012") One stop bit (bit 4 of address 037816 = "0") With the direct format chosen Set parity to "even" (bit 5 and bit 6 of address 037816 = "1" and "1" respectively)
With the direct format chosen Set parity to "even" (bit 5 and bit 6 of address 037816 = "1" and "1" respectively)
Set parity to "even" (bit 5 and bit 6 of address 037816 = "1" and "1" respectively)
Set data logic to "direct" (bit 6 of address 037D16 = "0").
Set transfer format to LSB (bit 7 of address $037C_{16} = "0"$).
With the inverse format chosen
Set parity to "odd" (bit 5 and bit 6 of address 037816 = "0" and "1" respectively)
Set data logic to "inverse" (bit 6 of address 037D16 = "1")
Set transfer format to MSB (bit 7 of address 037C16 = "1")
With the internal clock chosen (bit 3 of address $037816 = "0"$): fi / 16 (n + 1) (Note 1): fi=f1, f8, f32
(Do not set external clock)
Disable the $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ function (bit 4 of address 037C16 = "1")
The sleep mode select function is not available for UART2
Set transmission interrupt factor to "transmission completed" (bit 4 of address 037D16 = "1")
To start transmission, the following requirements must be met:
- Transmit enable bit (bit 0 of address 037D16) = "1"
- Transmit buffer empty flag (bit 1 of address 037D16) = "0"
To start reception, the following requirements must be met:
- Reception enable bit (bit 2 of address 037D16) = "1"
- Detection of a start bit
When transmitting
When data transmission from the UART2 transfer register is completed
(bit 4 of address 037D16 = "1")
When receiving
When data transfer from the UART2 receive register to the UART2 receive
buffer register is completed
Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 3)
Framing error (see the specifications of clock-asynchronous serial I/O)
Parity error (see the specifications of clock-asynchronous serial I/O)
- On the reception side, an "L" level is output from the $TxD2$ pin by use of the parity error
signal output function (bit 7 of address 037D16 = "1") when a parity error is detected
- On the transmission side, a parity error is detected by the level of input to
the RxD2 pin when a transmission interrupt occurs
The error sum flag (see the specifications of clock-asynchronous serial I/O)

Note 1: 'n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.

Note 2: fEXT is input from the CLK2 pin.

Note 3: If an overrun error occurs, the UART2 receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".

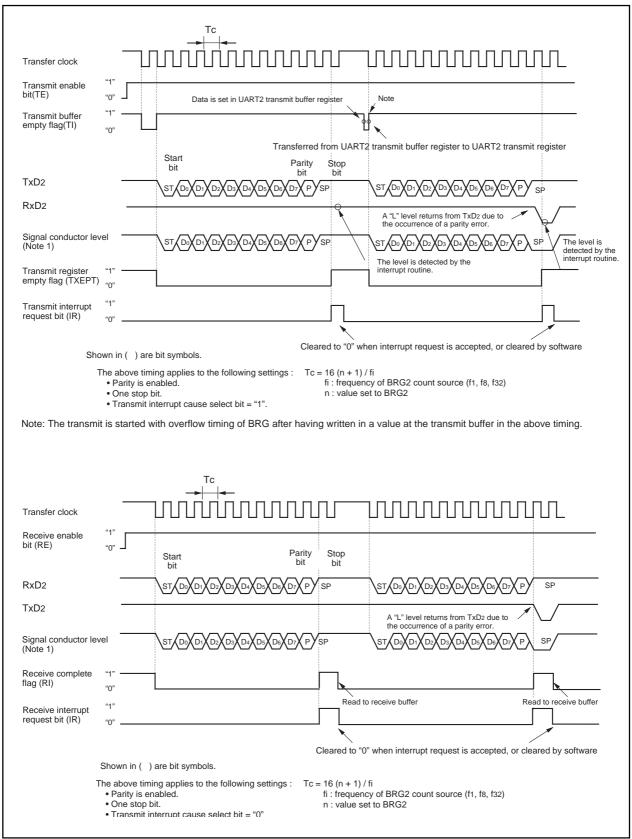


Figure 1.17.22. Typical transmit/receive timing in UART mode (compliant with the SIM interface)

(a) Function for outputting a parity error signal

With the error signal output enable bit (bit 7 of address 037D16) assigned "1", you can output an "L" level from the TxD2 pin when a parity error is detected. In step with this function, the generation timing of a transmission completion interrupt changes to the detection timing of a parity error signal. Figure 1.17.23 shows the output timing of the parity error signal.

• LSB first	
Transfer clock	
RxD2	"H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
TxD2	"H" Hi-Z
Receive complete flag	"1" "0"
	ST : Start bit P : Even Parity SP : Stop bit

Figure 1.17.23. Output timing of the parity error signal

(b) Direct format/inverse format

Connecting the SIM card allows you to switch between direct format and inverse format. If you choose the direct format, D0 data is output from TxD2. If you choose the inverse format, D7 data is inverted and output from TxD2.

Figure 1.17.24 shows the SIM interface format.

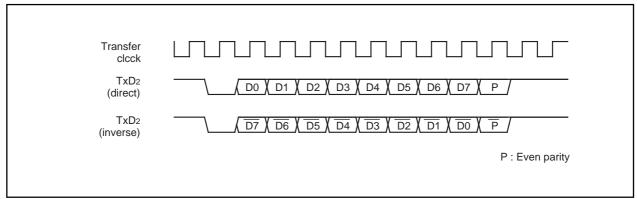


Figure 1.17.24. SIM interface format

Figure 1.17.25 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pullup.

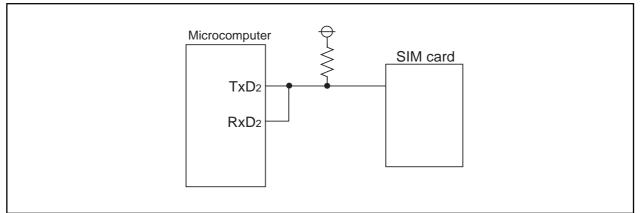


Figure 1.17.25. Connecting the SIM interface

A-D Converter

The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive coupling amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The direction registers of these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716) can be used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power dissipation. When using the A-D converter, start A-D conversion only after setting bit 5 of 03D716 to connect VREF. The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision, the low 8 bits are stored in the even addresses.

Table 1.18.1 shows the performance of the A-D converter. Figure 1.18.1 shows the block diagram of the A-D converter, and Figures 1.18.2 and 1.18.3 show the A-D converter-related registers.

Item	Performance		
Method of A-D conversion	Successive approximation (capacitive coupling amplifier)		
Analog input voltage (Note 1)	0V to AVcc (Vcc)		
Operating clock ϕ AD (Note 2)	2) $VCC = 5V$ fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)		
	VCC = 3V	divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)	
Resolution	8-bit or 10-bit (selectable)		
Absolute precision	VCC = 5V	Without sample and hold function	
		±3LSB	
		 With sample and hold function (8-bit resolution) 	
		±2LSB	
		 With sample and hold function (10-bit resolution) 	
		ANo to AN7 input : ±3LSB	
		ANEX0 and ANEX1 input (including mode in which external	
		operation amp is connected) : ±7LSB	
	Vcc = 3V	 Without sample and hold function (8-bit resolution) 	
		±2LSB	
Operating modes	One-shot m	ode, repeat mode, single sweep mode, repeat sweep mode 0,	
	and repeat s	sweep mode 1	
Analog input pins	8pins (ANo to AN7) + 2pins (ANEX0 and ANEX1)		
A-D conversion start condition	 Software tr 	igger	
	A-D conve	rsion starts when the A-D conversion start flag changes to "1"	
	 External tri 	gger (can be retriggered)	
	A-D conve	rsion starts when the A-D conversion start flag is "1" and the	
	ADTRG/P97	7 input changes from "H" to "L"	
Conversion speed per pin	 Without sa 	mple and hold function	
	8-bit resolu	ition: 49 φAD cycles, 10-bit resolution: 59 φAD cycles	
	With samp	le and hold function	
	8-bit recolu	ition: 28 φAD cycles, 10-bit resolution: 33 φAD cycles	

Table 1.18.1. Performance of A-D converter

Note 1: Does not depend on use of sample and hold function.

Note 2: Without sample and hold function, set the ϕ AD frequency to 250kHz min.

With the sample and hold function, set the ϕAD frequency to 1MHz min.

A-暨简PIW90642M8A-XXXFP"供应商

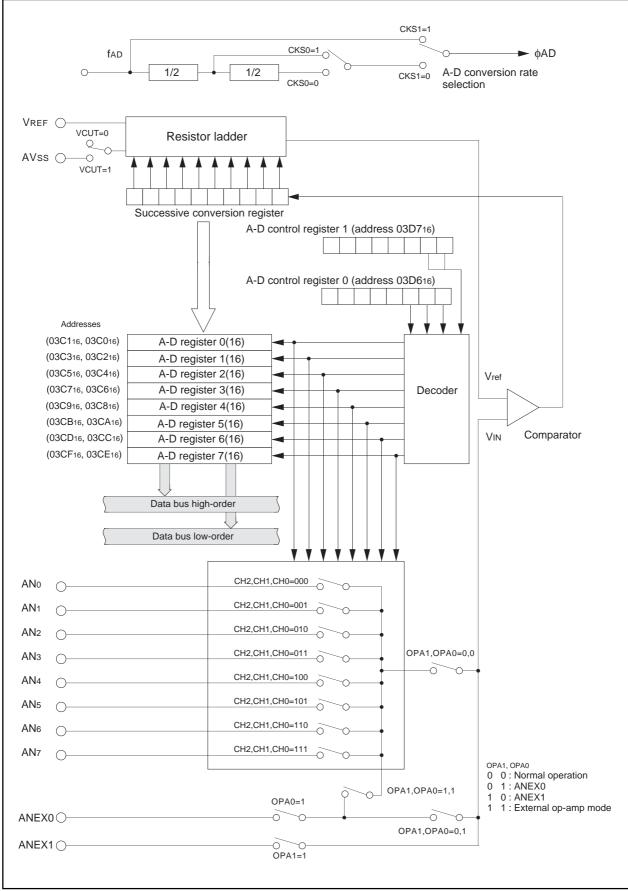
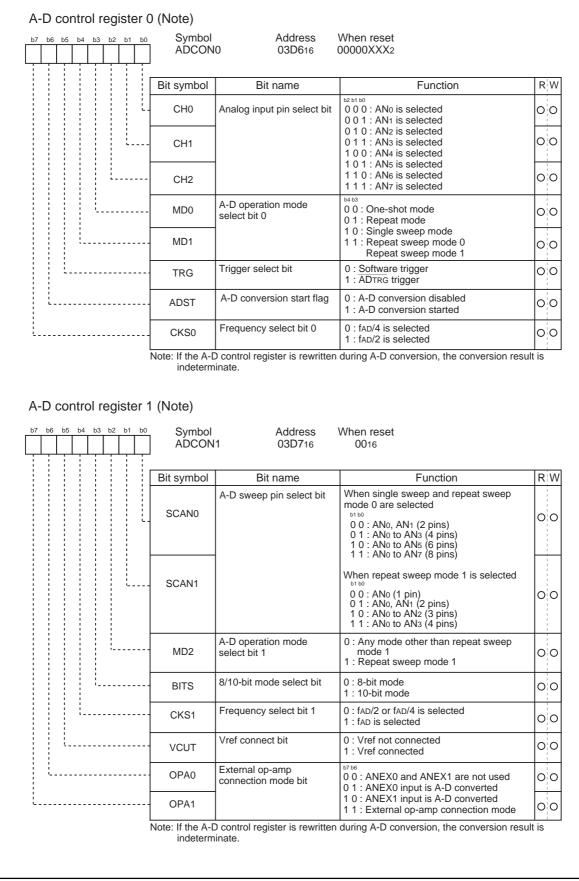
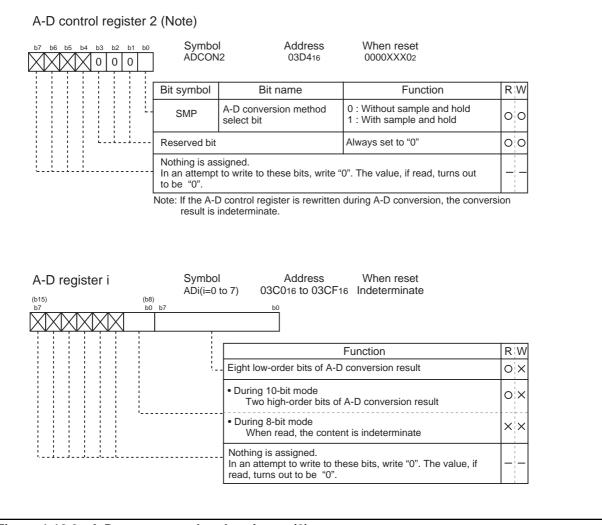
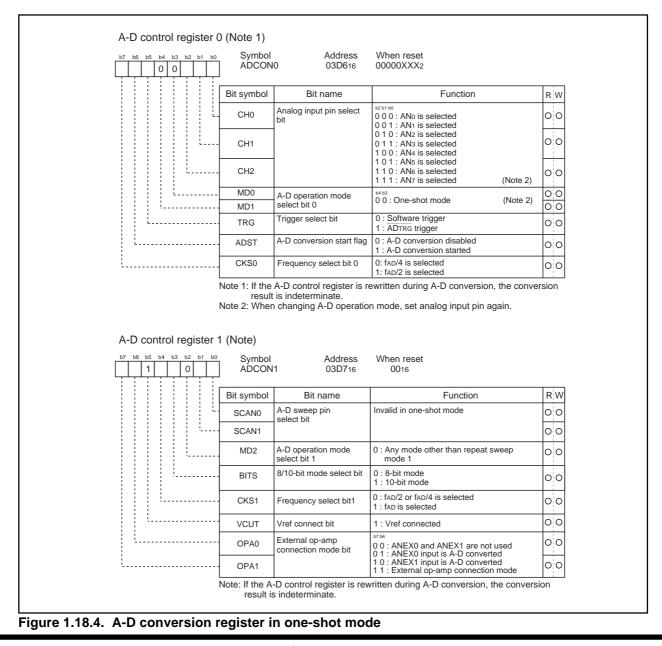



Figure 1.18.1. Block diagram of A-D converter




Figure 1.18.3. A-D converter-related registers (2)

(1) One-shot mode

In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 1.18.2 shows the specifications of one-shot mode. Figure 1.18.4 shows the A-D control register in one-shot mode.

Item	Specification
Function	The pin selected by the analog input pin select bit is used for one A-D conversion
Start condition	Writing "1" to A-D conversion start flag
Stop condition	• End of A-D conversion (A-D conversion start flag changes to "0", except
	when external trigger is selected)
	Writing "0" to A-D conversion start flag
Interrupt request generation timing	End of A-D conversion
Input pin	One of AN ₀ to AN ₇ , as selected
Reading of result of A-D converter	Read A-D register corresponding to selected pin

(2) Repeat mode

In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table 1.18.3 shows the specifications of repeat mode. Figure 1.18.5 shows the A-D control register in repeat mode.

Table 1.18.3.	Repeat mode	specifications
---------------	-------------	----------------

Item	Specification
Function	The pin selected by the analog input pin select bit is used for repeated A-D conversion
Star condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	One of AN ₀ to AN ₇ , as selected
Reading of result of A-D converter	Read A-D register corresponding to selected pin

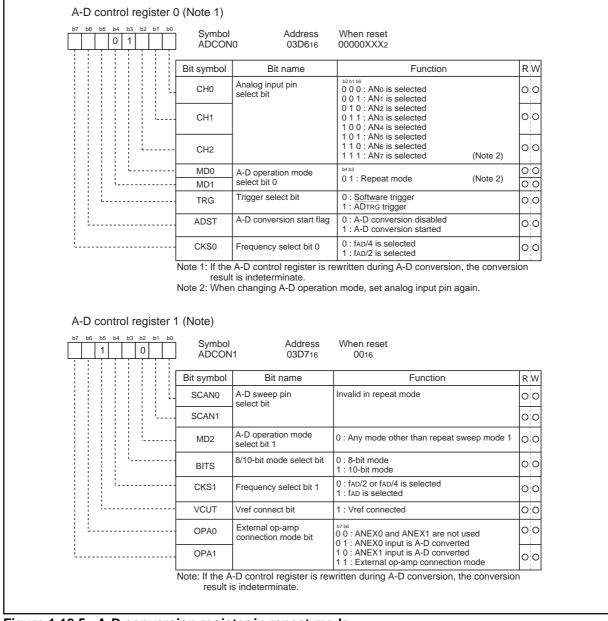
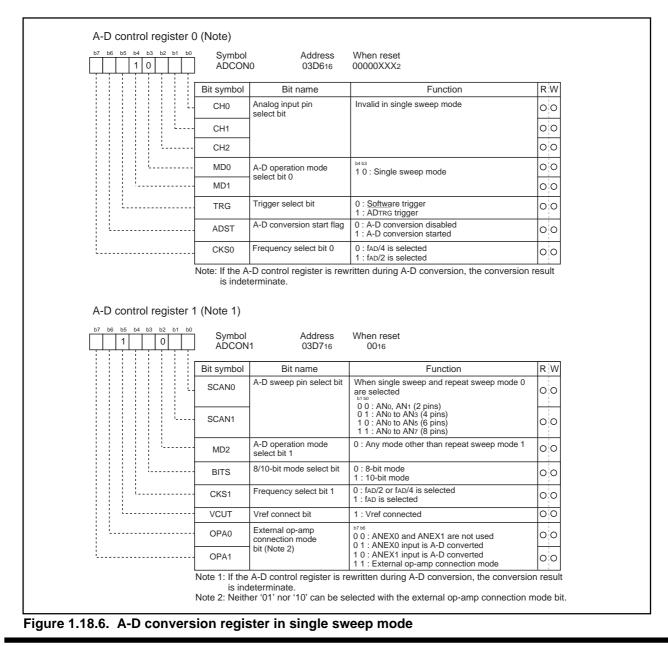


Figure 1.18.5. A-D conversion register in repeat mode



(3) Single sweep mode

In single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D conversion. Table 1.18.4 shows the specifications of single sweep mode. Figure 1.18.6 shows the A-D control register in single sweep mode.

Table 1.18.4. Single sweep mode specifications

Item	Specification
Function	The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion
Start condition	Writing "1" to A-D converter start flag
Stop condition	• End of A-D conversion (A-D conversion start flag changes to "0", except
	when external trigger is selected)
	Writing "0" to A-D conversion start flag
Interrupt request generation timing	End of A-D conversion
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7 (8 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin

(4) Repeat sweep mode 0

In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep A-D conversion. Table 1.18.5 shows the specifications of repeat sweep mode 0. Figure 1.18.7 shows the A-D control register in repeat sweep mode 0.

Table 1.18.5. Repeat sweep mode 0 specifications

ltem	Specification
Function	The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion
Start condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7 (8 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin (at any time)

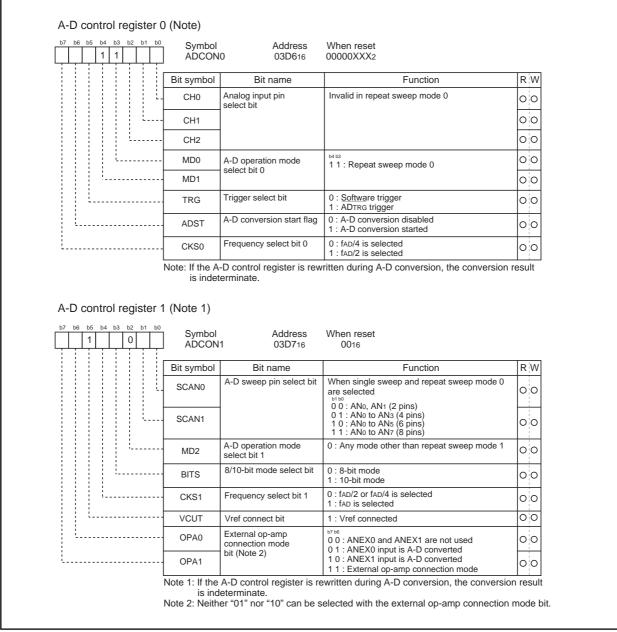
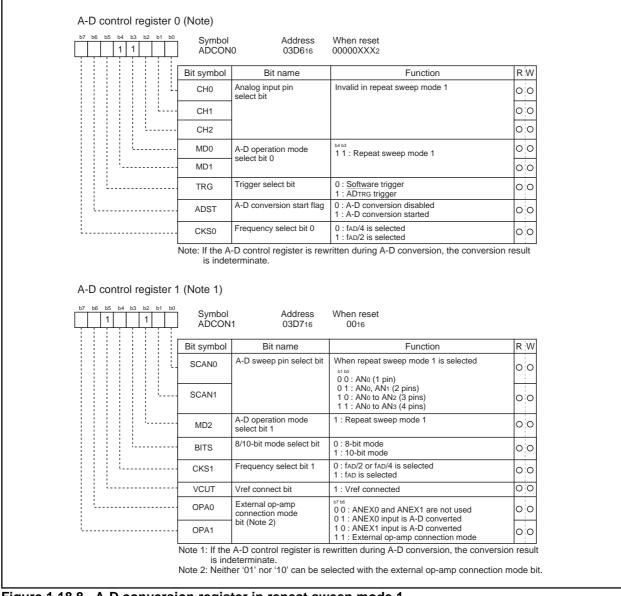
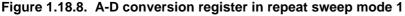


Figure 1.18.7. A-D conversion register in repeat sweep mode 0




(5) Repeat sweep mode 1

In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected using the A-D sweep pin select bit. Table 1.18.6 shows the specifications of repeat sweep mode 1. Figure 1.18.8 shows the A-D control register in repeat sweep mode 1.

Table 1.18.6.	Repeat sweep	mode 1 s	pecifications

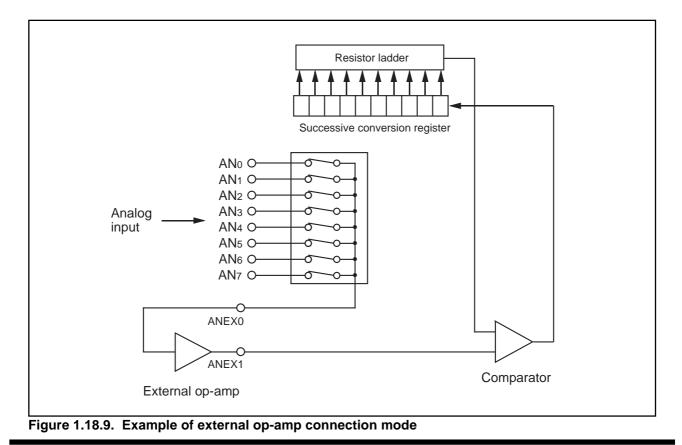
Item	Specification			
Function	All pins perform repeat sweep A-D conversion, with emphasis on the pin or			
	pins selected by the A-D sweep pin select bit			
	Example : ANo selected ANo \rightarrow AN1 \rightarrow ANo \rightarrow AN2 \rightarrow ANo \rightarrow AN3, etc			
Start condition	Writing "1" to A-D conversion start flag			
Stop condition	Writing "0" to A-D conversion start flag			
Interrupt request generation timing	None generated			
Input pin	ANo (1 pin), ANo and AN1 (2 pins), ANo to AN2 (3 pins), ANo to AN3 (4 pins)			
Reading of result of A-D converter	Read A-D register corresponding to selected pin (at any time)			

(a) Sample and hold

Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to "1". When sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 ϕ AD cycle is achieved with 8-bit resolution and 33 ϕ AD with 10-bit resolution. Sample and hold can be selected in all modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and hold is to be used.

(b) Extended analog input pins

In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can also be converted from analog to digital.


When bit 6 of the A-D control register 1 (address 03D716) is "1" and bit 7 is "0", input via ANEX0 is converted from analog to digital. The result of conversion is stored in A-D register 0.

When bit 6 of the A-D control register 1 (address 03D716) is "0" and bit 7 is "1", input via ANEX1 is converted from analog to digital. The result of conversion is stored in A-D register 1.

(c) External operation amp connection mode

In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can be amplified together by just one operation amp and used as the input for A-D conversion.

When bit 6 of the A-D control register 1 (address 03D716) is "1" and bit 7 is "1", input via ANo to AN7 is output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the corresponding A-D register. The speed of A-D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.18.9 is an example of how to connect the pins in external operation amp mode.

D-A Converter

This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of this type.

D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the target port to output mode if D-A conversion is to be performed.

Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register.

VREF : reference voltage

Table 1.19.1 lists the performance of the D-A converter. Figure 1.19.1 shows the block diagram of the D-A converter. Figure 1.19.2 shows the D-A control register. Figure 1.19.3 shows the D-A converter equivalent circuit.

 Table 1.19.1.
 Performance of D-A converter

Item	Performance
Conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 channels

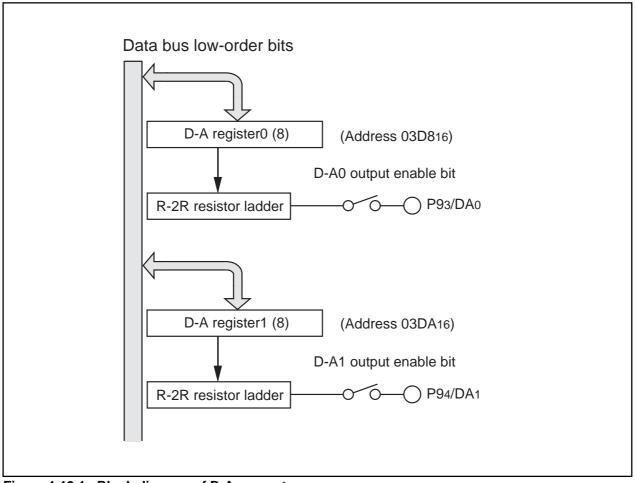
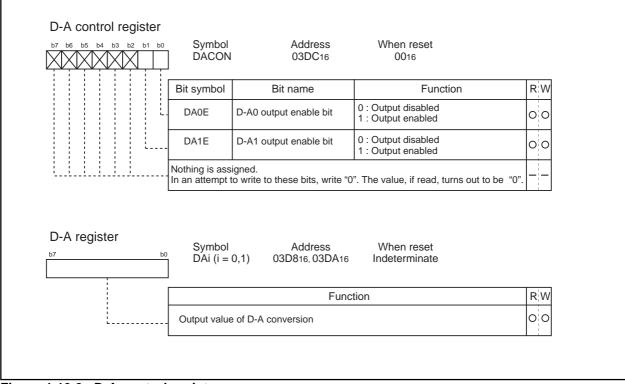
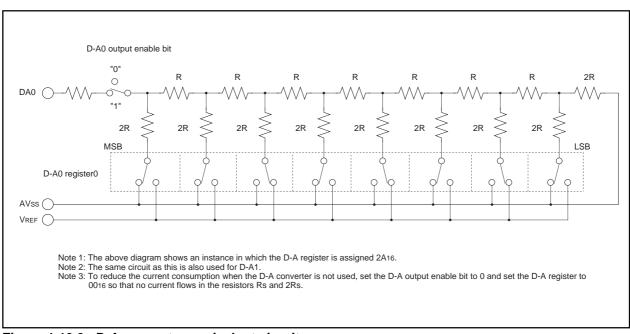
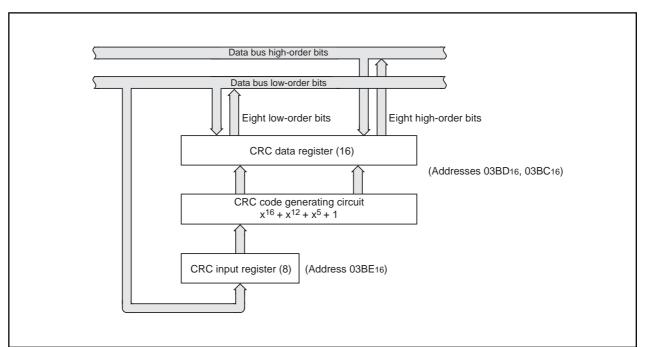
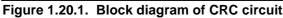




Figure 1.19.1. Block diagram of D-A converter




CRC Calculation Circuit

The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC code is set in a CRC data register each time one byte of data is transferred to a CRC input register after writing an initial value into the CRC data register. Generation of CRC code for one byte of data is completed in two machine cycles.

Figure 1.20.1 shows the block diagram of the CRC circuit. Figure 1.20.2 shows the CRC-related registers. Figure 1.20.3 shows the calculation example using the CRC calculation circuit

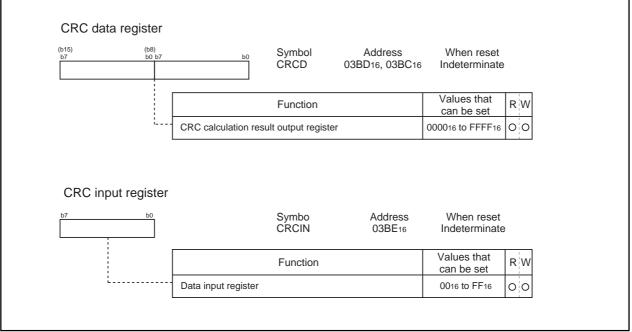


Figure 1.20.2. CRC-related registers

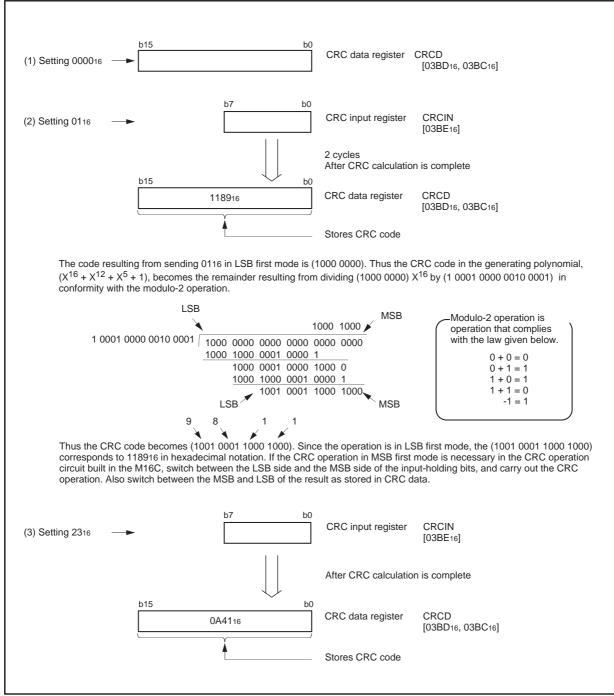


Figure 1.20.3. Calculation example using the CRC calculation circuit

Programmable I/O Ports

There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is an input-only port and has no built-in pull-up resistance.

Figures 1.21.1 to 1.21.4 show the programmable I/O ports. Figure 1.21.5 shows the I/O pins.

Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.

To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A converter), they function as outputs regardless of the contents of the direction registers. When pins are to be used as the outputs for the D-A converter, do not set the direction registers to output mode. See the descriptions of the respective functions for how to set up the built-in peripheral devices.

(1) Direction registers

Figure 1.21.6 shows the direction registers.

These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin.

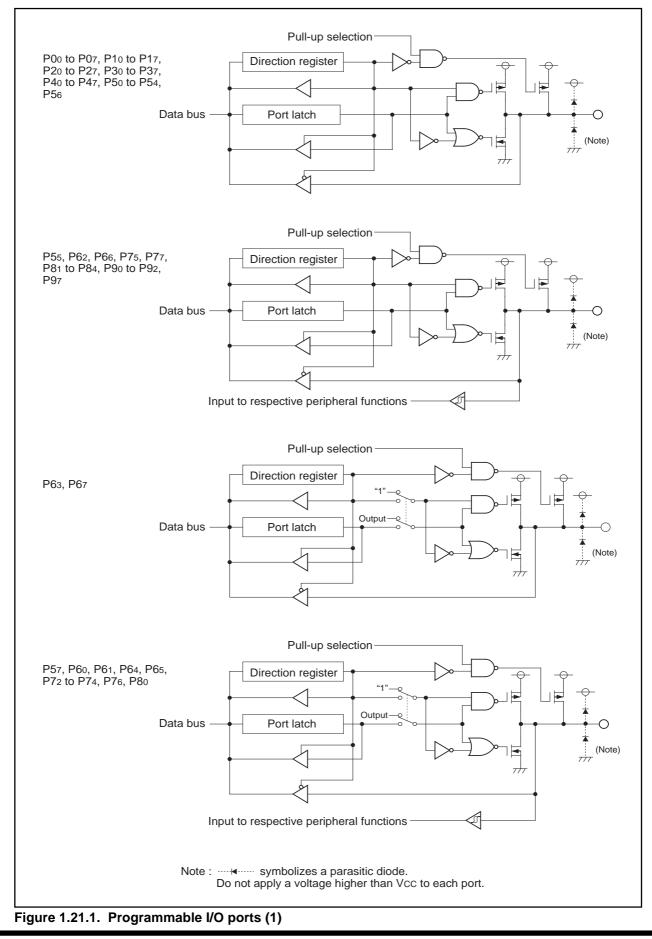
Note: There is no direction register bit for P85.

(2) Port registers

Figure 1.21.7 shows the port registers.

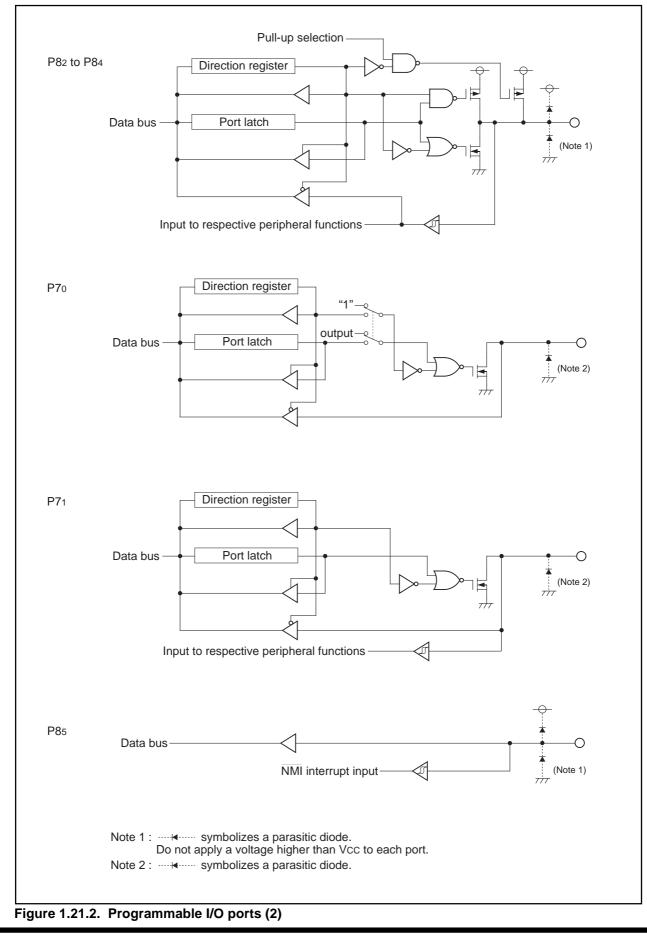
These registers are used to write and read data for input and output to and from an external device. A port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit in port registers corresponds one for one to each I/O pin.

(3) Pull-up control registers


Figure 1.21.8 shows the pull-up control registers.

The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is set for input.

However, in memory expansion mode and microprocessor mode, the pull-up control register of P0 to P5 is invalid.



Pr空闷~mableN9AP&XXFP"供应商

Pr空洞mmableW9AP2tXFP"供应商

Pr空调~mable/APARXXFP"供应商

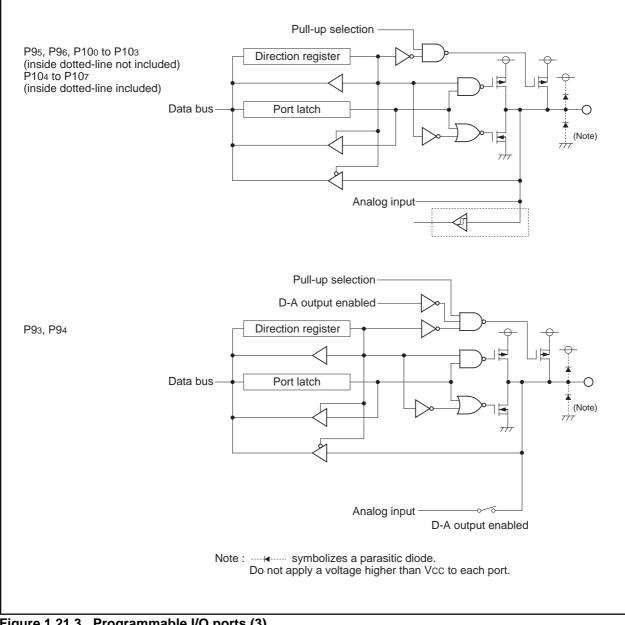
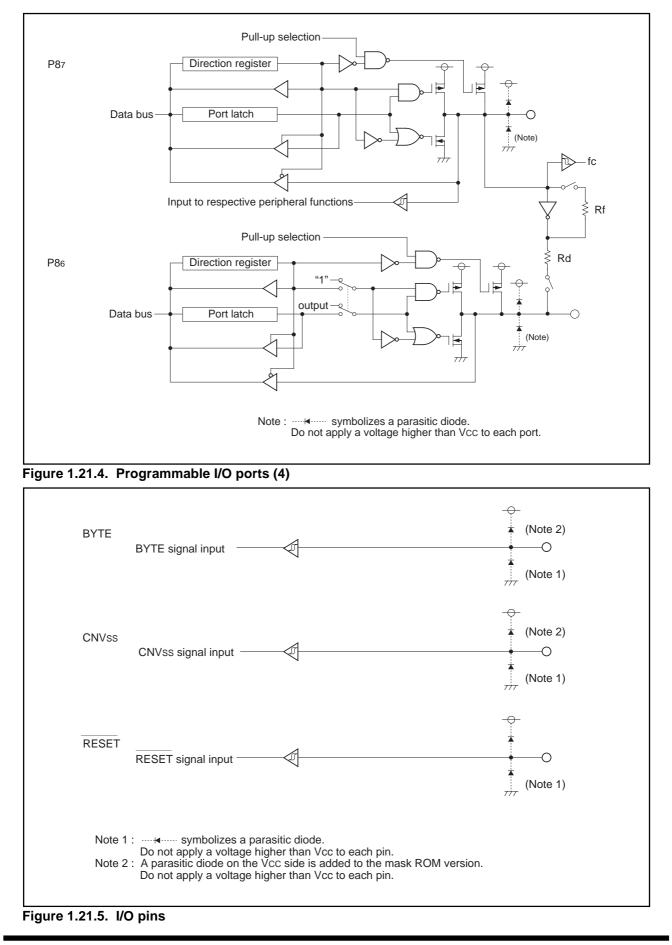



Figure 1.21.3. Programmable I/O ports (3)

Pr空调~mableW9AP&林XFP"供应商

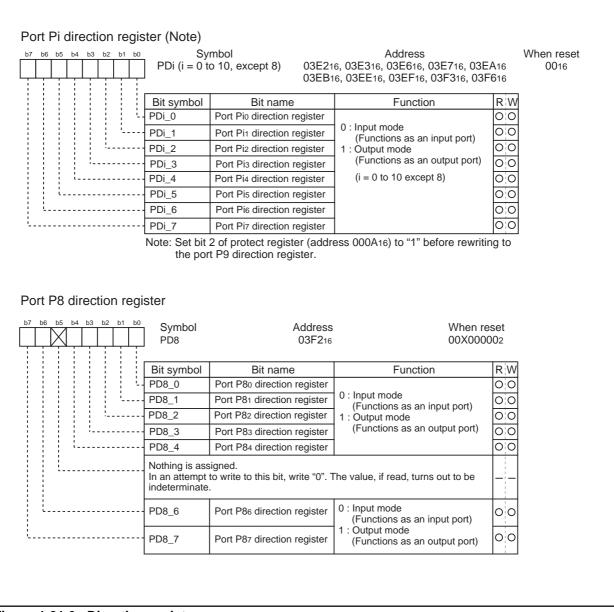


Figure 1.21.6. Direction register

Port Pi register Symbol Address When reset b3 b7 b6 b5 b4 b2 b1 b0 Pi (i = 0 to 10, except 8) 03E016, 03E116, 03E416, 03E516, 03E816 Indeterminate 03E916, 03EC16, 03ED16, 03F116, 03F416 Indeterminate Bit symbol Function RW Bit name 00 Pi_0 Port Pio register Data is input and output to and from 00 Pi_1 Port Pi1 register each pin by reading and writing to Pi_2 Port Pi2 register and from each corresponding bit 00 0 : "L" level data 1 : "H" level data (Note) Pi_3 00 Port Pi3 register Pi_4 Port Pi4 register 00 (i = 0 to 10 except 8) Pi_5 Port Pis register 00 Pi_6 00 Port Pi6 register 00 Pi_7 Port Pi7 register Note : Since P70 and P71 are N-channel open drain ports, the data is high-impedance. Port P8 register b0 b6 b1 Symbol Address When reset P8 03F016 Indeterminate RW Bit symbol Bit name Function 00 P8_0 Port P80 register Data is input and output to and from 00 P8_1 Port P81 register each pin by reading and writing to P8_2 Port P82 register 00 and from each corresponding bit (except for P85) 00 P8_3 Port P83 register 0 : "L" level data 00 P8_4 Port P84 register 1 : "H" level data P8_5 Port P85 register 0 X 00 P8_6 Port P86 register 00 P8_7 Port P87 register

Figure 1.21.7. Port register

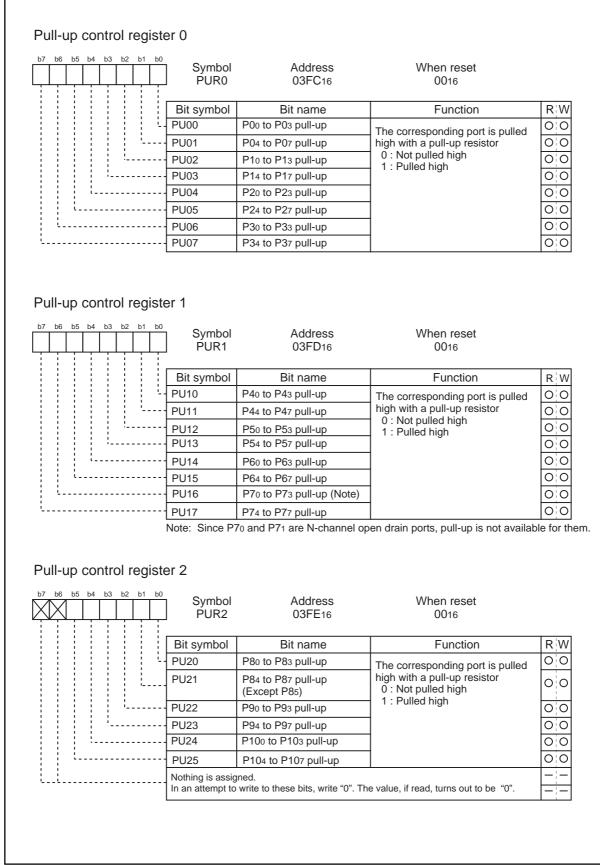
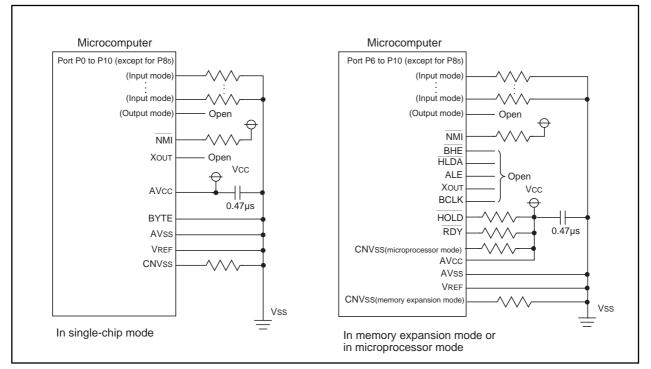


Figure 1.21.8. Pull-up control register

Table 1.21.1. Exam	ple connection of unused	l pins in single-chip mode
--------------------	--------------------------	----------------------------


Pin name	Connection
Ports P0 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss via a resistor; or after setting for output mode, leave these pins open.
XOUT (Note)	Open
NMI	Connect via resistor to Vcc (pull-up)
AVcc	Connect to Vcc
AVSS, VREF, BYTE	Connect to Vss
CNVss	Connect via resistor to Vss (pull-down)

Note: With external clock input to XIN pin.

Table 1.21.2. Example connection of unused pins in memory expansion mode and microprocessor mode

Pin name	Connection
Ports P6 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open.
BHE, ALE, HLDA, Xout(Note), BCLK	Open
HOLD, RDY, NMI	Connect via resistor to Vcc (pull-up)
AVcc	Connect to Vcc
AVSS, VREF	Connect to Vss
CNVss	Connect via resistor to Vss (pull-down) in the memory expansion mode Connect via resistor to Vcc (pull-up) in the microprocessor mode

Note: With external clock input to XIN pin.

Usage Precaution

Timer A (timer mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

Timer A (event counter mode)

- (1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
- (2) When stop counting in free run type, set timer again.

Timer A (one-shot timer mode)

- (1) Setting the count start flag to "0" while a count is in progress causes as follows:
 - The counter stops counting and a content of reload register is reloaded.
 - The TAiOUT pin outputs "L" level.
 - The interrupt request generated and the timer Ai interrupt request bit goes to "1".
- (2) The timer Ai interrupt request bit goes to "1" if the timer's operation mode is set using any of the following procedures:
 - Selecting one-shot timer mode after reset.
 - Changing operation mode from timer mode to one-shot timer mode.
 - Changing operation mode from event counter mode to one-shot timer mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

Timer A (pulse width modulation mode)

- (1) The timer Ai interrupt request bit becomes "1" if setting operation mode of the timer in compliance with any of the following procedures:
 - Selecting PWM mode after reset.
 - Changing operation mode from timer mode to PWM mode.
 - Changing operation mode from event counter mode to PWM mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(2) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiOUT pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to "1". If the TAiOUT pin is outputting an "L" level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes "1".

Timer B (timer mode, event counter mode)

(1) Reading the timer Bi register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Bi register with the reload timing gets "FFFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.

Timer B (pulse period/pulse width measurement mode)

- (1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to "1".
- (2) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

A-D Converter

- (1) Write to each bit (except bit 6) of A-D control register 0, to each bit of A-D control register 1, and to bit 0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs).
 In particular, when the Vref connection bit is changed from "0" to "1", start A-D conversion after an elapse of 1 µs or longer.
- (2) When changing A-D operation mode, select analog input pin again.
- (3) Using one-shot mode or single sweep mode Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by A-D conversion interrupt request bit.)
- (4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1Use the undivided main clock as the internal CPU clock.

Stop Mode and Wait Mode

- (1) When returning from stop mode by hardware reset, **RESET** pin must be set to "L" level until main clock oscillation is stabilized.
- (2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the WAIT instruction or from the instruction that sets the every-clock stop bit to "1" within the instruction queue are prefetched and then the program stops. So put at least four NOPs in succession either to the WAIT instruction or to the instruction that sets the every-clock stop bit to 1.

Interrupts

- (1) Reading address 0000016
 - When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.

The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0". Though the interrupt is generated, the interrupt routine may not be executed.

- Do not read address 0000016 by software.
- (2) Setting the stack pointer
 - The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt.

When using the $\overline{\text{NMI}}$ interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the $\overline{\text{NMI}}$ interrupt is prohibited.

- (3) The NMI interrupt
 - As for the NMI interrupt pin, an interrupt cannot be disabled. Connect it to the Vcc pin via a resistor (pull-up) if unused. Be sure to work on it.
 - Do not get either into stop mode or into wait mode with the $\overline{\text{NMI}}$ pin set to "L".
- (4) External interrupt
 - When the polarity of the INT₀ to INT₂ pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0".
- (5) Rewrite the interrupt control register
 - To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1: INT_SWITCH FCLR AND.B NOP NOP FSET	I	 ; Disable interrupts. ; Clear TAOIC int. priority level and int. request bit. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts.
Example 2: INT_SWITCI FCLR AND.B MOV.W FSET	l #00h, 0055h	; Disable interrupts. ; Clear TA0IC int. priority level and int. request bit. ; Dummy read. ; Enable interrupts.

Example 3:

11

POPC FLG ; Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

External ROM version

The external ROM version is operated only in microprocessor mode, so be sure to perform the following:

- Connect CNVss pin to Vcc.
- Fix the processor mode bit to "112"

Built-in PROM version

(1) All built-in PROM versions

High voltage is required to program to the built-in PROM. Be careful not to apply excessive voltage. Be especially careful during power-on.

(2) One Time PROM version

One Time PROM versions shipped in blank (M30612E4FP, M30612E4GP, M30610ECFP, M30610ECGP), of which built-in PROMs are programmed by users, are also provided. For these microcomputers, a programming test and screening are not performed in the assembly process and the following processes. Therefore ROM write defectiveness occurs around 5 %. To improve their reliability after programming, we recommend to program and test as flow shown in Figure 1.22.1 before use.

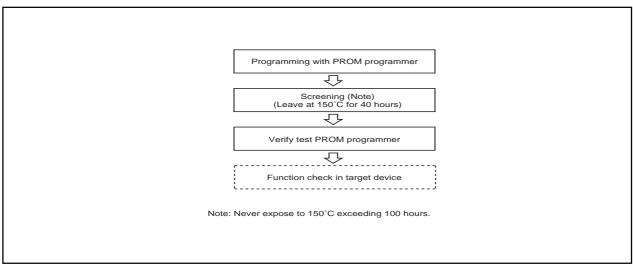


Figure 1.22.1. Programming and test flow for One Time PROM version

- (3) EPROM version
 - Cover the transparent glass window with a shield or others during the read mode because exposing to sun light or fluorescent lamp can cause erasing the information.
 A shield to cover the transparent window is available from Mitsubishi Electric Corp. Be careful that the shield does not touch the EPROM lead pins.
 - Clean the transparent glass before erasing. Fingers' flat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability.
 - The EPROM version is a tool only for program development (for evaluation), and do not use it for the mass product run.

Items to be submitted when ordering masked ROM version

Please submit the following when ordering masked ROM products:

- (1) Mask ROM confirmation form
- (2) Mark specification sheet
- (3) ROM data : EPROMs or floppy disks

*: In the case of EPROMs, there sets of EPROMs are required per pattern.

*: In the case of floppy disks, 3.5-inch double-sided high-density disk (IBM format) is required per pattern.

Symbol	Parameter		Condition	Rated value		Unit
Vcc	Supply voltage		Vcc = AVcc	-0.3 to 6.5 (Note 3)		V
AVcc	Analog supply v	oltage	Vcc = AVcc	-0.3 to 6.5 (Note 3)		V
Vı	Input voltage	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, RESET, VREF, XIN		-0.3 to Vcc+0.3		V
Vi	Input voltage	P70, P71, CNVss, BYTE		-0.3 to 6.5 (Note	e 1, Note 3)	V
Vo	Output voltage	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86,P87, P90 to P97, P100 to P107, XOUT		-0.3 to Vcc+0.3		V
Vo	Output voltage	P70, P71		-0.3 to 6.5	(Note 3)	V
Pd	Power dissipation	n	Ta=25 °C	300		mW
Topr	Operating ambi	ent temperature		-20 to 85 / -40 to 85	(Note 2)	°C
Tstg	Storage tempera	ature		-65 to 150		°C

Table 1.24.1. Absolute maximum ratings

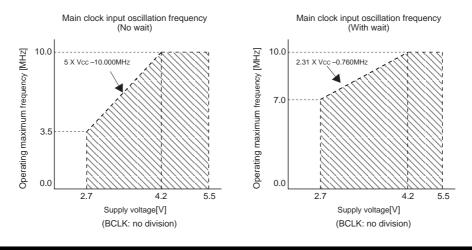
Note 1: When writing to EPROM , only CNVss is –0.3 to 13 (V) .

Note 2: Specify a product of -40 to 85°C to use it.

Note 3: -0.3V to 6.5V for M30610M8A, M30610MAA, M30610MCA, M30612M4A, M30612M8A, M30612MAA, M30612MCA, M30610SA and M30612SA.

Otherwise, -0.3V to 7.0V is used.

Table 1.24.2. Recommended operating conditions (referenced to Vcc = 2.7V to 5.5V at Ta = -20	to
85°C / –40 to 85°C (Note 3) unless otherwise specified)	


	Parameter			Standard				
Symbol				Min	Тур.	Max.	Unit	
Vcc	Supply voltage				2.7	5.0	5.5	V
AVcc	Analog supply volta	ge				Vcc		V
Vss	Supply voltage					0		V
AVss	Analog supply volta	ge				0		V
Viн	HIGH input voltage	P31 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, X IN, RESET, CNVss, BYTE		0.8Vcc		Vcc	V	
		P70, P71			0.8Vcc		6.5	V
			P1o to P17, P2 e-chip mode)	20 to P27, P30	0.8Vcc		Vcc	V
		(data input f		20 to P27, P30 9 memory expansion es)	0.5Vcc		Vcc	V
VIL	P70 to P7		,	50 to P57, P60 to P67, 90 to P97, P100 to P107, TE	0		0.2Vcc	V
			P1º to P1⁊, P le-chip mode)	20 to P27, P30	0		0.2Vcc	V
		P00 to P07, P10 to P17, P20 to P27, P30 (data input function during memory expansion and microprocessor modes)			0		0.16Vcc	V
I _{OH} (peak)	HIGH peak output current	P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P72 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107					-10.0	mA
I _{OH (avg)}	HIGH average output current	P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P72 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107					-5.0	mA
I _{OL (peak)}	LOW peak output current	P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P70 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107					10.0	mA
I _{OL (avg)}	LOW average output current	P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P70 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107					5.0	mA
	Main clock input os	rillation		Vcc =4.0V to 5.5V	0		10	MHz
	frequency		No wait	Vcc =2.7V to 4.0V	0		5 X Vcc -10.000	MHz
				Vcc =4.0V to 5.5V	0		10	MHz
			With wait Vcc =2.7V to 4.0V		0		2.31 X Vcc +0.760	MHz
f (Xcin)	Subclock oscillation	frequency				32.768	50	kHz

Note 1: The mean output current is the mean value within 100ms.

Note 2: The total IoL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IoH (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IoL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80mA max. The total IoH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.

Note 3: Specify a product of -40 to 85°C to use it.

Note 4: The relationship between main clock input frequency and power supply voltage is as below.

Table 1.24.3. Electrical characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C, f(XIN) = 10MHz unless otherwise specified)

Symbol		Parameter		Maaa	uring condition		andard	1	Unit
Symbol				ivieas	uring condition	Min	Тур.	Max.	
Vон	HIGH output voltage	P00 to P07, P10 to P30 to P37, P40 to P37, P40 to P60 to P67, P72 to P86, P87, P90 to P9	P47, P50 to P57, P77, P80 to P84,	Іон=-5mA		3.0			V
Vон	HIGH output voltage	P00 to P07, P10 to I P30 to P37, P40 to I P60 to P67, P72 to I P86, P87, P90 to P9	P47, P50 to P57, P77, P80 to P84,	Іон=-200µА		4.7			V
	HIGH output voltage	Хоит	HIGHPOWER	Iон=-1mA		3.0			v
Vон	-		LOWPOWER	IOH=-0.5mA		3.0	2.0		
	HIGH output voltage	Хсоит	LOWPOWER	With no load	••		3.0 1.6		V
Vol	voltage	P00 to P07, P10 to P P30 to P37, P40 to P P60 to P67, P70 to P P86, P87, P90 to P97	47, P50 to P57, 77, P80 to P84,	lol=5mA				2.0	V
Vol	voltage	P00 to P07, P10 to P P30 to P37, P40 to P P60 to P67, P70 to P P86, P87, P90 to P97	47, P50 to P57, 77, P80 to P84,	lo∟=200µA				0.45	V
	LOW output	Хоит	HIGHPOWER	lo∟=1mA				2.0	v
Vol	voltage	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LOWPOWER	loL=0.5mA				2.0	•
VOL	LOW output	Хсоит	HIGHPOWER	With no load a	applied		0		v
	voltage		LOWPOWER	With no load a	applied		0		
VT+-VT-	Hysteresis	HOLD, RDY, TAU TB0IN to TB2IN, II ADTRG, CTS0 to C CLK2,TA20UT to	NTo to INT2, cts2, CL <u>Ko to</u> TA4out,NMI,			0.2		0.8	v
VT+-VT-	Hustoropio	KIo to KI3, RxDo t	0 KXD2						
VT+-VT-	Hysteresis	RESET	4- D0- t- D0-			0.2		1.8	V
Іін	HIGH input current	P00 to P07, P10 to P P30 to P37, P40 to P P60 to P67, P70 to P P90 to P97, P100 to XIN, RESET, CNVss	47, P50 to P57, 77, P80 to P87, P107,	Vi=5V				5.0	μA
I IL	LOW input current	P00 to P07, P10 to F P30 to P37, P40 to F P60 to P67, P70 to F P90 <u>to P97, P100 to</u> XIN, RESET, CNVss	247, P50 to P57, 277, P80 to P87, P107,	VI=0V				-5.0	μA
R _{PULLUP}	Pull-up resistance	P00 to P07, P10 to P P30 to P37, P40 to P P60 to P67, P72 to P P86, P87, P90 to P9	247, P50 to P57, 277, P80 to P84,	VI=0V		30.0	50.0	167.0	kΩ
R _{fXIN}	Feedback re	sistance XIN					1.0		MΩ
R _{fXCIN}	Feedback re	sistance Xcin					6.0		MΩ
V _{RAM}	RAM retention	on voltage		When clock is	stopped	2.0			V
				In single-chip mode, the	f(XIN)=10MHz Square wave, no division		19.0	38.0	mA
				output pins	f(Xcin)=32kHz Square wave		90.0		μA
lcc	Power supply	y current		are open and other pins are Vss	f(XCIN)=32kHz When a WAIT instruction is executed(Note)		4.0		μA
					Ta=25°C when clock is stopped			1.0	
					Ta=85°C when clock is stopped			20.0	μA

Note: With one timer operated using fc32.

Table 1.24.4. A-D conversion characteristics (referenced to Vcc = AVcc = VREF = 5V, Vss = AVss =0V at Ta = 25°C, f(XIN) = 10MHz unless otherwise specified)

					S	tandar	d	
Symbol		Parameter	Mea	asuring condition	Min.	Тур.	Max.	Unit
-	Resoluti	on	Vref = Vc	С			10	Bits
_	Absolute	Sample & hold function not available	VREF = VCC	c = 5V			±3	LSB
	accuracy	, , , , , , , , , , , , , , , , , , ,		ANo to AN7 input			±3	LSB
		Sample & hold function available(10bit)	VREF =VCC = 5V	ANEX0, ANEX1 input, External op-amp connection mode			±7	LSB
		Sample & hold function available(8bit)	VREF = VCC	c = 5V			±2	LSB
Rladder	Ladder r	esistance	VREF = VC	C	10		40	kΩ
t CONV	Convers	ion time(10bit)			3.3			μs
t CONV	Convers	ion time(8bit)			2.8			μs
t SAMP	Samplin	g time			0.3			μs
Vref	Referen	ce voltage			2		Vcc	V
Via	Analog i	nput voltage			0		Vref	V

Table 1.24.5. D-A conversion characteristics (referenced to Vcc = 5V, Vss = AVss = 0V, VREF = 5V at Ta = 25°C, f(XIN) = 10MHz unless otherwise specified)

Cumhal	Deremeter	Macouring condition	S	Standar	d	ا ا ما ا
Symbol	Parameter	Measuring condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
Ivref	Reference power supply input current	(Note)			1.5	mA

Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included.

Also, when the Vref is unconnected at the A-D control register, IVREF is sent.

Timing requirements (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C unless otherwise specified)

Table 1.24.6. External clock input	Table 1.24.6.	External	clock input
------------------------------------	---------------	----------	-------------

Symbol	Parameter	Stan	Standard	
Symbol	Faldmeler	Min.	Max.	Unit
tc	External clock input cycle time	100		ns
tw(H)	External clock input HIGH pulse width	40		ns
tw(L)	External clock input LOW pulse width	40		ns
tr	External clock rise time		15	ns
tf	External clock fall time		15	ns

Table 1.24.7	Memory expansion and microprocessor modes
--------------	---

Sympol	Deremeter	Stan	Standard	
Symbol	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)		40		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		40	ns

Note: Calculated according to the BCLK frequency as follows:

$$tac1(RD - DB) = \frac{10^9}{f(BCLK) \times 2} - 45$$
 [ns]

$$tac2(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 45$$
 [ns]

$$tac3(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 45$$
 [ns]

Timing requirements (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C unless otherwise specified)

Table 1.24.8.	. Timer A input (counter input in event counter mode)	
---------------	---	--

Currente est	Devenuetor	Standard		Linit
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	100		ns
tw(TAH)	TAin input HIGH pulse width	40		ns
tw(TAL)	TAin input LOW pulse width	40		ns

Table 1.24.9. Timer A input (gating input in timer mode)

		Standard Min. Max.	dard	
Symbol	Parameter		Unit	
tc(TA)	TAiin input cycle time	400		ns
tw(TAH)	TAim input HIGH pulse width	200		ns
tw(TAL)	TAin input LOW pulse width	200		ns

Table 1.24.10. Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Standard		Unit
Symbol	Falallelel	Min.	Max.	Unit
tc(TA)	TAilN input cycle time	200		ns
tw(TAH)	TAil input HIGH pulse width	100		ns
tw(TAL)	TAilN input LOW pulse width	100		ns

Table 1.24.11. Timer A input (external trigger input in pulse width modulation mode)

Symbol	Parameter	Standard		Unit
	Parameter	Min.	Min. Max.	Unit
tw(TAH)	TAil input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.24.12. Timer A input (up/down input in event counter mode)

Cumpheal	Demonster	Star	Linit	
Symbol	Parameter		Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAiout input HIGH pulse width	1000		ns
tw(UPL)	TAiout input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

Timing requirements (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C unless otherwise specified)

Cumbal	Parameter		Standard	
Symbol			Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 1.24.13. Timer B input (counter input in event counter mode)

Table 1.24.14. Timer B input (pulse period measurement mode)

Symbol	Parameter	Standard		Unit
	Parameter		Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBilN input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 1.24.15. Timer B input (pulse width measurement mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 1.24.16. A-D trigger input

Symbol	Parameter		Standard	
Symbol	i alameter	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 1.24.17. Serial I/O

Symbol	Parameter	Star	Unit	
Symbol	Falameter		Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.24.18. External interrupt INTi inputs

Symbol Parameter	Parameter		Standard	
	Min.	Max.	Unit	
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25° C, CM15 = "1" unless otherwise specified)

0	Parameter	Measuring condition	Stan	1.1	
Symbol		Measuring condition	Min.	Max.	Unit
$t_{d(BCLK-AD)}$	Address output delay time			25	ns
t h(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
t h(RD-AD)	Address output hold time (RD standard)		0		ns
t h(WR-AD)	Address output hold time (WR standard)		0		ns
$t_{d(BCLK-CS)}$	Chip select output delay time			25	ns
t h(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
$t_{\text{d}(\text{BCLK-ALE})}$	ALE signal output delay time			25	ns
t h(BCLK-ALE)	ALE signal output hold time	Figure 1.24.1	- 4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
$\mathbf{t}_{h(BCLK-RD)}$	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Table 1.24.19.	Memory expansion mode	e and microprocessor n	node (no wait)

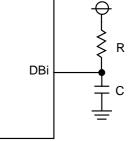
Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK) \times 2} - 40$$
 [ns]

Note 2: This is standard value shows the timing when the output is off,

and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

 $t = -CR X \ln (1 - VOL / VCC)$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc, C = 30pF, R = 1k\Omega, hold time of output "L" level is

 $t = -30 \text{pF X } 1 \text{k}\Omega \text{ X } \text{ln} (1 - 0.2 \text{Vcc} / \text{Vcc})$ = 6.7 ns.

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25° C, CM15 = "1" unless otherwise specified)

Table 1.24.20. Memory expansion mode and microprocessor mode (with wait, accessing external memory)

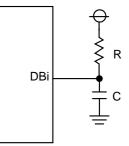
	Descriter	Measuring condition	Stan		
Symbol	Parameter	weasuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
t h(RD-AD)	Address output hold time (RD standard)		0		ns
t h(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.24.1	- 4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
t h(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 40$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

 $t = -CR X \ln (1 - VOL / VCC)$

by a circuit of the right figure.

For example, when VOL = 0.2VCC, C = 30pF, R = 1k $\Omega,$ hold time of output "L" level is

 $t = -30 pF X 1 k\Omega X ln (1 - 0.2 Vcc / Vcc)$ = 6.7 ns.

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25° C, CM15 = "1" unless otherwise specified)

			Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
t h(RD-AD)	Address output hold time (RD standard)		(Note)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time	Figure 1.24.1	0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)	1 igule 1.24.1		40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
$t_{d(\text{DB-WR})}$	Data output delay time (WR standard)		(Note)		ns
t h(WR-DB)	Data output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			25	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		- 4		ns
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note)		ns
th(ALE-AD)	ALE signal output hold time (Adderss standard)		50		ns
td(AD-RD)	Post-address RD signal output delay time		0		ns
td(AD-WR)	Post-address WR signal output delay time		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Table 1.24.21. Memory expansion mode and microprocessor mode (with wait, accessing external memory, multiplex bus area selected)

Note: Calculated according to the BCLK frequency as follows:

$$th(RD - AD) = \frac{10^9}{f(BCLK) \times 2} [ns]$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) \times 2} [ns]$$

$$th(RD - CS) = \frac{10^9}{f(BCLK) \times 2} [ns]$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) \times 2} [ns]$$

$$td(DB - WR) = \frac{10^9 \times 3}{f(BCLK) \times 2} - 40 [ns]$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) \times 2} [ns]$$

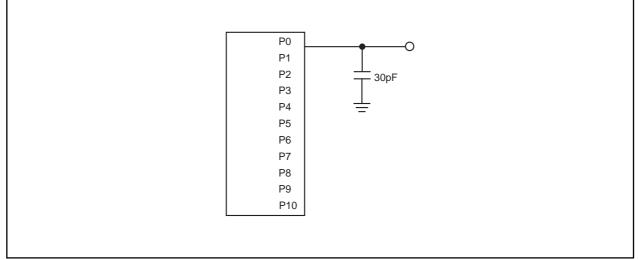
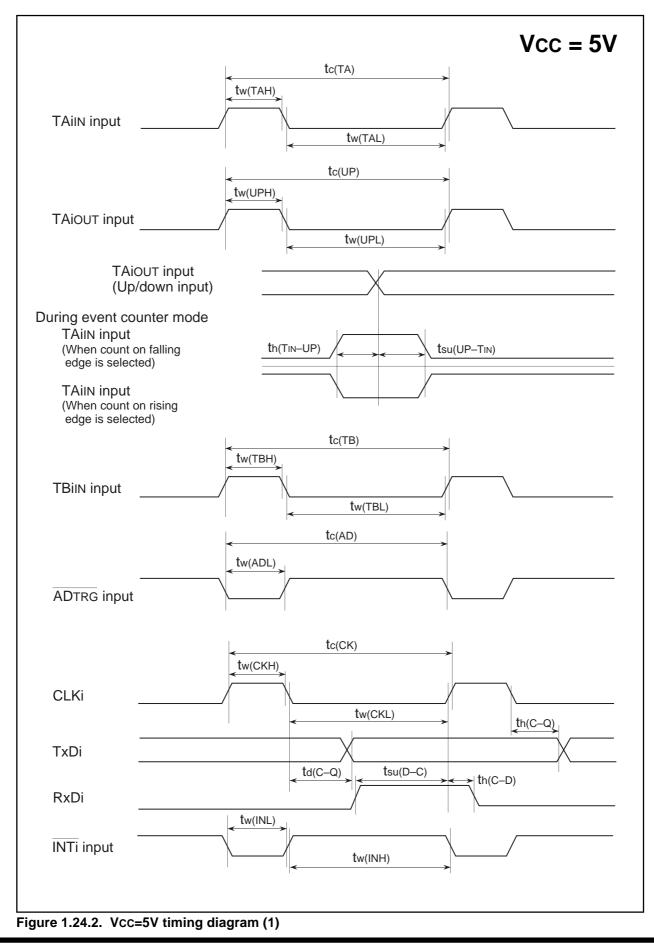



Figure 1.24.1. Port P0 to P10 measurement circuit

Tin查响"(M996+2和)A-XXXFP"供应商

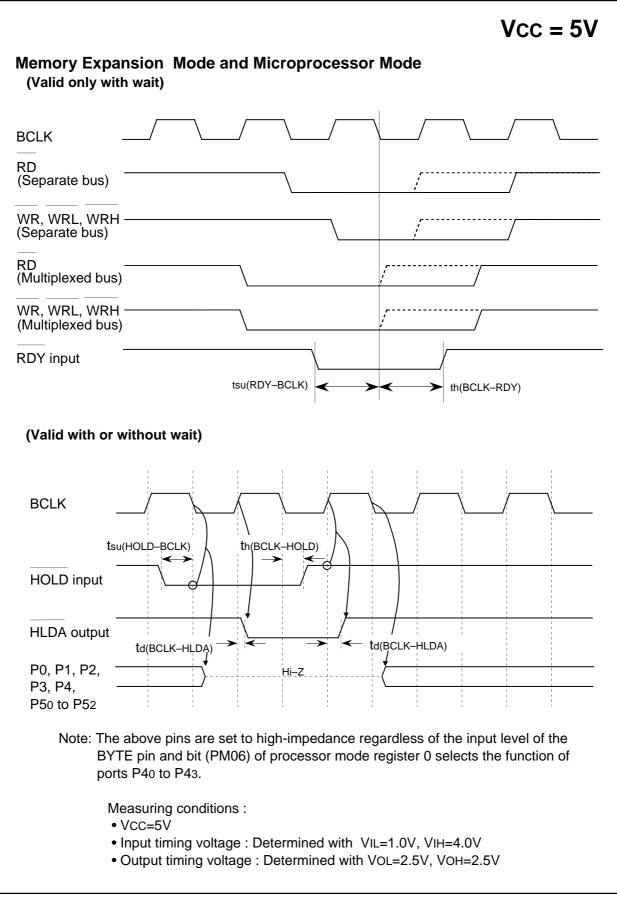
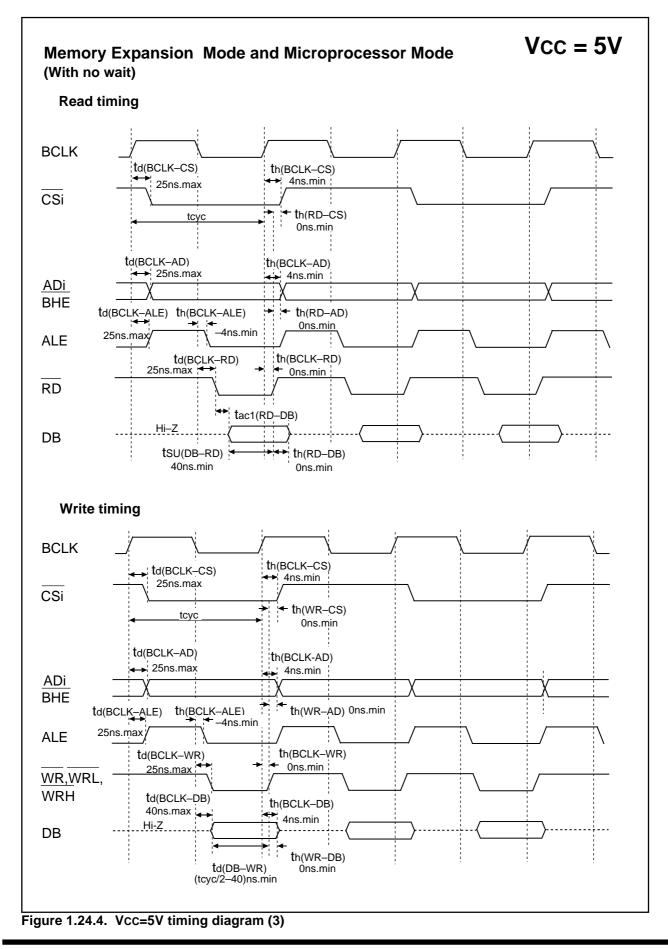
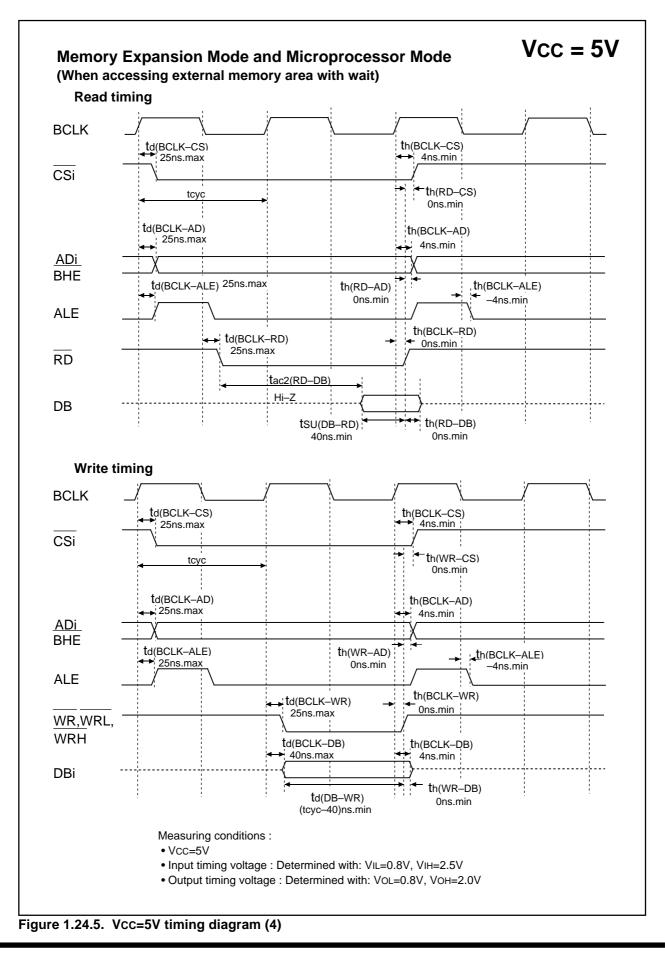




Figure 1.24.3. Vcc=5V timing diagram (2)

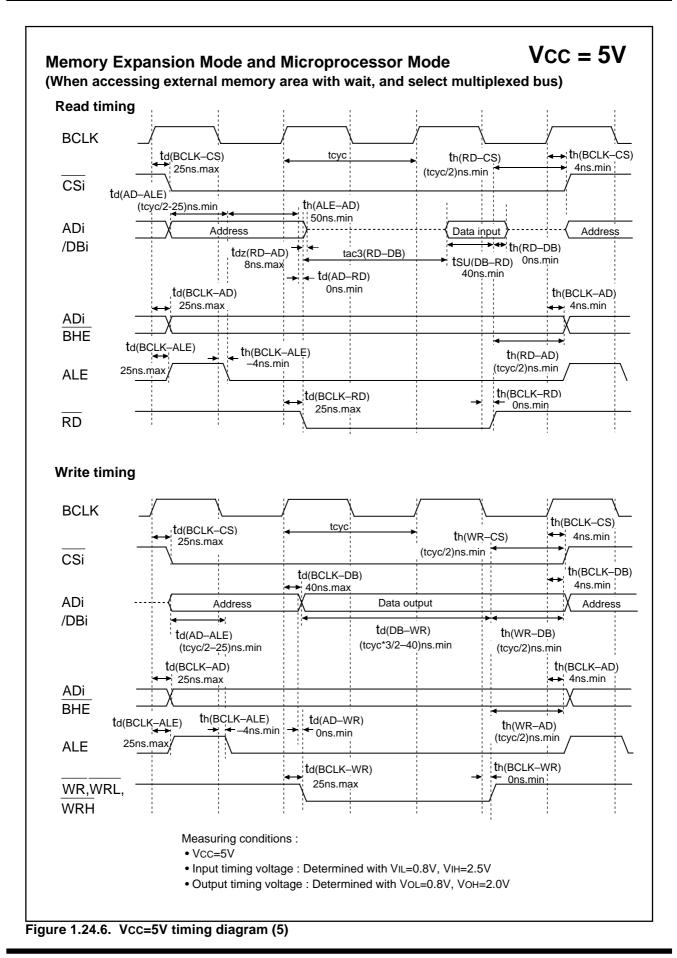


Table 1.24.22. Electrical characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = 25° C, f(XIN) =

	7MHz, with wait)		Macauring condition		Standard		Unit			
Symbol	Parameter Measuring condition		Parameter		ol Parameter Measuring condition		Min	Тур.	Max.	Unit
Vон	HIGH output voltage	P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P72 to P86,P87,P90 to P9	P47,P50 to P57, P77,P80 to P84,	Іон=-1mA		2.5			V	
		voltage Xout	HIGHPOWER	Iон=-0.1mA		2.5				
Vон	Ther output	vollage Xoor	LOWPOWER	Іон=-50µА		2.5			V	
	HIGH output	voltage Xcout	HIGHPOWER	With no load ap	oplied		3.0		V	
		-	LOWPOWER	With no load ap	oplied		1.6			
Vol	LOW output voltage	P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P70 to P86,P87,P90 to P9	P47,P50 to P57, P77,P80 to P84,	Iol=1mA				0.5	V	
		voltage X _{OUT}	HIGHPOWER	IoL=0.1mA				0.5	.,	
Vol		Vollage XOUT	LOWPOWER	lo∟=50µA				0.5	V	
	LOW output	voltage Xcout	HIGHPOWER	With no load ap	oplied		0			
			LOWPOWER	With no load ap	plied		0		V	
Vt+-Vt-	Hysteresis	HOLD, RDY, TAO TB0IN to TB2IN, IN ADTRG, CTS0 to C CLK2,TA20UT to T Klo to Kl3, RxD0 to	ITo to INT2, CTS2, CLK0 to A4out,NMI,			0.2		0.8	V	
VT+-VT-	Hysteresis	RESET				0.2		1.8	V	
Іін	HIGH input current	P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P70 to P90 to P97,P100 to	P47,P50 to P57, P77,P80 to P87,	7,				4.0	μA	
l IL	LOW input current	XIN, RESET, CNV P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P70 to P90 to P97,P100 to	P17,P20 to P27, P47,P50 to P57, P77,P80 to P87,					-4.0	μA	
		XIN, RESET, CNV	ss, BYTE							
R pullup	Pull-up resistance	P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P72 to P86,P87,P90 to P9	P47,P50 to P57, P77,P80 to P84,	VI=0V		66.0	120.0	500.0	kΩ	
R _{fXIN}	Feedback res	sistance XIN					3.0		MΩ	
R fXCIN	Feedback res	sistance XCIN					10.0		MΩ	
VRAM	RAM retention			When clock is	stopped	2.0			V	
					f(XIN)=7MHz Square wave, no division		6.0	15.0	mA	
				In single-chip	f(Xcin)=32kHz Square wave		40.0		μA	
lcc		mode, the output pins are open and other	f(XCIN)=32kHz When a WAITinstruction is executed. Oscillation capacity High (Note)		2.8		μA			
			pins are Vss	f(XCIN)=32kHz When a WAIT instruction is executed. Oscillation capacity Low (Note)		0.9		μA		
					Ta=25°C when clock is stopped			1.0	μA	
					Ta=85°C when clock is stopped			20.0		

Note: With one timer operated using fc32.

Table 1.24.23. A-D conversion characteristics (referenced to Vcc = AVcc = VREF = 3V, Vss = AVss = 0V at Ta = 25°C, f(XIN) = 7MHz unless otherwise specified)

Symbol			Standard				
		Parameter	Measuring condition	Min.	Тур.	Max	Unit
-	Resolution		Vref = Vcc			10	Bits
-	Absolute accuracy	Sample & hold function not available (8 bit)	$VREF = VCC = 3V, \phi_{AD} = f(XIN)/2$			±2	LSB
RLADDER	Ladder resist	ance	Vref = Vcc	10		40	kΩ
t CONV	Conversion ti	me(8bit)		14.0			μs
Vref	Reference vo	oltage		2.7		Vcc	V
Via	Analog input	voltage		0		Vref	V

Table 1.24.24. D-A conversion characteristics (referenced to Vcc = 3V, Vss = AVss = 0V, VREF = 3V at Ta = 25°C, f(XIN) = 7MHz unless otherwise specified)

	_		S	Standard		
Symbol	Parameter	Measuring condition	Min.	Тур.	Max	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note)			1.0	mA

Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included.

Also, when the Vref is unconnected at the A-D control register, IVREF is sent.

Timing requirements (referenced to Vcc = 3V, Vss = 0V at Ta = 25°C unless otherwise specified)

Symbol	Doromotor	Standard	ndard	Linit
	Parameter	Min.	Max. Un	Unit
tc	External clock input cycle time	143		ns
tw(H)	External clock input HIGH pulse width	60		ns
tw(L)	External clock input LOW pulse width	60		ns
tr	External clock rise time		18	ns
tr	External clock fall time		18	ns

Table 1.24.25. External clock input

Table 1.24.26	Memory expansion	and microprocessor modes
---------------	------------------	--------------------------

Symbol	Parameter	Star	dard	Unit
	Faldifielei	Min.	Max.	
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	80		ns
tsu(RDY-BCLK)	RDY input setup time	60		ns
tsu(HOLD-BCLK)	HOLD input setup time	80		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		100	ns

Note: Calculated according to the BCLK frequency as follows:

$$tac1(RD - DB) = \frac{10^9}{f(BCLK) X 2} - 90$$
 [ns]

$$tac2(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 90$$
 [ns]

$$tac3(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 90$$
 [ns]

Timing requirements (referenced to Vcc = 3V, Vss = 0V at Ta = 25°C unless otherwise specified)

Tuble 1.24.27. Timer A input (bounter input in event bounter inoue)							
Symbol Parameter	Parameter	Standard	Unit				
	Farallielei	Min.	Max.	Unit			
tc(TA)	TAin input cycle time	150		ns			
tw(TAH)	TAilN input HIGH pulse width	60		ns			
tw(TAL)	TAin input LOW pulse width	60		ns			

Table 1.24.27. Timer A input (counter input in event counter mode)

Table 1.24.28. Timer A input (gating input in timer mode)

Symbol	Parameter	Standard		Unit
	Falameter	Min.	Max.	Unit
tc(TA)	TAiln input cycle time	600		ns
tw(TAH)	TAin input HIGH pulse width	300		ns
tw(TAL)	TAil input LOW pulse width	300		ns

Table 1.24.29. Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Standard	Linit	
	Parameter	Min.	Max.	Unit
tc(TA)	TAil input cycle time	300		ns
tw(TAH)	TAilN input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 1.24.30. Timer A input (external trigger input in pulse width modulation mode)

Symbol	Descurator	Standard		Linit
	Parameter	Min.	Min. Max.	Unit
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 1.24.31. Timer A input (up/down input in event counter mode)

Symbol	Derometer	Standard	Unit	
	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

Timing requirements (referenced to Vcc = 3V, Vss = 0V at Ta = 25°C unless otherwise specified)

Symbol	Descurator	Star	Standard	
	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBiin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	160		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	160		ns

Table 1.24.32. Timer B input (counter input in event counter mode)

Table 1.24.33. Timer B input (pulse period measurement mode)

Symbol	Parameter	Standard		Unit
	i alameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 1.24.34. Timer B input (pulse width measurement mode)

Symbol	Parameter	Stan	Unit		
Cymbol	T drameter		Max.	Unit	
tc(TB)	TBin input cycle time	600		ns	
tw(TBH)	TBin input HIGH pulse width	300		ns	
tw(TBL)	TBin input LOW pulse width	300		ns	

Table 1.24.35. A-D trigger input

Symbol	Parameter		Standard		
Cymbol			Max.	Unit	
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns	
tw(ADL)	ADTRG input LOW pulse width	200		ns	

Table 1.24.36. Serial I/O

Symbol	Parameter	Stan	Unit	
Symbol			Max.	Offic
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	50		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.24.37. External interrupt INTi inputs

Symbol	Parameter		Standard		
		Min.	Max.	Unit	
tw(INH)	INTi input HIGH pulse width	380		ns	
tw(INL)	INTi input LOW pulse width	380		ns	

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = $25^{\circ}C$, CM15 = "1" unless otherwise specified)

0	Demonster	Magguring condition	Stan	11.4	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			60	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
t h(RD-AD)	Address output hold time (RD standard)		0		ns
t h(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			60	ns
t h(BCLK-ALE)	ALE signal output hold time	Figure 1.24.1	- 4		ns
td(BCLK-RD)	RD signal output delay time	5		60	ns
t h(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			60	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns
t h(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Table 1.24.38. Memory expansion and microprocessor modes (with no wait)

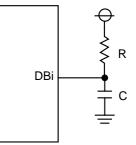
Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK) X 2} - 80$$
 [ns]

Note 2: This is standard value shows the timing when the output is off,

and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

 $t = -CR X \ln (1 - VOL / VCC)$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc, C = 30pF, R = $1k\Omega$, hold time of output "L" level is

 $t = -30 pF X 1 k\Omega X ln (1 - 0.2 Vcc / Vcc)$ = 6.7ns.

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = $25^{\circ}C$, CM15 = "1" unless otherwise specified)

Table 1.24.39. Memory expansion and microprocessor modes

	Demonster	Measuring condition	Stan	11		
Symbol	Parameter	measuring condition	Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			60	ns	
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns	
t h(RD-AD)	Address output hold time (RD standard)		0		ns	
t h(WR-AD)	Address output hold time (WR standard)		0		ns	
td(BCLK-CS)	Chip select output delay time			60	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns	
$t_{d(BCLK-ALE)}$	ALE signal output delay time			60	ns	
t h(BCLK-ALE)	ALE signal output hold time	Figure 1.24.1	- 4		ns	
td(BCLK-RD)	RD signal output delay time			60	ns	
t h(BCLK-RD)	RD signal output hold time		0		ns	
$t_{d(BCLK-WR)}$	WR signal output delay time			60	ns	
t h(BCLK-WR)	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns	
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns	
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns	
t h(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns	

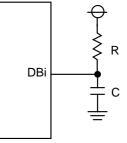
(when accessing external memory area with wait)

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 80$$
 [ns]

Note 2: This is standard value shows the timing when the output is off,

and doesn't show hold time of data bus. Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

 $t = -CR X \ln (1 - VOL / VCC)$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc, C = 30pF, R = 1k\Omega, hold time of output "L" level is

 $t = -30 \text{pF X } 1 \text{k}\Omega \text{ X In } (1 - 0.2 \text{Vcc} / \text{Vcc})$ = 6.7ns.

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = 25° C, CM15 = "1" unless otherwise specified)

Table 1.24.40. Memory expansion and microprocessor modes

0		Maggining condition	Standard			
Symbol	Parameter	Measuring condition	Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			60	ns	
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns	
t h(RD-AD)	Address output hold time (RD standard)		(Note)		ns	
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns	
td(BCLK-CS)	Chip select output delay time			60	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns	
t h(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns	
t h(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns	
$t_{d(BCLK-RD)}$	RD signal output delay time			60	ns	
t h(BCLK-RD)	RD signal output hold time		0		ns	
$t_{d(BCLK-WR)}$	WR signal output delay time	Figure 1.24.1		60	ns	
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns	
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns	
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns	
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns	
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			60	ns	
$t_{h(BCLK-ALE)}$	ALE signal output hold time (BCLK standard)		- 4		ns	
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note)		ns	
th(ALE-AD)	ALE signal output hold time(Address standard)		50		ns	
td(AD-RD)	Post-address RD signal output delay time		0		ns	
td(AD-WR)	Post-address WR signal output delay time		0		ns	
tdZ(RD-AD)	Address output floating start time			8	ns	

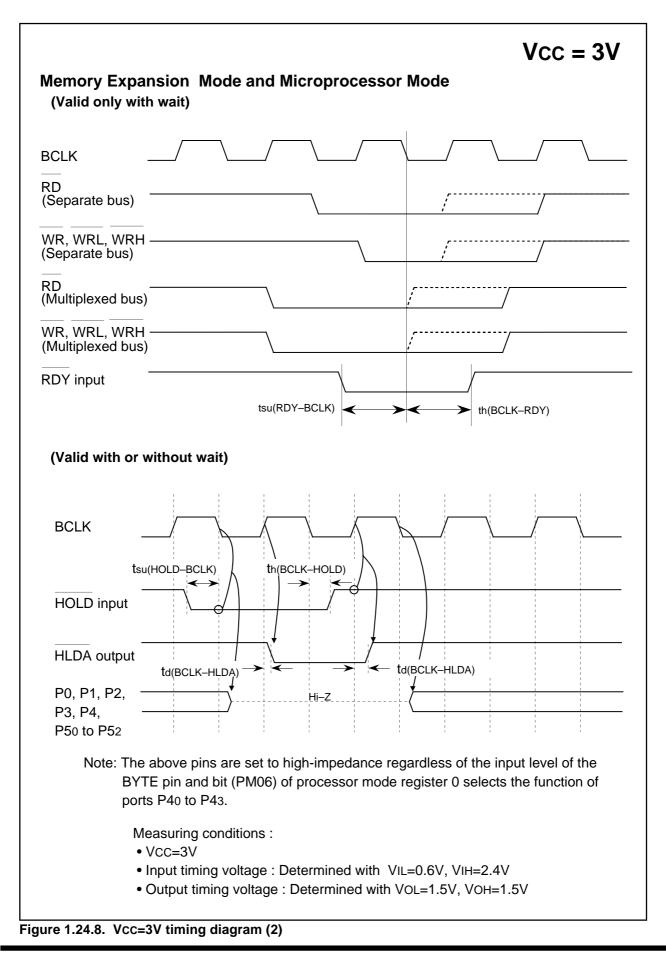
Note: Calculated according to the BCLK frequency as follows:

$$th(RD - AD) = \frac{10^{9}}{f(BCLK) \times 2}$$
[ns]
$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2}$$
[ns]

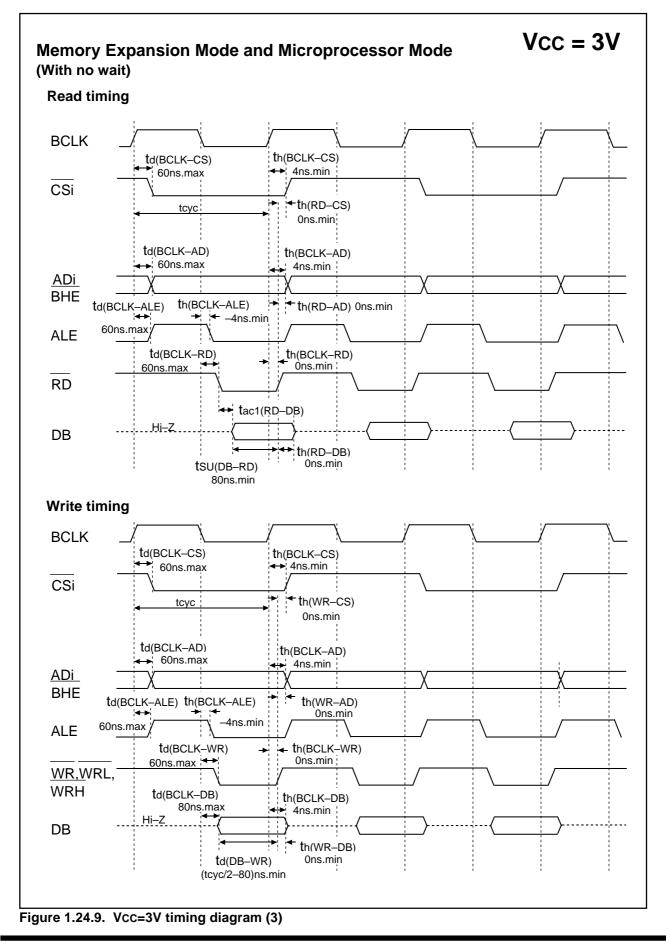
th(RD - CS) =
$$\frac{10^{\circ}}{f(BCLK) \times 2}$$
 [ns]

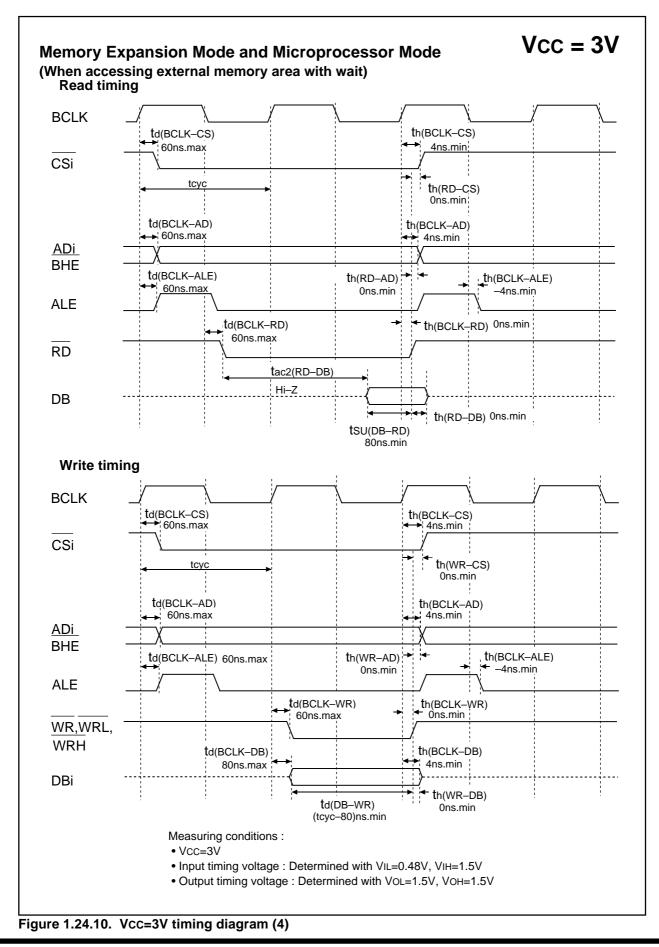

$$th(WR - CS) = \frac{10^9}{f(BCLK) \times 2}$$
 [ns]

$$td(DB - WR) = \frac{10^9 X 3}{f(BCLK) X 2} - 80$$
 [ns]


th(WR – DB) =
$$\frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]

$$td(AD - ALE) = \frac{10^9}{f(BCLK) \times 2} - 60$$
 [ns]





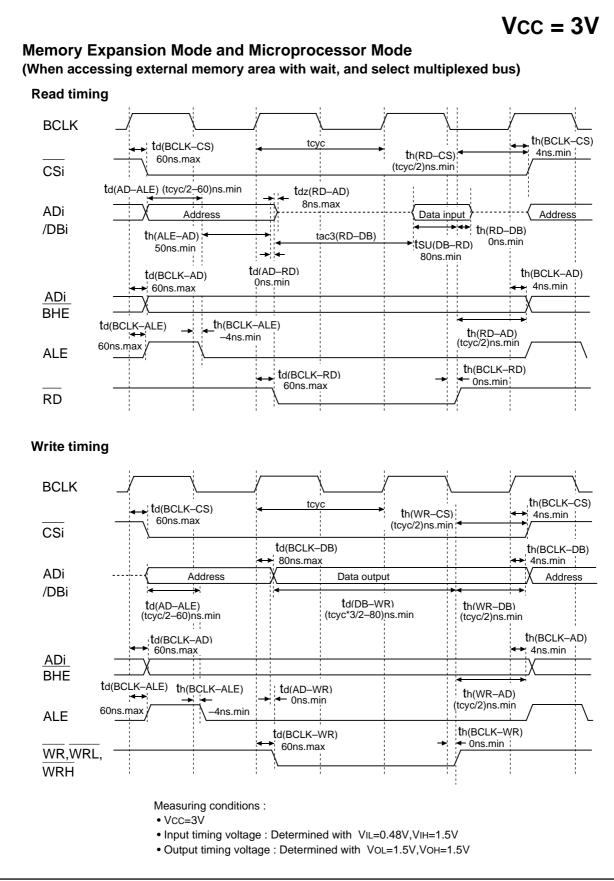


Figure 1.24.11. Vcc=3V timing diagram (5)

GZZ-SH11-53B <71A1>

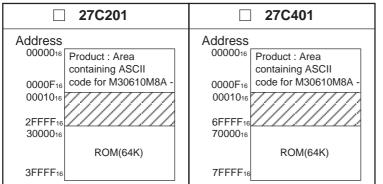
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610M8A-XXXFP/GP MASK ROM CONFIRMATION FORM

Date :	
Section head signature	Supervisor signature

Note : Please complete all items marked %.

1								
		Company		TEL			Submitted by	Supervisor
				,	,	ର ହ		
	-	name		()	atu		
%	Customer							
		Date issued	Date :			lss sigi		

% 1. Check sheet


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	M30610M8	A-XX	XFP	□ M	30610M8A-XXXGP
Checksum code for total	EPROM area :				(hex)

EPROM type :

(1) Write "FF16" to the lined area.

(2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30610M8A-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Both address and data are shown in hex.

Address			Address		
0000016	'M '	= 4D ₁₆	0000816	'A'	= 4116
0000116	'3'	= 3316	0000916	''	= 2D ₁₆
0000216	'0'	= 3016	0000A16		FF16
0000316	'6'	= 3616	0000B16		FF16
0000416	'1'	= 3116	0000C16		FF16
0000516	'0'	= 3016	0000D16		FF ₁₆
0000616	'M '	= 4D ₁₆	0000E16		FF16
0000716	'8'	= 3816	0000F16		FF ₁₆

Mask ROM number

GZZ-SH11-53B <71A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610M8A-XXXFP/GP MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30610M8A- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in.

Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :] M3	061	0M8	A-X	XXF	Ρ	M30610M8A-XXXGP
File code :							(hex)
Mask file name :							.MSK (alpha-numeric 8-digit)

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30610M8A-XXXFP, submit the 100P6S mark specification sheet. For the M30610M8A-XXXGP, submit the 100P6Q mark specification sheet.

% 3. Usage Conditions

(

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

1)	Which kind of XIN-XOUT oscillation circuit is used?							
,	Ceramic resonator		Quartz-crystal c	oscillator				
	🗌 External clock inpu	ut	Other ()				
	What frequency do you u	se?						
	f(XIN) =	MHz						
]						

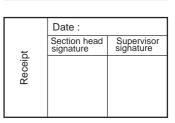
Mask ROM number

GZZ-SH11-53B <71A1>

	MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610M8A-XXXFP/GP MASK ROM CONFIRMATION FORM	
(2)	Which kind of YON YOUT appillation grouit is upod?	

(2)	Ceramic resonator	Quartz-crystal oscillator	
	What frequency do you use? f(XCIN) = kHz		
(3)	Which operation mode do you us Single-chip mode Microprocessor mode	e? □Memory expansion mode	
(4)	Which operating ambient temperative	ature do vou use?	
()		□ −20 °C to 75 °C □ −20 °C to 85 °C	□ -40 °C to 75 °C □ -40 °C to 85 °C
(5)	Which operating supply voltage d	lo you use?	
. /	□ 2.7V to 3.2V □ 4.2V to 4.7V	☐ 3.2V to 3.7V □ 4.7V to 5.2V	□ 3.7V to 4.2V □ 5.2V to 5.5V

Thank you cooperation.


% 4. Special item (Indicate none if there is no specified item)

GZZ-SH11-52B <71A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610MAA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	
-----------------	--

Note : Please complete all items marked %.

%	Guatamar	Company name		TEL ()	õ	ature	Submitted by	Supervisor
~	Customer	Date issued	Date :			su	sign		

*1. Check sheet

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	M30610MAA-XXXFP	M30610MAA-XXXGP
		_

Checksum code for total EPROM area :

EPROM type :

□ 27C201	□ 27C401
Address 0000016 Product : Area containing ASCII 0000F16 code for M30610MAA - 0001016 27FFF16 2800016	Address 0000016 Product : Area containing ASCII code for M30610MAA - 0001016 67FFF16 6800016
ROM(96K) 3FFFF ₁₆	ROM(96K) 7FFFF ₁₆

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30610MAA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Both address and data are shown in hex.

Address			Address		
0000016	'M '	= 4D16	0000816	'A'	= 4116
0000116	'3'	= 3316	0000916	''	= 2D ₁₆
0000216	'0'	= 3016	0000A16		FF16
0000316	'6'	= 3616	0000B16		FF16
0000416	'1'	= 3116	0000C16		FF 16
0000516	'0'	= 3016	0000D16		FF16
0000616	'M '	= 4D ₁₆	0000E16		FF16
0000716	'A'	= 4116	0000F16		FF16

(hex)

GZZ-SH11-52B <71A1>

Mask ROM number	
-----------------	--

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610MAA-XXXFP/GP MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
Code entered in source program	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 0C0000H \triangle .BYTE \triangle ' M30610MAA- '	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30610MAA- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :		M30610MAA-XXXFP						M30610MAA-XXXGP		
File code :									(hex)	
Mask file name :									.MSK (alpha-numeric 8-digit)	

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30610MAA-XXXFP, submit the 100P6S mark specification sheet. For the M30610MAA-XXXGP, submit the 100P6Q mark specification sheet.

% 3. Usage Conditions

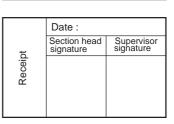
For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1)	Which kind of XIN-XOUT oscillation circuit is used?								
. ,	🗌 Ceran	nic resonator	Quartz-crystal	oscillator					
	Exterr	nal clock inpu	ıt	Other ()				
	What freque	ncy do you u	se?						
	f(XIN) =		MHz						

GZZ-SH11-52B <71A1>

	MITSUBISHI ELECTRIC SIN		Mask ROM number		
	MICROCOMPUTER M3061 MASK ROM CONFIRM				
(2)	Which kind of XCIN-XCOUT oscilla Ceramic resonator External clock input What frequency do you use? f(XCIN) = kHz	tion circuit is used? □ Quartz-crystal oscillator □ Other()			
(3)	Which operation mode do you us Single-chip mode Microprocessor mode	e? Memory expansion mode			
(4)	Which operating ambient temper □ −10 °C to 75 °C □ −10 °C to 85 °C			40 °C to 75 °C 40 °C to 85 °C	
(5)	Which operating supply voltage of 2.7V to 3.2V 4.2V to 4.7V	lo you use? □ 3.2V to 3.7V □ 4.7V to 5.2V		.7V to 4.2V .2V to 5.5V	

Thank you cooperation.


% 4. Special item (Indicate none if there is no specified item)

GZZ-SH11-51B <71A1>

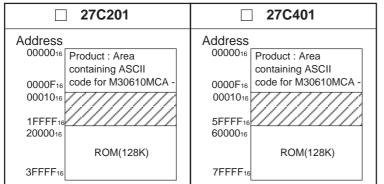
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610MCA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number

Note : Please complete all items marked %.

	Customer	Company name	-	TEL ()	õ	ature	Submitted by	Supervisor
%	Customer	Date issued	Date :			su	signa		

*1. Check sheet


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	M30610MC	A-XX	M30610MCA-XXXGP		
Checksum code for total E	PROM area :				(hex)

EPROM type :

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30610MCA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Both address and data are shown in hex.

Address			Address		
0000016	'M '	= 4D ₁₆	0000816	'A'	= 4116
0000116	'3'	= 3316	0000916	'_'	= 2D16
0000216	'0'	= 3016	0000A16		FF 16
0000316	'6'	= 3616	0000B16		FF 16
0000416	'1'	= 3116	0000C16		FF 16
0000516	'0'	= 3016	0000D16		FF 16
0000616	'M '	= 4D ₁₆	0000E16		FF 16
0000716	'C '	= 4316	0000F16		FF16

Mask ROM number

GZZ-SH11-51B <71A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610MCA-XXXFP/GP MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
Code entered in source program	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 0C0000H \triangle .BYTE \triangle ' M30610MCA- '	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30610MCA- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :		M30610MCA-XXXFP							M30610MCA-XXXGP	
File code :									(hex)	
Mask file name :									.MSK (alpha-numeric 8-digit)	

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30610MCA-XXXFP, submit the 100P6S mark specification sheet. For the M30610MCA-XXXGP, submit the 100P6Q mark specification sheet.

% 3. Usage Conditions

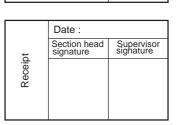
For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1) Which kind of XIN-XOUT oscillation circuit is used?

🗌 Ceram	ic resonator	Quartz-crystal	oscillato
🗌 Externa	al clock input	Other ()
What frequen	cy do you use?		
f(XIN) =	MHz		

GZZ-SH11-51B <71A1>

MITSUBISHI ELECTRIC SI	Mask	ROM number	
MICROCOMPUTER M3061 MASK ROM CONFIRM			
 Which kind of XCIN-XCOUT oscilla □ Ceramic resonator □ External clock input What frequency do you use? f(XCIN) = kHz 	Quartz-crystal oscillator		
 (3) Which operation mode do you us Single-chip mode Microprocessor mode 	se? □Memory expansion mode		
(4) Which operating ambient temper □ -10 °C to 75 °C □ -10 °C to 85 °C	rature do you use? □ –20 °C to 75 °C □ –20 °C to 85 °C		to 75 °C to 85 °C
 (5) Which operating supply voltage □ 2.7V to 3.2V □ 4.2V to 4.7V 	do you use? □ 3.2V to 3.7V □ 4.7V to 5.2V	□ 3.7V to □ 5.2V to	
Thank you cooperation.			


% 4. Special item (Indicate none if there is no specified item)

GZZ- SH12-35B <79A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612M4A-XXXFP/GP MASK ROM CONFIRMATION FORM

mber	number	lask ROM
------	--------	----------

Note : Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
				,	,	le Se		
	-	name		()	and		
*	Customer							
		Date issued	Date :			lssi sigi		

* 1. Check sheet

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	M30612M4A-XXXFP	M30612M4A-XXXGP

Checksum code for total EPROM area :

(hex)

EPROM type :

□ 27C201	□ 27C401
Address 0000016 Product : Area containing ASCII code for M30612M4A - 0001016 37FFF16 3800016 ROM(32K)	Address 0000016 Product : Area containing ASCII code for M30612M4A - 0001016 77FFF16 7800016 ROM(32K)
3FFFF ₁₆	7FFF ₁₆

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30612M4A-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address			Address		
0000016	'M '	= 4D16	0000816	'A'	= 4116
0000116	'3'	= 3316	0000916	'—'	= 2D16
0000216	'0'	= 3016	0000A16		FF16
0000316	'6'	= 3616	0000B16		FF16
0000416	'1'	= 3116	0000C16		FF16
0000516	'2'	= 3216	0000D16		FF16
0000616	'M '	= 4D16	0000E16		FF16
0000716	'4'	= 3416	0000F16		FF16

Mask ROM number

GZZ- SH12- 35B <79A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612M4A-XXXFP/GP MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 0C0000H \triangle .BYTE \triangle ' M30612M4A- '	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30612M4A- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :		M30612M4A-XXXFP							M30612M4A-XXXGP	
File code :									(hex)	
Mask file name :									.MSK (alpha-numeric 8-digit)	

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

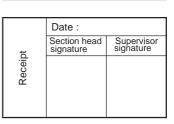
For the M30612M4A-XXXFP, submit the 100P6S mark specification sheet. For the M30612M4A-XXXGP, submit the 100P6Q mark specification sheet.

% 3. Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1)	Which kind of XIN-XOUT oscillation circuit is used?							
	Ceramic resona	tor	Quartz-crystal oscilla	tor				
	External clock in	iput	Other ()				
	What frequency do you	use?						
	f(XIN) =	MHz						

GZZ- SH12- 35B <79A1>


MITSUBISHI ELECTRIC SIN	Mask ROM number	
MICROCOMPUTER M3061 MASK ROM CONFIRM		
 Which kind of XCIN-XCOUT oscilla □ Ceramic resonator □ External clock input What frequency do you use? f(XCIN) = kHz 	Quartz-crystal oscillator	
 (3) Which operation mode do you us Single-chip mode Microprocessor mode 	e? Memory expansion mode	
 (4) Which operating ambient temper □ −10 °C to 75 °C □ −10 °C to 85 °C 	ature do you use? □ −20 °C to 75 °C □ −20 °C to 85 °C	□ –40 °C to 75 °C □ –40 °C to 85 °C
 (5) Which operating supply voltage of □ 2.7V to 3.2V □ 4.2V to 4.7V 	lo you use? □ 3.2V to 3.7V □ 4.7V to 5.2V	□ 3.7V to 4.2V □ 5.2V to 5.5V

Thank you cooperation.

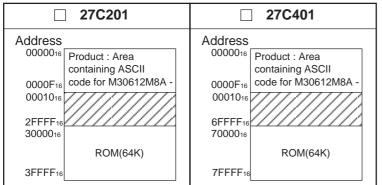
GZZ- SH12-34B <79A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612M8A-XXXFP/GP MASK ROM CONFIRMATION FORM

Note : Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
		. ,		,	,	ce		
		name		()	lan(
*	Customer							
		Date issued	Date :			Issi sigi		

*1. Check sheet


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	M30612M8	A-XX	M30612M8A-XXXGP		
Checksum code for total E	PROM area :				(hex)

EPROM type :

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30612M8A-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address			Address		
0000016	'M '	= 4D ₁₆	0000816	'A'	= 4116
0000116	'3'	= 3316	0000916	'—'	= 2D16
0000216	'0'	= 3016	0000A16		FF 16
0000316	'6'	= 3616	0000B16		FF16
0000416	'1'	= 3116	0000C16		FF 16
0000516	'2'	= 3216	0000D16		FF 16
0000616	'M '	= 4D16	0000E16		FF 16
0000716	'8'	= 3816	0000F16		FF 16

Mask ROM number

GZZ-SH12-34B <79A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT
MICROCOMPUTER M30612M8A-XXXFP/GP
MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 0C0000H \triangle .BYTE \triangle ' M30612M8A- '	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30612M8A- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :		M30612M8A-XXXFP						M30612M8A-XXXGP	
File code :									(hex)
Mask file name :									.MSK (alpha-numeric 8-digit)

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30612M8A-XXXFP, submit the 100P6S mark specification sheet. For the M30612M8A-XXXGP, submit the 100P6Q mark specification sheet.

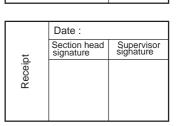
% 3. Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1)	Which kind of XIN-XOUT oscillation	on circuit is used?
()	Ceramic resonator	Quartz-crystal oscillator
	External clock input	Other ()
	What frequency do you use?	
	f(XIN) = MHz	
	. ,	

GZZ-SH12-34B <79A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT	Mask ROM number	
MICROCOMPUTER M30612M8A-XXXFP/GP MASK ROM CONFIRMATION FORM		
 Which kind of XCIN-XCOUT oscillation circuit is used? □ Ceramic resonator □ Quartz-crystal oscillator □ External clock input □ Other () What frequency do you use? f(XCIN) = kHz 		
 (3) Which operation mode do you use? ☐ Single-chip mode ☐ Memory expansion mode ☐ Microprocessor mode 		
 (4) Which operating ambient temperature do you use? □-10 °C to 75 °C □-10 °C to 85 °C □-20 °C to 85 °C 	□ –40 °C to 75 °C □ –40 °C to 85 °C	
(5) Which operating supply voltage do you use? □ 2.7V to 3.2V □ 3.2V to 3.7V □ 4.2V to 4.7V □ 4.7V to 5.2V	☐ 3.7V to 4.2V ☐ 5.2V to 5.5V	


Thank you cooperation.

GZZ-SH12-55B <71A1>

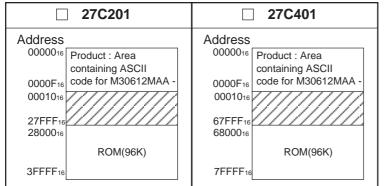
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612MAA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask	ROM	number	

Note : Please complete all items marked % .

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	lance		
~~	Customer	Date issued	Date :			lssu sign		

*1. Check sheet


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	M30612MAA-XXXFP			M30612MAA-XXXGP		
Checksum code for total E	PROM area :				(hex)	

EPROM type :

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30612MAA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address			Address		
0000016	'M '	= 4D ₁₆	0000816	'A'	= 4116
0000116	'3'	= 3316	0000916	'_'	= 2D ₁₆
0000216	'0'	= 3016	0000A16		FF 16
0000316	'6'	= 3616	0000B16		FF 16
0000416	'1'	= 3116	0000C16		FF 16
0000516	'2'	= 3216	0000D16		FF 16
0000616	'M '	= 4D16	0000E16		FF 16
0000716	'A'	= 4116	0000F16		FF 16

GZZ-SH11-55B <71A1>

Mask ROM number	
-----------------	--

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612MAA-XXXFP/GP MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
Code entered in source program	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 0C0000H \triangle .BYTE \triangle ' M30612MAA- '	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30612MAA- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :] M3	8061	2MA	A-X	XXF	M30612MAA-XXXGP	
File code :								(hex)
Mask file name :								.MSK (alpha-numeric 8-digit)

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30612MAA-XXXFP, submit the 100P6S mark specification sheet. For the M30612MAA-XXXGP, submit the 100P6Q mark specification sheet.

% 3. Usage Conditions

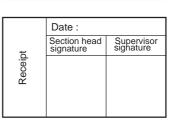
For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1)	Which kind of XIN-XOUT os	scillatio	n circuit is used?	
. ,	Ceramic resonator		Quartz-crystal osc	cillato
	External clock input	t	Other ()
	What frequency do you us	se?		
	f(XIN) =	MHz		
	. ,			

GZZ-SH11-55B <71A1>

	MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT	Mask ROM number	
	MICROCOMPUTER M30612MAA-XXXFP/GP MASK ROM CONFIRMATION FORM		
(2)	Which kind of XCIN-XCOUT oscillation circuit is used? Ceramic resonator Quartz-crystal oscillator External clock input Other () What frequency do you use? f(XCIN) = kHz		
(3)	Which operation mode do you use? Single-chip mode Memory expansion mode Microprocessor mode		
(1)	Which operating embient temperature de you use?		

(4) Which operating ambient ter	nperature do you use?	
□ –10 °C to 75 °C	□–20 °C to 75 °C	□ –40 °C to 75 °C
□ –10 °C to 85 °C	□ –20 °C to 85 °C	☐ –40 °C to 85 °C
(5) Which operating supply volta	age do you use?	
2.7V to 3.2V	3.2V to 3.7V	3.7V to 4.2V
□ 4.2V to 4.7V	□ 4.7V to 5.2V	□ 5.2V to 5.5V


Thank you cooperation.

GZZ-SH11-54B <71A1>

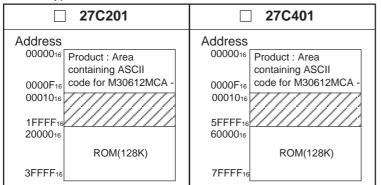
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612MCA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM nu	mber
IVIASK INDIVI IIU	

Note : Please complete all items marked %.

		Company		TEL			Su	ubmitted by	Supervisor
%	Customer	name		()	ance ature			
~	ousionier	Date issued	Date :			lssu sign			

*1. Check sheet


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

□ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	☐ M30612MC	A-X>	XFP	M30612MCA-XXXGP		
Checksum code for total E	PROM area :				(hex)	

EPROM type :

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30612MCA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address			Address		
0000016	'M '	= 4D16	0000816	'A'	= 4116
00001 16	'3'	= 3316	0000916	'—'	= 2D16
0000216	'0'	= 3016	0000A16		FF16
0000316	'6'	= 3616	0000B16		FF16
0000416	'1'	= 3116	0000C16		FF16
0000516	'2'	= 3216	0000D16		FF16
0000616	'M '	= 4D16	0000E16		FF16
0000716	'C '	= 4316	0000F16		FF16

Mask ROM number

GZZ-SH11-54B <71A1>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612MCA-XXXFP/GP MASK ROM CONFIRMATION FORM

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C201	27C401
Code entered in source program	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 0C0000H \triangle .BYTE \triangle ' M30612MCA- '	\triangle .SECTION \triangle ASCIICODE, ROM DATA \triangle .ORG \triangle 080000H \triangle .BYTE \triangle ' M30612MCA- '

Note: The ROM cannot be processed if the type No. written to the EPROM does not match the type No. in the check sheet.

□ In the case of floppy disks

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in. Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :		M3	061	2MC	A-X	XXF	M30612MCA-XXXGP	
File code :								(hex)
Mask file name :								.MSK (alpha-numeric 8-digit)

%2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30612MCA-XXXFP, submit the 100P6S mark specification sheet. For the M30612MCA-XXXGP, submit the 100P6Q mark specification sheet.

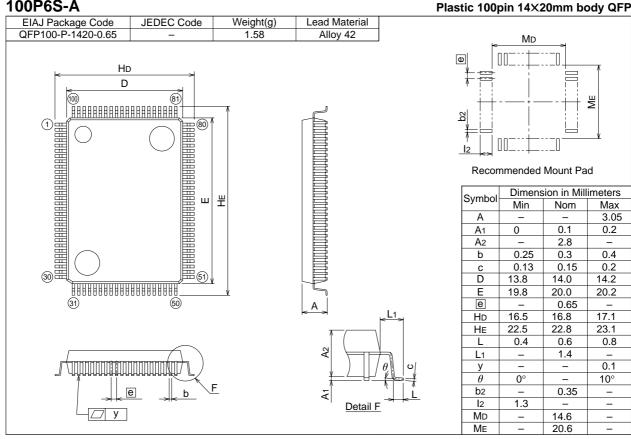
* 3. Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

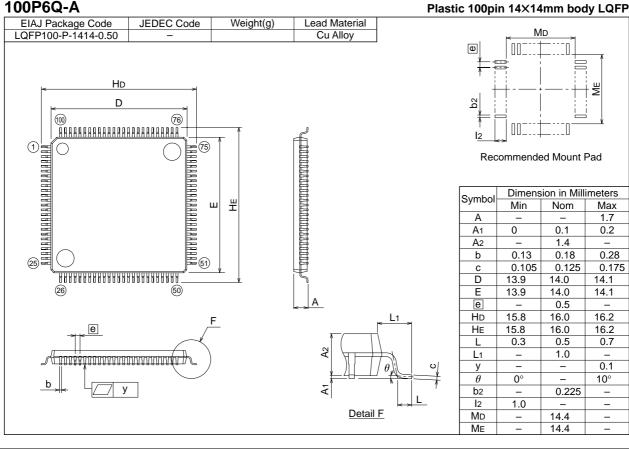
(1)	Which kind of XIN-XOUT oscilla	ation circuit is used?
	Ceramic resonator	Quartz-crystal oscilla
	External clock input	Other (
	What frequency do you use?	

nat freque	ncy do you use	∋?
f(XIN) =		MHz

tor)


GZZ-SH11-54B <71A1>

MITSUBISHI ELECTRIC SIN	Mask ROM number		
MICROCOMPUTER M30612 MASK ROM CONFIRM			
 Which kind of XCIN-XCOUT oscilla □ Ceramic resonator □ External clock input What frequency do you use? f(XCIN) = kHz 	Quartz-crystal oscillator		
 (3) Which operation mode do you us Single-chip mode Microprocessor mode 	e? ☐Memory expansion mode		
 (4) Which operating ambient temper □-10 °C to 75 °C □-10 °C to 85 °C 		□ –40 °C to 75 °C □ –40 °C to 85 °C	
 (5) Which operating supply voltage of □ 2.7V to 3.2V □ 4.2V to 4.7V 	do you use? □3.2V to 3.7V □4.7V to 5.2V	□ 3.7V to 4.2V □ 5.2V to 5.5V	


Thank you cooperation.

100P6S-A

100P6Q-A

Differences between M16C/61 group and M30600M8

Type name		M16C/61 group	M30600M8				
Internal memory	ROM	See Figure 4. ROM Expansion	64 K bytes				
size	RAM	4 K to 10 K bytes	10 K bytes				
Chip select		CS0 3000016 to FFFFF16 (besides internal area) CS1 2800016 to 2FFFF16 CS2 0800016 to 27FFF16 CS3 0400016 to 07FFF16	CS0 9000016 to FFFF16 (besides internal area) (besides internal area) (besides internal area) CS1 1000016 to 8FFF16 CS2 0800016 to 0FFF16 CS3 0400016 to 07FFF16				
Internal area on memory expansion mode		SFR area 0000016 to 003FF16 RAM area 0040016 to 03FF16 ROM area D000016 to FFFF16 (PM16=0) ROM area F800016 to FFFFF16 (PM16=1) (Note)	SFR area 0000016 to 003FF16 RAM area 0040016 to 03FFF16 ROM area D000016 to FFFFF16 (FIX)				
Serial I/O		3 channel (clocked SIO / UART) :2 channel (clocked SIO / UART / SIM)	2 channel (clocked SIO / UART)				
Port P70 to P73 function		Port P70 TxD2 / TA0out Port P71 RxD2 / TA0IN Port P72 <u>CLK2</u> / <u>TA1o</u> ut Port P73 CTS2 / RTS2 / TA1IN	Port P70 TA0out Port P71 TA0IN Port P72 TA1out Port P73 TA1IN				
Port output style		Port P70 and Port P71 are N-channel open drain Others are CMOS	All Ports are CMOS				
Port P93 and P94 pull-up set up condition		All of the following: • Pull-up is selected. • DA output is enabled. • Input port is selected.	Both of the following: • Pull-up is selected. • Input port is selected.				
Interrupt sources		 Internal 20 sources External 5 sources Software 4 sources Add 3 sources -trans., recv. and arbit. for UART2 	Internal 17 sources External 5 sources Software 4 sources				
DMA request		DMA0 DMA1 1100 UART2 trans. UART2 trans. 1101 UART2 recv. UART2 recv. 1110 A-D A-D 1111 UART1 trans. UART1 recv.	DMA0 DMA1 1100 UART1 trans. UART1 trans. 1101 UART1 recv. UART1 recv. 1110 A-D A-D 1111 prohibited prohibited				

Note: M30612M4A/E4 only.

(bytes)	0000016 003FF16 0040016 028FF16 028FF16 02C0016			1000016		CFFFF16 D000016 EFFFF16	FFFF16	2			
(bytes, RAM 10h	SFR area	Internal RAM					Internal ROM	Single-chip mode			
M30600M8 Memory area (ROM 64K bytes, RAM 10K bytes)	SFR area	Internal RAM		External	memory	Internally reserved	Internal ROM	Memory expansion mode			
130600M8 Memor	SFR area	Internal RAM			External memory area			Microprocessor mode		ernal devices)	
2			♦ 0400016 • 07FFF16 • 0800016	¥ 0FFFF16 1000016	 ▲ 8 B F F		FFFF16			use for exte	
			CS3(16K)	CS2(32K)	CS1(512K)		ion) (256K:Memory expansion) (448K:Microprocessor)		Internal area	External area(possible to use for external devices) Inhibited	
			CS3(16K)	CS2(128K)	CCS1(32K)	CSO	(800K:Memory expansion) (832K:Microprocessor)		Intern	External	
4K bytes)			0400016 07FFF16 0800016	27FFF16	2800016 2FFFF16 3000016		FFFF16	L			
2K bytes, RAM	SFR area	Internal RAM			External memory area			Microprocessor mode			
M30612M4A Memory area (ROM 32K bytes, RAM 4K bytes)	SFR area	Internal RAM Internally reserved			memory memory area	Internally reserved	Internal ROM	Memory expansion mode			
3061 2M4A Memo	SFR area	Internal RAM		Inhibited			Internal ROM	Single-chip mode			
ĕ	0000016 003FF16	0040016 013FF ¹⁶ 0140016		1000016		CFFFF16 D000016 F7FFF16	FFFF16				

MITSUBISHI ELECTRIC

查询"M30612M8A-XXXFP"供应商

Memory map Comparison

Internally reserved for ROM(possible to use for external devices under PM16=1)

查询"M30612M8A-XXXFP"供应商

-Keep safety first in your circuit designs!-

 Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon ductor product distributor for further details on these materials or the products con tained therein.

MITSUBISHI SEMICONDUCTORS M16C/61 Group Specification REV.E

Apr. First Edition 1999

Editioned by Committee of editing of Mitsubishi Semiconductor

Published by Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. ©1999 MITSUBISHI ELECTRIC CORPORATION