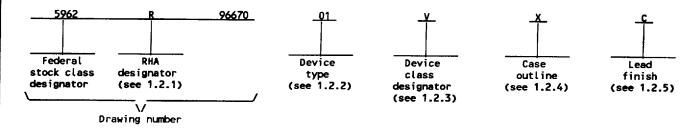
									REVIS	SIONS										
LTR 查讨			27004		" /++ [.5	DESC	RIPTI	NC						DATE	(YR-MO	-DA)		APP	ROVE	D
	HJ 390	211300	01001	<u>*E0</u>									1							
	•												•				•			
	····•					<u>.</u>		<u>.</u>												
REV	_																			
SHEET																				
REV																		L.		
SHEET	15	16	i				L													
REV STATI				RE	V															
OF SHEET				SH	EET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A				PRE	PAREI		~ #-				-					0.0			2 13 14	
							. Office	r		DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444										
	NDA		-	СНЕ	CKED		.			<u> </u>										3 14
MICR			1		M	onica L	Poelk	ang												
				APP	ROVE					міс	ROC	IRCU	IT, DI	GITA	L, RA	DIAT		IARDI	ENED	
THIS DRAW FOR	ING IS / USE BY		BLE	1	М	onica L	Poeil	ling		СМ	OS, E	BCD F	RATE	MUL	TIPLIE	ER, M	ONO	LITHIC	C SILI	CON
DEP AND AGI	ARTMEI ENCIES		E	DRA	WING	APPR	OVAL	DATE		1										
DEPARTM	ENT OF	DEFE	NSE			95-	12-28			SIZE	•	CAC	SE CO	DE	Τ	5	062	060	670	
AMS	C N/A			REV	ISION	LEVEI					<u>A</u>	6	726	58			302	-30	U 1 U	
1										SH	EET	1		OF		16				
DESC FORM 1	93			1			9		100											
JUL 94 DISTRIBUT			NTA	Approx	ved for	nublic				001.		66	3	I					5962-	E198-9


- -----

1. SCOPE

1.1 Stores 50 bits drawing forms a drawing forms a one part - one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes Q and M) and space application (device class V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class M microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

4.1

1.2 <u>PIN</u>. The PIN shall be as shown in the following example:

1.2.1 <u>RHA designator</u>. Device class M RHA marked devices shall meet the MIL-I-38535 appendix A specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	<u>Generic number</u>	<u>Circuit function</u>
01	4527в	Radiation hardened CMOS BCD rate multiplier

1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows:

<u>Device class</u>	Device requirements documentation
м	Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883
Q or V	Certification and qualification to MIL-I-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

<u>Outline letter</u>	Descriptive designator	<u>Ierminals</u>	<u>Package style</u>
E	CDIP2-T16	16	Dual-in-line package
X	CDFP4-F16	16	Flat package

1.2.5 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein) for class M or MIL-I-38535 for classes Q and V. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DA ^V TON, OHIO 45444		REVISION LEVEL	SHEET 2

DESC FORM 193A JUL 94

🔲 9004708 0017734 STT 📰

Supply voltage range (V _{DD})			-0.5 V dc to -0.5 V dc to V	+20 V dc V _{DD} + 0.5 Vdc
DC input current, any one input			±10 mA 100 mW	
Storage temperature range (T _{SIG})			-65°C to +150°	С
Lead temperature (soldering, 10 seconds) Thermal resistance, junction-to-case (O _{II}):		••••	+265°C	
			24°C/W	
Case X			29°C/W	
Thermal resistance, junction-to-ambient Θ _{JA}): Case E			73°C/₩	
Case X			114°C/W	
Junction temperature (T_j)		• • • •	+175°C	
Maximum power dissipation at T _A = +125°C (P _D): <u>4</u> / Case E			0.68 W	
Case X			0.44 ₩	
1.4 <u>Recommended operating conditions</u> .				
Supply voltage range (V _{DD})			3.0 V dc to +1	8 V dc
Case operating temperature range (T _r)			-55°C to +125°C	3
Input voltage (V _{IN})		• • • •	0 V to V _{DD} 0 V to V _{DD}	
Radiation features:				
Total dose	• • • • • • • • •		1 x 10 ⁵ Rads (
linear energy threshold, no upsets or latchup			> 75 MEV/(cm ² /)	ng) <u>5</u> /
Dose rate upset (20 ns pulse)		• • • •	> 5 x 10 ⁸ Rads	(Si)/s <u>5</u> /
Dose rate latch-up		••••	 > 75 MEV/(cm²/i > 5 x 10⁸ Rads > 2 x 10⁸ Rads > 5 x 10¹¹ Rads 	(S1)/S <u>5</u> / S(S1)/S 5/
·				
f Specifications and Standards specified in the solicita	ssue listed in th	at issue o	of the Departmen	nt of Defense Inde
2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita merein. SPECIFICATION WILITARY	ssue listed in th tion, form a part	at issue o of this d	of the Departmen Irawing to the e	nt of Defense Index
2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita merein. SPECIFICATION	ssue listed in th tion, form a part	at issue o of this d	of the Departmen Irawing to the e	nt of Defense Index
2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita merein. SPECIFICATION MILITARY MIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS	ssue listed in th tion, form a part	at issue o of this d	of the Departmen Irawing to the e	nt of Defense Index
 2.1 <u>Government specification. standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita herein. SPECIFICATION MILITARY NIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi 	ssue listed in th tion, form a part , General Specifi	at issue o of this d	of the Departmen Irawing to the e	nt of Defense Index
 2.1 <u>Government specification. standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita merein. SPECIFICATION MILITARY MIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY 	ssue listed in th tion, form a part , General Specifi	at issue o of this d	of the Departmen Irawing to the e	nt of Defense Index
2.1 <u>Government specification. standards, bulletin, and specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita herein. SPECIFICATION NIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines.</u>	ssue listed in th tion, form a part , General Specifi croelectronics.	at issue o of this d cation for	of the Departmen Irawing to the o	nt of Defense Inde extent specified
2.1 <u>Government specification. standards, bulletin, and specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicita herein. SPECIFICATION MILITARY MIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. ✓ Stresses above the absolute maximum rating may cause</u>	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage	at issue o of this d cation for	of the Departmen Irawing to the o	nt of Defense Inde extent specified
 2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of specifications and Standards specified in the solicital erein. SPECIFICATION WIL-I-38535 Integrated Circuits, Manufacturing STANDARDS WILITARY MIL-STD-883 Test Methods and Procedures for Mi MIL-STD-973 Configuration Management. MIL-STD-1835 Microcircuit Case Outlines. ✓ Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel / Unless otherwise specified, all voltages are reference 	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to Vec.	at issue o of this d cation for to the dev	of the Departmen Irawing to the o	nt of Defense Inde extent specified
2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of specifications and Standards specified in the solicita merein. SPECIFICATION WIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel Unless otherwise specified, all voltages are reference / The limits for the parameters specified herein shall	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to Vec.	at issue o of this d cation for to the dev	of the Departmen Irawing to the o	nt of Defense Inde extent specified
2.1 <u>Government specification, standards, bulletin, and</u> pecification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicital erein. SPECIFICATION MIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MIL-ITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines.	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu	at issue o of this d cation for to the dev ull specifi	of the Departmen Inawing to the o	nt of Defense Inde extent specified operation at the nd case temperatur
2.1 <u>Government specification. standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicital merein. SPECIFICATION MIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel / Unless otherwise specified, all voltages are reference / The limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. / If device power exceeds package dissipation capabilit based on θ_{JA} at the following rate:	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu	at issue o of this d cation for to the dev ull specifi	of the Departmen Inawing to the o vice. Extended ied V _{CC} range an derate linearl	nt of Defense Index extent specified operation at the nd case temperatur
<pre>2.1 <u>Government specification. standards, bulletin, and</u> pecification, standards, bulletin, and handbook of the i pecifications and Standards specified in the solicitaterein. SPECIFICATION MILITARY MIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. / Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel Unless otherwise specified, all voltages are reference The limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. If device power exceeds package dissipation capabilit based on θ_{JA}) at the following rate: Case E</pre>	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu	at issue o of this d cation for to the dev ull specifi sinking or	vice. Extended ied V _{CC} range and derate LinearL 13.7 mW/°C	nt of Defense Inde extent specified operation at the nd case temperatur
 2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of specifications and Standards specified in the solicitaterein. SPECIFICATION MILITARY MIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. ✓ Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel ✓ Unless otherwise specified, all voltages are reference. ✓ The limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. ✓ If device power exceeds package dissipation capabilit based on θ_JA) at the following rate: Case E	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu	at issue o of this d cation for to the dev ull specifi sinking or	of the Departmen Inawing to the o vice. Extended ied V _{CC} range an derate linearl	nt of Defense Inde extent specified operation at the nd case temperatur
 2.1 <u>Government specification, standards, bulletin, and</u> specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicitaterein. SPECIFICATION MILITARY MIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. ✓ Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel ✓ Unless otherwise specified, all voltages are reference. ✓ The limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. ✓ If device power exceeds package dissipation capabilit based on θ_J at the following rate: Case E	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu cy, provide heat s	at issue o of this d cation for to the dev ull specifi sinking or	vice. Extended ied V _{CC} range and derate LinearL 13.7 mW/°C	nt of Defense Inde extent specified operation at the nd case temperatur
2.1 <u>Government specification. standards, bulletin, and specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicitaterein. SPECIFICATION MIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MILLTARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. 7 Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel (Unless otherwise specified, all voltages are reference 7 If device power exceeds package dissipation capabilit based on θ_{JA}) at the following rate: Case E </u>	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu cy, provide heat s	at issue o of this d cation for to the dev ull specifi sinking or	vice. Extended ied V _{CC} range and derate LinearL 13.7 mW/°C	operation at the nd case temperatur y (the derating is
2.1 <u>Government specification, standards, bulletin, and specification, standards, bulletin, and handbook of the inf specifications and Standards specified in the solicitaterein. SPECIFICATION WIL-I-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mimule-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. 7 Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rely Unless otherwise specified, all voltages are reference. 7 It limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. 7 If device power exceeds package dissipation capabilit based on θ_{JA} at the following rate: Case E </u>	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu cy, provide heat s	at issue o of this d cation for to the dev ull specifi sinking or	vice. Extended ied V _{CC} range and derate LinearL 13.7 mW/°C	nt of Defense Inde extent specified operation at the nd case temperatur
2.1 <u>Government specification, standards, bulletin, and specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicitaterein. SPECIFICATION WILITARY MIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MILITARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel Unless otherwise specified, all voltages are reference. The limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. If device power exceeds package dissipation capabilit based on 0_{JA}) at the following rate: Case E </u>	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu cy, provide heat s	at issue o of this d cation for to the dev all specifi sinking or	vice. Extended ied V _{CC} range and derate lineart 13.7 mW/°C 8.8 mW/°C	operation at the nd case temperatur y (the derating is
2.1 <u>Government specification. standards, bulletin, and specification, standards, bulletin, and handbook of the i of Specifications and Standards specified in the solicital erein. SPECIFICATION MIL-1-38535 - Integrated Circuits, Manufacturing STANDARDS MIL1TARY MIL-STD-883 - Test Methods and Procedures for Mi MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect rel Unless otherwise specified, all voltages are reference. The limits for the parameters specified herein shall range of -55°C to +125°C unless otherwise noted. I f device power exceeds package dissipation capabilit based on θ_{JA} at the following rate: Case X </u>	ssue listed in th tion, form a part , General Specifi croelectronics. permanent damage iability. ed to V _{SS} . apply over the fu cy, provide heat s	at issue o of this d cation for to the dev all specifi sinking or	vice. Extended ied V _{CC} range and derate LinearL 13.7 mW/°C	operation at the nd case temperatur y (the derating is

<u>ب</u>

BULLETIN

▲查询#5962R9667001VEC"供应商

MIL-BUL-103 - List of Standard Microcircuit Drawings (SMD's).

HANDBOOK

MILITARY

MIL-HDBK-780 - Standardized Military Drawings.

(Copies of the specification, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

•

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

JUL 94

3.1 <u>Item requirements</u>. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.2 <u>Design. construction. and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V herein.

3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 herein.

3.2.2 <u>Ierminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Iruth table(s)</u>. The truth table(s) shall be as specified on figure 2.

3.2.4 Radiation test connections. The radiation test connections shall be as specified in table III herein.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes Q and V shall be in accordance with MIL-I-38535.

3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-1-38535.

3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.2 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.1 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M, the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of MIL-I-38535 and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4
DESC FORM 193A			

9004708 0017736 372

3.8 Notification of change for device class M. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. 查询 5962R9667001VEC 供应商

3.9 Verification and review for device class M. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 39 (see MIL-1-38535, appendix A).

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device class M, sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein). For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 or as modified in the device manufacturer's quality management (QM) plan. The modification in the QM plan shall not affect form, fit, or function as described herein.

4.2 <u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

4.2.1 Additional criteria for device class M.

a. Burn-in test, method 1015 of MIL-STD-883.

- (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
- (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-1-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535 or as modified in the device manufacturer's quality management (QM) plan.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.3.1 <u>Electrostatic discharge sensitivity (ESDS) qualification inspection</u>. ESDS testing shall be performed in accordance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification.

4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 or as specified in the QM plan including groups A, B, C, D, and E inspection 2 of MIL-1-38535 permits alternate in-line control testing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5

DESC FORM 193A JUL 94

■ 9004708 CO17737 209 ■

查询"5962R96670 Test	Symb		< +125°C	Device			imits	Uni
			se specified	type	subgroup	s Min	Max	1
Supply current	IDD	V _{DD} = 5 V V _{IN} = 0.0 V or V _{DD}		ALL	1, 3 1	·	5.0	μA
					2 1/		150	1
		V _{DD} = 10 V V _{IN} = 0.0 V or V _{DD}		ALL	1,3 1/		10	1
					2 1/		300	1
		V _{DD} = 15 V V _{IN} = 0.0 V or V _{DD}		ALL	1,3 1/		10]
					2 1/		600]
		$v_{DD} = 20 v, v_{IN} = 0$.0 V or V _{DD}	ALL	1		10]
					2		1000	
		M, D, L		ALL	1		25	
Low level output		$V_{DD} = 18 V, V_{IN} = 0$.0 V or V _{DD}	ALL	3	ļ	10	
current (sink)	IOL	$V_{DD} = 5 V$ $V_{0} = 0.4 V$ $V_{IN} = 0.0 V \text{ or } V_{DD}$		ALL	1	0.53		mΑ
		$v_{IN} = 0.0 \text{ V or } v_{DD}$			2 1/	0.36		
		$V_{} = 10 V$	· · · · · · · · · · · · · · · · · · ·	<u> </u>	3 1/	0.64		
		$V_{DD} = 10 V$ $V_{O} = 0.5 V$ $V_{IN} = 0.0 V \text{ or } V_{DD}$			1	1.4		
				-	2 1/ 3 1/	0.9		
		$V_{DD} = 15 V$		ALL	<u> </u>	1.6 3.5		
		$V_{DD} = 15 V$ $V_{O} = 1.5 V$ $V_{IN} = 0.0 V \text{ or } V_{DD}$			2 1/	2.4		
				-	3 1/	4.2		
High level output current (source)	гон	$V_{DD} = 5 V$		ALL	1		-0.53	mA
		$V_{DD} = 5 V$ $V_{O} = 4.6 V$ $V_{IN} = 0.0 V \text{ or } V_{DD}$		-	2 J/		-0.36	
				F	31/		-0.64	
		$V_{DD} = 5 V$ $V_{O} = 2.5 V$		ALL	1		-1.8	
		$V_{IN} = 0.0 V \text{ or } V_{DD}$			2 J/		-1.15	
					3 1/		-2.0	
		$V_{DD} = 10 V$ $V_{O} = 9.5 V$ $V_{IN} = 0.0 V \text{ or } V_{DD}$		ALL	1		-1.4	
		VIN = 0.0 V or VDD		Ļ	2 <u>1</u> /		-0.9	
					3 1/		-1.6	
		$V_{DD} = 15 V$ $V_{O} = 13.5 V$ $V_{IN} = 0.0 V \text{ or } V_{DD}$			1		-3.5	
		V _{IN} = 0.0 V or V _{DD}		L	2 1/		-2.4	
	_	l			3 1/		-4.2	
ee footnotes at end of	table.							
MICROCIRO		WING	SIZE A				596	2-966
DEFENSE ELECTRO DAYTON	, OHIO 454	PPLY CENTER 444		REVI	SION LEVE	Ĺ	SHEET	6

🔳 9004708 0017738 145 🔳

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Min Max All 1, 2, 3 4.95 V 1, 2, 3 9.95 1 V 1, 2, 3 14.95 0.05 All 1, 2, 3 14.95 V All 1, 2, 3 14.95 0.05 All 1, 2, 3 0.05 V 1, 2, 3 0.05 0.05 All 1, 2, 3 0.05 All 1, 2, 3 0.05 All 1, 2, 3 3 1, 2, 3 3 Y 1, 2, 3 3 Y 1, 2, 3 3.5 Y 1, 2, 3 7 Y 1, 2, 3 11 Y 1, 2, 3 11 Y All 1 -100 Y All 1 -1000 Y All 1 100 Y All 1 1000 Y All 1 -0.7 -2.8 Y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1, 2, 3 9.95 1 1, 2, 3 14.95 1 1, 2, 3 14.95 0.05 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 All 1, 2, 3 0.05 1 1, 2, 3 3 0.05 1 All 1, 2, 3 3 1 1, 2, 3 3 4 1 1, 2, 3 3.5 1 1 1, 2, 3 7 1 1 1 1, 2, 3 11 1 1 1 All 1 -100 1 1 All 1 -1000 1 1 All 1 100 1 1 2 1000 100 1 1 All 1 -0.7 -2.8 V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1, 2, 3 14.95 All 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 All 1, 2, 3 0.05 All 1, 2, 3 0.05 All 1, 2, 3 1.5 V 1, 2, 3 3 3 V All 1, 2, 3 3.5 4 All 1, 2, 3 7 4 1, 2, 3 11 1 1 All 1, 2, 3 11 1 All 1, 2, 3 11 1 All 1, 2, 3 11 1 All 1 -100 1 All 1 -100 1 All 1 100 1 All 1 100 1 All 1 -0.7 -2.8 V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	All 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 All 1, 2, 3 0.05 All 1, 2, 3 1.5 V 1, 2, 3 3 3 V 1, 2, 3 3 4 V All 1, 2, 3 3.5 4 1, 2, 3 7 4 V 1, 2, 3 7 1 1 1, 2, 3 11 5 V All 1, 2, 3 11 7 1, 2, 3 11 5 7 1, 2, 3 11 5 7 1, 2, 3 11 5 7 1, 2, 3 11 5 7 All 1 -100 7 3 -1000 5 7 All 1 100 7 3 1000 5 100 All 1 -0.7 -2.8 V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1, 2, 3 0.05 1, 2, 3 0.05 1, 2, 3 0.05 All 1, 2, 3 1.5 1, 2, 3 3 1, 2, 3 3 1, 2, 3 4 1, 2, 3 4 1, 2, 3 7 1, 2, 3 7 1, 2, 3 11 1, 2, 3 7 1, 2, 3 11 1, 2, 3 11 1, 2, 3 7 1, 2, 3 11 1, 2, 3 11 1, 2, 3 11 All 1 2 -1000 3 -100 All 1 1 100 2 1000 3 100 All 1 1 -0.7 4 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1, 2, 3 0.05 All 1, 2, 3 1.5 V 1, 2, 3 3 3 1, 2, 3 4 1, 2, 3 4 All 1, 2, 3 3.5 4 All 1, 2, 3 7 1, 2, 3 11 All 1, 2, 3 11 1 1 All 1, 2, 3 11 1 1 All 1 -100 1 1 All 1 100 1 1 All 1 100 1 1 All 1 100 1 1 All 1 -0.7 -2.8 V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	All 1, 2, 3 1.5 V 1, 2, 3 3 3 1, 2, 3 4 1, 2, 3 4 All 1, 2, 3 3.5 1, 2, 3 7 1 1, 2, 3 7 1 1, 2, 3 11 1 All 1 -100 nA All 1 -100 1 All 1 100 1 All 1 100 1 All 1 -0.7 -2.8 V
Input leakage current, high I II H II H II II H II II H II II II II	1, 2, 3 3 1, 2, 3 4 1, 2, 3 4 1, 2, 3 3.5 1, 2, 3 7 1, 2, 3 7 1, 2, 3 11 All 1 -100 2 -1000 3 -100 All 1 1 100 2 1000 3 100 All 1 1 -0.7 -2.8 V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1, 2, 3 4 1, 2, 3 3.5 1, 2, 3 7 1, 2, 3 7 1, 2, 3 11 1, 2, 3 11 1, 2, 3 11 1, 2, 3 11 All 1 -100 2 -1000 3 -100 All 1 100 2 1000 3 100 All 1 -0.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	All 1, 2, 3 3.5 1, 2, 3 7
$\frac{V_{OH} > 4.5 \text{ V}, \text{ V}_{OL} < 0.5 \text{ V}}{V_{DD} = 10 \text{ V}} + \frac{V_{DD} = 10 \text{ V}}{V_{OH} > 9.0 \text{ V}, \text{ V}_{OL} < 1.0 \text{ V}} + \frac{1}{1}, 2, 3 + \frac{1}{7} + \frac{1}{1}, 2, 3 + \frac{1}{1}, 3, 3 + \frac{1}{1}, 3, 3 + \frac{1}{1}, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	1, 2, 3 7 1, 2, 3 1 1, 2, 3 11 1, 2, 3 11 All 1 -100 2 -1000 3 -100 All 1 100 2 1000 3 100 All 1 -0.7 -2.8 V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I I I 1, 2, 3 11 I All 1 -100 2 -1000 3 -100 All 1 1 100 2 1000 3 100 All 1 -0.7 -2.8
$\begin{array}{c c} \text{Input leakage current,} \\ \text{low} \end{array} & I_{\text{IL}} & \underbrace{\begin{array}{c} V_{\text{IN}} = V_{\text{DD}} \text{ or GND, } V_{\text{DD}} = 20 \text{ V} \\ \hline V_{\text{IN}} = V_{\text{DD}} \text{ or GND, } V_{\text{DD}} = 20 \text{ V} \\ \hline V_{\text{IN}} = V_{\text{DD}} \text{ or GND, } V_{\text{DD}} = 20 \text{ V} \\ \hline V_{\text{IN}} = V_{\text{DD}} \text{ or GND, } V_{\text{DD}} = 18 \text{ V} \end{array}} & \begin{array}{c} \text{All} & 1 & -100 \\ \hline 2 & -1000 \\ \hline 3 & -100 \\ \hline 3 & -100 \\ \hline 3 & -100 \\ \hline 1 & 100 \\ \hline 1 & 100 \\ \hline 2 & 1000 \\ \hline 1 & 100 \\ \hline 2 & 1000 \\ \hline 1 & 100 \\ \hline $	All 1 -100 nA 2 -1000 nA 3 -100 All 1 100 3 100 All 1 -0.7 -2.8 V
Low IN DD IN DD IN DD IN DD IN <	2 -1000 3 -100 3 -100 All 1 100 2 1000 3 100 All 1 -0.7 -2.8 V
$\frac{v_{IN} = v_{DD} \text{ or } GND, v_{DD} = 18 \text{ V}}{V_{IN} = v_{DD} \text{ or } GND, v_{DD} = 20 \text{ V}} All 1 100 $ $\frac{v_{IN} = v_{DD} \text{ or } GND, v_{DD} = 20 \text{ V}}{v_{IN} = v_{DD} \text{ or } GND, v_{DD} = 20 \text{ V}} 3 100 $	3 -100 All 1 100 2 1000 3 100 All 1 -0.7 -2.8 V
$\frac{V_{IN} = V_{DD} \text{ or } GND, V_{DD} = 20 \text{ V}}{V_{IN} = V_{DD} \text{ or } GND, V_{DD} = 20 \text{ V}} $ $\frac{All}{2}$ $\frac{100}{2}$ $\frac{1000}{3}$ $\frac{100}{3}$	All 1 100 2 1000 3 100 All 1 -0.7 -2.8 V
high $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1000 3 100 ALL 1 -0.7 -2.8 V
$V_{IN} = V_{DD}$ or GND, $V_{DD} = 18 \text{ V}$ 3 100	3 100 All 1 -0.7 -2.8 V
	All 1 -0.7 -2.8 V
	ALL 1 -02 -28
M, D, L, R 2/ All 1 -0.2 -2.8	0.2 2.0
$ \begin{array}{c} \text{Ithreshold voltage,} \\ \text{delta} \end{array} \begin{array}{c} \Delta V_{\text{NTH}} \\ \end{array} \begin{array}{c} V_{\text{DD}} = 10 \ \text{V}, \ \text{I}_{\text{SS}} = -10 \ \mu\text{A}, \\ \text{M}, \ \text{D}, \ \text{L}, \ \text{R} \ \text{2} \end{array} \right) \begin{array}{c} \text{All} \\ \end{array} \begin{array}{c} 1 \\ \text{t}.0 \end{array} $	All 1 ±1.0
threshold voltage V_{PTH} $V_{\text{SS}} = 0.0 \text{ V}, I_{\text{DD}} = 10 \mu \text{A}$ All 1 0.7 2.8	ALL 1 0.7 2.8
M, D, L, R 2/ All 1 0.2 2.8	ALL 1 0.2 2.8
$\begin{array}{c} \Delta V_{\text{pTH}} \\ \text{delta} \end{array} \begin{array}{c} \Delta V_{\text{pTH}} \\ N, D, L, R \\ 2 \end{array} \begin{array}{c} 2 \\ 2 \\ 2 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	All 1 ±1.0

DESC FORM 193A JUL 94

9004708 0017739 081 🔳

Powered by ICminer.com Electronic-Library Service CopyRight 2003

_ ___ . __ .

查询"5962R9667001 Test	Symbol	-55°C <	itions ∑ _C ≤ +125°C wise specified	Device type	Group A subgroups	Lii	nits	Uni
e				c/pc	Subgi Cups	Min	Max	
Functional tests		$v_{DD} = 2.8 v, v_I$	N = V _{DD} or GND	ALL	7	V _{OH} > V _{DD} /2	VOL <	V
		$v_{DD} = 20 V, V_{IN}$	= V _{DD} or GND		7	*DD/~	*DD/ C	
		$V_{DD} = 18 \text{ V}, \text{ V}_{IN}$		ALL	8A			
		j	, L, R <u>2</u> /	ALL	7			
		$v_{DD} = 3.0 v, v_{II}$	and the second	ALL	8B			
			, L, R <u>2</u> /	ALL	7			
Input capacitance	CIN 1/	Any input, See 4		ALL	4		7.5	рF
Propagation delay <u>4</u> / time, clock to output	t _{PHL1} , t _{PLH1}	$v_{DD} = 5 v, v_{IN} =$	= V _{DD} or GND	ALL	9		300	ns
					10, 11		405	
			L, R <u>2</u> /		9		405	
		$v_{DD} = 10 v, v_{IN}$			9 <u>1</u> /		150	
		$V_{DD} = 15 V, V_{IN}$			<u>9 1</u> /		120	
Propagation delay <u>4</u> / time, clear to output	^t PHL2' ^t PLH2	V _{DD} = 5 V, V _{IN} =	V _{DD} or GND	ALL	9		760	ns
					10, 11		1026	
			L, R <u>2</u> /	Ļ	9		1026	
		$v_{DD} = 10 v, v_{IN}$		Ļ	9 1/		350	
Deeneestien deless (/		$v_{DD} = 15 v, v_{IN}$			<u>91</u> /		260	
Propagation delay <u>4</u> / time, cascade to	^t PHL3' ^t PLH3	$V_{DD} = 5 V, V_{IN} =$	V _{DD} or GND		9		180	ns
output				H	10, 11			
			L, R <u>2</u> /	-	9			
		$V_{DD} = 10 V, V_{IN} =$		-	9 1/			
Propagation delay <u>4</u> /	tauri	$\frac{V_{DD}}{V_{DD}} = 15 \text{ V}, \text{ V}_{IN} = \frac{15 \text{ V}}{100} = 5 \text{ V}, \text{ V}_{IN} = \frac{15 \text{ V}}{100} = 1$		ALL	9 <u>1</u> / 9			
time, clock to OUT	^t phl4, ^t plh4 1/	$V_{DD} = 10 \text{ V}, \text{ V}_{IN} =$		~~`` -	9			ns
	2	$v_{DD} = 15 \text{ V}, \text{ V}_{IN} =$		┝	9			
Propagation delay 4/	tows	$v_{DD} = 15 \text{ V}, \text{ V}_{IN} =$		ALL	9		+	
time, clock to INHIBIT out	t _{PHL5} 1/	$v_{DD} = 15 \text{ V}, \text{ V}_{IN} =$			9			ns
		$v_{DD} = 15 \text{ V}, \text{ V}_{IN} =$	⊢	9		Vol. <		
Propagation delay <u>4</u> /	t _{pi us}	$V_{DD} = 15 V, V_{IN} =$		ALL	9			ns
time, clock to INHIBIT out	t _{PLH5} リノ	$v_{DD} = 15 V, V_{IN} =$			9			ns
		$v_{DD} = 15 v, v_{IN} =$		┣	9			
ee footnotes at end of tab	ble.						190	
STAN	DARD		SIZE					
MICROCIRCU DEFENSE ELECTRON			A				5962	-966
DAYTON, C				REV	ISION LEVEL	-	SHEET	8

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Test	Symbol	Condition -55°C ≤ T _C	≤ +125°C	Device	Group A	Lii	nits	Uni
		unless otherwise	specified	type	subgroups	Min	Max	1
Propagation delay 4/ time, INHIBIT in to	tPHL6	$v_{DD} = 5 v, v_{IN} = v_{D}$	D or GND	ALL	9		260	ns
INHIBIT out	τ _{ΡLH6} 1/	$v_{DD} = 10 v, v_{IN} = v$	DD or GND		9		120	
		$v_{DD} = 15 v, v_{IN} = v$	_{DD} or GND		9		90	
Propagation delay <u>4</u> / time, clock to "9" or	tpHL7	$v_{DD} = 5 v, v_{IN} = v_{DI}$	or GND	ALL	9		600	ns
"15" out	^τ ρLH7 1⁄	$v_{DD} = 10 v, v_{IN} = v_{IN}$			9		250	
		$V_{DD} = 15 V, V_{IN} = V_{I}$	or GND		9		180	
Propagation delay <u>4</u> / time, set to out	tPHL8'	$v_{DD} = 5 v, v_{IN} = v_{DI}$		ALL	9		660	ns
• • •	^т рін8 1/	$v_{DD} = 10 v, v_{IN} = v_{I}$			9		300	
· · · · · · · · · · · · · · · · · · ·	ļ	$V_{DD} = 15 V, V_{IN} = V_{DD}$	D OF GND		9		220	
Transition time <u>4</u> /	t _{THL} , t _{TLH}	$v_{DD} = 5 v, v_{IN} = v_{DD}$	or GND	Αιι	9		200	ns
	i en			ŀ	10, 11		270	
		$v_{DD} = 10 \text{ V}, \text{ V}_{IN} = \text{ V}_{D}$			ע פ		100	
		$v_{DD} = 15 \text{ V}, v_{IN} = v_{D}$			9 J/		80	
Maximum clock input <u>4</u> / frequency	FCL	$v_{DD} = 5 v, v_{IN} = v_{DD}$	or GND	ALL	9	1.2		MHz
				ŀ	10, 11	0.89		
		$v_{DD} = 10 v, v_{IN} = v_{D}$		-	9 1/	2.5		
Minimum data antono //		$V_{DD} = 15 \text{ V}, \text{ V}_{IN} = V_{D}$	+		9 1/	3.5		
Minimum data setup <u>4</u> / time - inhibit		$v_{DD} = 5 v, v_{IN} = v_{DD}$		ALL	9		100	ns
		$v_{DD} = 10 v, v_{IN} = v_D$			9 9		40	
Minimum inhibit 4/	<u> </u>	$v_{DD} = 15 v, v_{IN} = v_D$		ALL	9		20 240	
removal time	t _{REM1}	$V_{DD} = 5 V, V_{IN} = V_{DD}$			9		130	ns
		$v_{DD} = 10 V, V_{IN} = V_{D}$ $V_{DD} = 15 V, V_{IN} = V_{D}$		-	9		110	
Minimum clock <u>4</u> /	t	$V_{DD} = 5 V, V_{IN} = V_{DD}$		ALL	9		330	ns
pulse width	1 ^t	$v_{DD} = 10 \text{ V}, \text{ V}_{IN} = V_{D}$		ŀ	9		170	
		$v_{DD} = 15 v, v_{IN} = v_{DD}$		ŀ	9		100	
Maximum clock rise <u>4</u> /	t _{RCL}	$v_{DD} = 5 V, V_{IN} = V_{DD}$		ALL	9		15	μs
and fall time	t _{FCL} 1/2/	$v_{DD} = 10 \text{ V}, \text{ V}_{IN} = \text{ V}_{II}$		ł	9		15	1
		$V_{DD} = 15 V, V_{IN} = V_{IN}$			9		15	1
ee footnotes at end of ta	ble.							
STAN MICROCIRC	NDARD	ING	SIZE A				596	2-966
DEFENSE ELECTRON DAYTON,	NICS SUPP	LY CENTER		RE	VISION LEVE	EL	SHEE	т 9

- -----

_ __ __ __ __ __

查询"5962R9667001V Test	Symbol	^[1] Conditions -55°C ≤ T _C ≤ +125°C unless otherwise specified	Device	Group A	Lin	nits	Unit
			type	subgroups	Min	Max	1
Minimum clear <u>4</u> / removal time	trem2	$V_{DD} = 5 V, V_{IN} = V_{DD}$ or GND	ALL	9		60	ns
	Ч	$V_{DD} = 10 V, V_{IN} = V_{DD}$ or GND	7	9		40	1
		$V_{DD} = 15 V, V_{IN} = V_{DD}$ or GND] [9		30	1
Minimum set removal <u>4</u> /	t _{REM3}	V_{DD} = 15 V, V_{IN} = V_{DD} or GND	ALL	9		150	ns
		$V_{DD} = 15 V, V_{IN} = V_{DD}$ or GND	1 [9		80	
		$V_{DD} = 15 V, V_{IN} = V_{DD}$ or GND	1 1	9		50	
Minimum set or clear <u>4</u> / pulse width	ty2	V _{DD} = 5 V, V _{IN} = V _{DD} or GND	ALL	9		160	ns
	ч	$V_{DD} = 10 V, V_{IN} = V_{DD}$ or GND	1 ľ	9		90	
		V _{DD} = 15 V, V _{IN} = V _{DD} or GND	1	9		60	1

- 1/ These tests are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which affect these characteristics.
- 2/ Devices supplied to this drawing will meet all levels M, D, L, R of irradiation. However, this device is only tested at the 'R' level. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C.
- 3/ For accuracy, voltage is measured differentially to V_{DD}. Limit is 0.050 V Max.
- 4/ Load capacitance (C_L) = 50 pF, load resistance (R_L) = 200 kΩ, and input rise and fall times (t_R, t_F) < 20 ns.
- 5/ If more than one unit is cascaded, t_{RCL} should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.
- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
- c. Jbgroup 4 (C_{IN} measurement) shall be measu __d only for the initial qualification and after process c. Jesign changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. Tests shall be sufficient to validate the limits defined in table I herein.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table 11A herein.

- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005.
 - b. $T_A = +125 \cdot C$, minimum.

JUL 94

c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 10

9004708 0017742 676 🛲

查询"5962R9667001VEC"供应商

Device types	ALL
Case outlines	E and X
Terminal number	Terminal symbol
1	"9" OUT
2	с
3	D
4	SET to "9"
5	TUO
6	OUT
7	INHIBIT OUT (CARRY)
8	v _{ss}
9	CLOCK
10	STROBE
11	INHIBIT IN (CARRY)
12	CASCADE
13	CLEAR
14	A
15	В
16	V _{DD}

FIGURE 1. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 11

JUL 94

- ----

9004708 0017743 502 🎟

-- -- -----

- --

查询"5962R9667001VEC"供应商

			N	umber of	pulses c	or input lo	gic leve				7
	D	с	В	•	CLK	INH IN	STR	CAS	CLR*	SET*	1
	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
	0 0 0 0	1 1 1	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
	1 1 1 1	0 0 0	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
	1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
	x x x	x x x	x x x	x x x	10 10 10	1 0 0	0 1 0	0 0 1	0 0 0	0 0 0]
	1 0 X	x x x	X X X	X X X	10 10 10	0 0 0	0 0 0	0 0 0	1 1 0	0 0 1	
		TANDAR			IRE 2. <u>I</u>	ruth_tables SIZE	=				5962-96
DEFENS			SUPPLY		ł			REVISIO	N LEVEL		SHEET

- - ---

查询"5962R9667001VEC"供应商

	Nur	mber of pulses or	output logic le	evel	
	OUT	συτ	INH OUT	"9" OUT	
	L	Н	1	1	
	1 2 3	1 2 3	1 1 1		
	4 5	4	1	1	
	6 7	6 7	1		
	8 9	8 9	1	1	
	8 9	8 9	1	1	
	8 9	8 9	1	1	
	8 9	8 9	1	1	
	** L	** H	H 1	** 1	
	н 10	***	1	1	
		10 Н Н	H H L		
	device dra ** = Depends on *** = Output sam values of	level set inputs shoul ws increased qui internal state	escent current w of counter. 6 lines of this	hen in this non-valid truth table (dependir	
MICRO	STANDARD CIRCUIT DRAWING		SIZE A		5962-9667
NEEENCE EI EA	TRONICS SUPPLY C	ENTER		REVISION LEVEL	

Powered by ICminer.com Electronic-Library Service CopyRight 2003

TABLE IIA. Electrical test requirements.

15962R£6667A2q1计后后nt供应商	Subgroups (in accordance with MIL-STD-883, TN 5005, table [)	Subgroups (in accordance with MIL-I-38535, table III)		
	Device class M	Device class Q	Device class V	
Interim electrical parameters (see 4.2)	1,7,9	1,7,9	1,7,9	
Final electrical parameters (see 4.2)	1,2,3,7,8,9,10,11 1/	1,2,3,7,8,9,10,11 1/	1,2,3,7,8,9,10,11 2/ 3/	
Group A test requirements (see 4.4)	1,2,3,4,7,8,9,10,11	1,2,3,4,7,8,9,10,11	1,2,3,4,7,8,9,10,1	
Group C end-point electrical parameters (see 4.4)	1,2,3,7,8,9,10,11	1,2,3,7,8,9,10,11	1,2,3,7,8,9,10,1 ⁻ <u>3</u> /	
Group D end-point electrical parameters (see 4.4)	1,7,9	1,7,9	1,7,9	
Group E end-point electrical parameters (see 4.4)	1,7,9	1,7,9	1,7,9	

1/ PDA applies to subgroup 1 and 7.

 $\frac{2}{7}$ PDA applies to subgroups 1, 7 and 9 and deltas.

J Delta limits as specified in table IIB shall be required where specified, and the delta limits shall be completed with reference to the zero hour electrical parameters (see Table I)

Table IIB. Burn-in and operating life test Delta parameters (+25°C)

Parameter	Symbol	Delta Limits
Supply current	IDD	±1.0 #A
Output current (sink) V _{DD} = 5.0 V	IOL	±20%
Output current (source) V _{DD} = 5.0 V, V _{OUT} = 4.6 V	Iон	±20%

4.4.2.2 <u>Additional criteria for device classes Q and Y</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MIL-I-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes M, Q and V shall be as specified in MIL-I-38535. End-point electrical parameters shall be as specified in table IIA herein.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019 and as specified herein.

4.4.4.1.1 <u>Accelerated aging test</u>. Accelerated aging tests shall be performed on all devices requiring a RHA level greater than 5k rads(Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at +25°C ±5°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 14

-- -

DESC FORM 193A JUL 94

9004708 0017746 211 🎟

4.4.4.2 <u>Dose rate induced latchup testing</u>. Dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein (see 1.4 herein). Tests shall be performed on devices, SEC, or approved ones structures and tethnology qualification and after any design or process changes which may effect the RHA capability of the process.

4.4.4.3 <u>Dose rate upset testing</u>. Dose rate upset testing shall be performed in accordance with test method 1021 of MIL-STD-883 and herein (see 1.4 herein).

- a. Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which may effect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified.
- b. Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-I-38535.

4.4.4.4 <u>Single event phenomena (SEP)</u>. SEP testing shall be required on class V devices (see 1.4 herein). SEP testing shall be performed on a technology process on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. The recommended test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. 0° ≤ angle ≤ 60°). No shadowing of the ion beam due to fixturing or package related effects is allowed.
- b. The fluence shall be ≥ 100 errors or $\ge 10^6$ ions/cm².
- c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be ≥ 20 microns in silicon.
- e. The test temperature shall be +25°C and the maximum rated operating temperature ±10°C.
- f. Bias conditions shall be defined by the manufacturer for latchup measurements.
- g. Test four devices with zero failures.

Table III. Irradiation test connections. 1/

0pen	Ground	$V_{DD} = 10 V \pm 0.5 V$
1, 5, 6, 7	8	2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16

1/ Each pin except V_{DD} and GND will have a series resistor of 47K Ω ±5%, for irradiation testing.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified as follows:

4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96670
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 15

DESC FORM 193A JUL 94

🖬 9004708 0017747 158 📖

6.3 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and 500 and 500 and the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.

6.5 <u>Abbreviations. symbols. and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-I-38535 and MIL-STD-1331.

6.6 One part - one part number system. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the three major microcircuit requirements documents (NIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The three military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all three documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria.

Military documentation format	Example PIN <u>under new system</u>	Manufacturing source listing.	Document <u>listing</u>
New MIL-H-38534 Standard Microcircuit Drawings	5962-XXXXXZZ(H or K)YY	QML - 38534	MIL-BUL-103
New MIL-1-38535 Standard Microcircuit Drawings	5962-XXXXXZZ(Q or V)YY	QML-38535	MIL-BUL-103
New 1.2.1 of MIL-STD-883 Standard Microcircuit Drawings	5962-XXXXXZZ(M)YY	MIL-BUL-103	MIL-BUL-103

6.7 Sources of supply.

6.7.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing.

6.7.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

6.8 <u>Additional information</u>. A copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA upset levels.
- b. Test conditions (SEP).
- c. Number of upsets (SEP).
- d. Number of transients (SEP).
- e. Occurrence of latchup (SEP).

STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-96670
		REVISION LEVEL	SHEET 16

JUL 94

🔳 9004708 0017748 094 📕