DU查询斯科·NCARONOU供应MARY COUNTER

FEATURES

Output capability: standard

I_{CC} category: MSi

GENERAL DESCRIPTION

The 74HC/HCT4520 are high-speed Si-gate CMOS devices and are pin compatible with the "4520" of the "40008" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4520 are dual 4-bit internally synchronous binary counters with an active HIGH clock input (nCP_0) and an active LOW clock input (nCP_1), buffered outputs from all four bit positions (nQ_0 to nQ_3) and an active HIGH overriding asynchronous master reset input (nMR).

The counter advances on either the LOW-to-HIGH transition of nCP_0 if nCP_1 is HIGH-to-LOW transition of nCP_1 if nCP_0 is LOW. Either nCP_0 or nCP_1 if nCP_0 is LOW. Either nCP_0 or nCP_0 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on nMR resets the counter $(nQ_0 \text{ to } nQ_3 = \text{LOW})$ independent of nCP_0 and nCP_1 .

APPLICATIONS

- Multistage synchronous counting
- Multistage asynchronous counting
- Frequency dividers

SYMBOL	DADAMETED	CONSTITUTE	TYF		
	PARAMETER	CONDITIONS	HC	нст	UNIT
tPHL/ tPLH	propagation delay nCP0, nCP1 to nQn		24	24	ns
^t PHL	propagation delay nMR to nQ _n	C _L = 15 pF V _{CC} = 5 V	13	13	ns
f _{max}	maximum clock frequency		68	64	MHz
CI	input capacitance		3.5	3.5	ρF
CPD	power dissipation capacitance per counter	notes 1 and 2	29	24	pF

GND = 0 V;
$$T_{amb} = 25$$
 °C; $t_r = t_f = 6$ ns

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

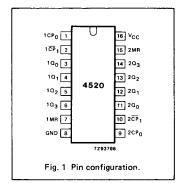
PD = CPD x VCC^2 x f_i + Σ (CL x VCC^2 x f_o) where:

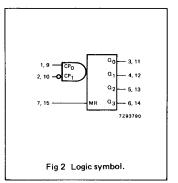
fi = input frequency in MHz

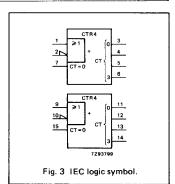
CL = output load capacitance in pF VCC = supply voltage in V

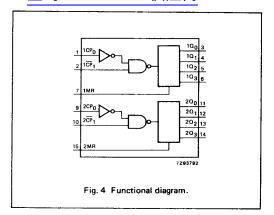
fo = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$


2. For HC the condition is V_I = GND to V_{CC}
For HCT the condition is V_I = GND to V_{CC} - 1.5 V


PACKAGE OUTLINES

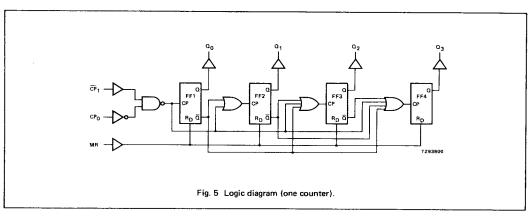

16-lead DIL; plastic (SOT38Z). 16-lead mini-pack; plastic (SO16; SOT109A).

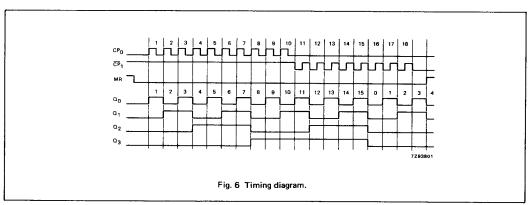

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1,9	1CP ₀ , 2CP ₀	clock inputs (LOW-to-HIGH, edge-triggered)
2, 10	1CP ₁ , 2CP ₁	clock inputs (HIGH-to-LOW, edge-triggered)
3, 4, 5, 6	1Ω ₀ to 1Ω ₃	data outputs
7, 15	1MR, 2MR	asynchronous master reset inputs (active HIGH)
8	GND	ground (0 V)
11, 12, 13, 14	2Ω ₀ to 2Ω ₃	data outputs
16	Vcc	positive supply voltage

FUNCTION TABLE

nCP ₀	nCP ₁	MR	MODE
↑ L ↓ X ↑ H X	H ↓ X ↑ L ↓ X	LLLLLH	counter advances counter advances no change no change no change no change Q0 to Q3 = LOW


H = HIGH voltage level


L = LOW voltage level

X = don't care

↑ = LOW-to-HIGH clock transition

↓ = HIGH-to-LOW clock transition

January 1986 1076

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; t_{Γ} = t_{f} = 6 ns; C_{L} = 50 pF

SYMBOL	PARAMETER	T _{amb} (°C) 74HC								TEST CONDITIONS	
		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay nCP ₀ to nQ _n		77 28 22	240 48 41		300 60 51		360 72 61	ns	2.0 4.5 6.0	Fig. 8
tPHL/ tPLH	propagation delay nCP ₁ to nQ _n		77 28 22	240 48 41		300 60 51		360 72 61	ns	2.0 4.5 6.0	Fig. 8
^t PHL	propagation delay nMR to nQ _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 9
tTHL/ tTLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 8
tW	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 7
tw	master reset pulse width HIGH	120 24 20	39 14 11		150 30 26		180 36 31		ns	2.0 4.5 6.0	Fig. 7
^t rem	removal time nMR to nCP0; nCP1	0 0	-28 -10 -8		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig. 7
t _{su}	set-up time nCP ₁ to nCP ₀ ; nCP ₀ to nCP ₁	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8
f _{max}	maximum clock pulse frequency	6.0 30 35	19 58 69		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig. 7

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

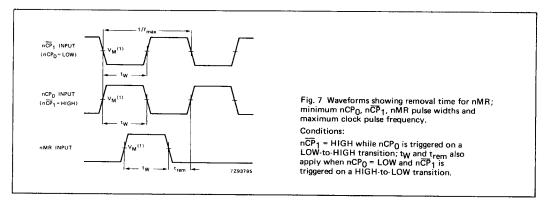
ICC category: MSI

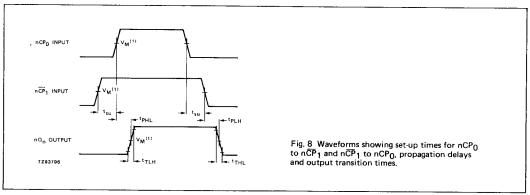
Note to HCT types

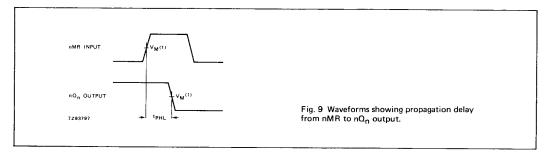
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nCP ₀ , nCP ₁	0.80 1.50

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
			74HCT								
		+25		-40 to +85		-40 to +125		UNIT	V _C C V	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay nCP ₀ to nQ _n		28	53		66		80	ns	4.5	Fig. 8
tPHL/ tPLH	propagation delay nCP1 to nQn		25	53		66		80	ns	4.5	Fig. 8
tPHL	propagation delay nMR to nQn		16	35		44		53	ns	4.5	Fig. 9
^t THL [/] ^t TLH	output transition time		7	15		19		22	ns	4.5	Fig. 8
tw	clock pulse width HIGH or LOW	20	10		25		30		ns	4.5	Fig. 7
tw	master reset pulse width HIGH	20	12		25		30		ns	4.5	Fig. 7
t _{rem}	removal time nMR to nCP ₀ ; nCP ₁	0	8		0		0		ns	4.5	Fig. 7
t _{SU}	set-up time nCP1 to nCP0; nCP0 to nCP1	16	6		20		24		ns	4.5	Fig. 8
fmax	maximum clock pulse frequency	30	58		24		20		MHz	4.5	Fig. 7


1078

March 1988

AC WAVEFORMS

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND \text{ to } V_{CC}$. HCT: $V_M = 1.3 \text{ V}$; $V_I = GND \text{ to } 3 \text{ V}$.

January 1986