Philips Semiconductors Product specification

Quad 2-input NAND gate 查询"74LV00DB-T"供应商

74LV00

FEATURES

Wide operating voltage: 1.0 to 5.5 V

Optimized for low voltage applications: 1.0 to 3.6 V

ullet Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V

• Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25$ °C

• Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25$ °C

Output capability: standard

I_{CC} category: SSI

DESCRIPTION

The 74LV00 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT00.

The 74LV00 provides the 2-input NAND function.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25$ °C; $t_r = t_f \le 2.5$ ns

· QIIID				
SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nA, nB to nY	C _L = 15 pF; V _{CC} = 3.3 V	7	ns
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per gate	See Notes 1 and 2	22	pF

NOTES:

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW) P_D is used to determine the dynamic power dissipation (P_D in $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where: f_1 = input frequency in MHz; C_L = output load capacitance in pF; f_0 = output frequency in MHz; V_{CC} = supply voltage in V; $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.
- 2. The condition is $V_I = GND$ to V_{CC} .

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
14-Pin Plastic DIL	–40°C to +125°C	74LV00 N	74LV00 N	SOT27-1
14-Pin Plastic SO	-40°C to +125°C	74LV00 D	74LV00 D	SOT108-1
14-Pin Plastic SSOP Type II	-40°C to +125°C	74LV00 DB	74LV00 DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV00 PW	74LV00PW DH	SOT402-1

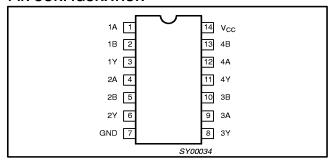
PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 4, 9, 12	1A – 4A	Data inputs
2, 5, 10, 13	1B – 4B	Data inputs
3, 6, 8, 11	1Y – 4Y	Data outputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

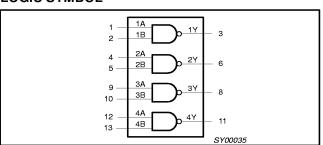
FUNCTION TABLE

INP	INPUTS						
nA	nB	nY					
L	L	Н					
L	Н	Н					
Н	L	Н					
Н	Н	L					

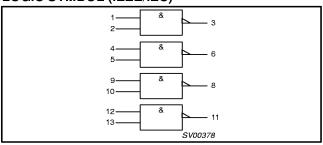
NOTES:

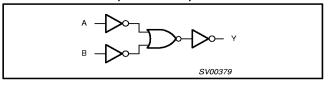

H = HIGH voltage level L = LOW voltage level

1998 Apr 20 2 853-1898 19257


Quad 2-input NAND gate 查询"74LV00DB-T"供应商

74LV00


PIN CONFIGURATION


LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM (ONE GATE)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	5.5	V
VI	Input voltage		0	_	V _{CC}	V
Vo	Output voltage		0	_	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$\begin{array}{c} V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V \\ \end{array}$	- - -	- - -	500 200 100 50	ns/V

NOTE:

^{1.} The LV is guaranteed to function down to $V_{CC} = 1.0V$ (input levels GND or V_{CC}); DC characteristics are guaranteed from $V_{CC} = 1.2V$ to $V_{CC} = 5.5V$.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
±l _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5V$	50	mA
±ΙΟ	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
±l _{GND} , ±l _{CC}	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	+125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2V	0.9			0.9		
 ,,	HIGH level Input	V _{CC} = 2.0V	1.4			1.4] ,
V _{IH}	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0		1
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		1
		V _{CC} = 1.2V			0.3		0.3	
 ,,	LOW level Input	V _{CC} = 2.0V			0.6		0.6] ,
V _{IL}	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	1
		V _{CC} = 4.5 to 5.5			0.3*V _{CC}		0.3*V _{CC}	1
		$V_{CC} = 1.2V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$		1.2				
	 <u>-</u>	$V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	1.8	2.0		1.8		1
V _{OH}	V _{OH} HIGH level output voltage; all outputs	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	2.5	2.7		2.5		v
	vonago, an outputo	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	2.8	3.0		2.8		1
		$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	4.3	4.5		4.3		1
V _{OH}	HIGH level output voltage;	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 6mA$	2.40	2.82		2.20		V
VOH	STANDARD outputs	$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 12mA$	3.60	4.20		3.50		
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0				
	1.014/11	$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
V _{OL}	LOW level output voltage; all outputs	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2] v
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
		$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2	
V _{OL}	LOW level output voltage;	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.25	0.40		0.50	
VOL.	STANDARD outputs	$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.35	0.55		0.65	

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS (Continued)

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

SYMBOL PARAMETER		TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	UNIT	
			MIN	TYP ¹	MAX	MIN	MAX	
lį	Input leakage current	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND			1.0		1.0	μΑ
Icc	Quiescent supply current; SSI	$V_{CC} = 5.5V$; $V_{I} = V_{CC}$ or GND; $I_{O} = 0$			20.0		40	μА
Δl _{CC}	Additional quiescent supply current	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$			500		850	μΑ

NOTE:

AC CHARACTERISTICS

GND = 0V; $t_r = t_f \le$ 2.5ns; $C_L = 50 pF$; $R_L = 1 K\Omega$

SYMBOL PARAME			CONDITION			LIMITS			
	PARAMETER	WAVEFORM	ORM		40 to +85 °	С	-40 to +125 °C		UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		45				
		Figures 1, 2	2.0		15	26		31	
t _{PHL/PLH}	t _{PHL/PLH} Propagation delay nA, nB to nY		Figures 1, 2	2.7		11	18		23
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		3.0 to 3.6		92	15		18	
			4.5 to 5.5		6.5 ³	11		14	

NOTES:

- 1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25$ °C.
- 2. Typical values are measured at $V_{\rm CC}$ = 3.3 V.
- 3. Typical values are measured at $V_{CC} = 5.0 \text{ V}$.

AC WAVEFORMS

 $V_{M} = 1.5 \ V$ at $V_{CC} \geq 2.7 \ V$ and $\leq 3.6 \ V;$

 $V_{M} = 0.5 \times V_{CC}$ at $V_{CC} < 2.7 \text{ V}$ and $\geq 4.5 \text{ V};$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

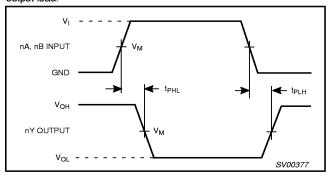


Figure 1. Input (nA, nB) to output (nY) propagation delays.

TEST CIRCUIT

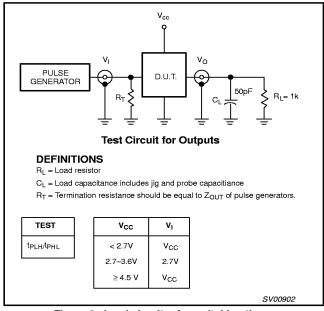
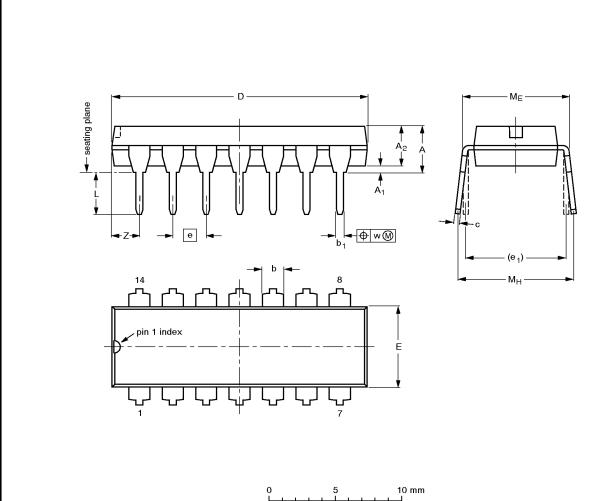



Figure 2. Load circuitry for switching times.

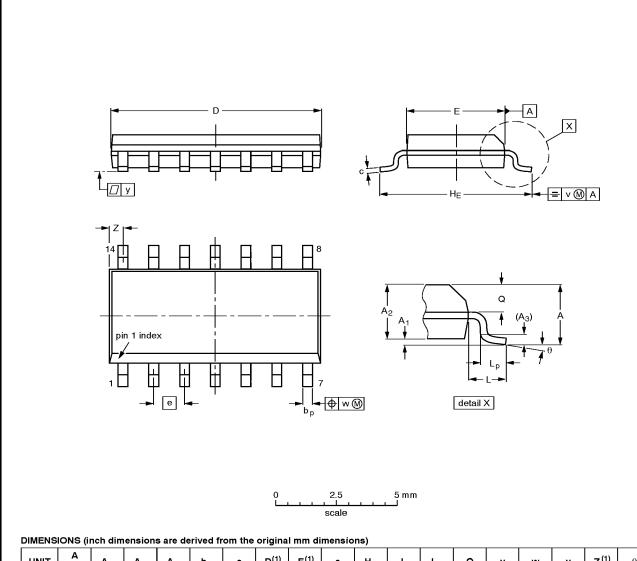
All typical values are measured at T_{amb} = 25°C.

DIP14: plastic dual in-line package; 14 leads (300 mil)

scale

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

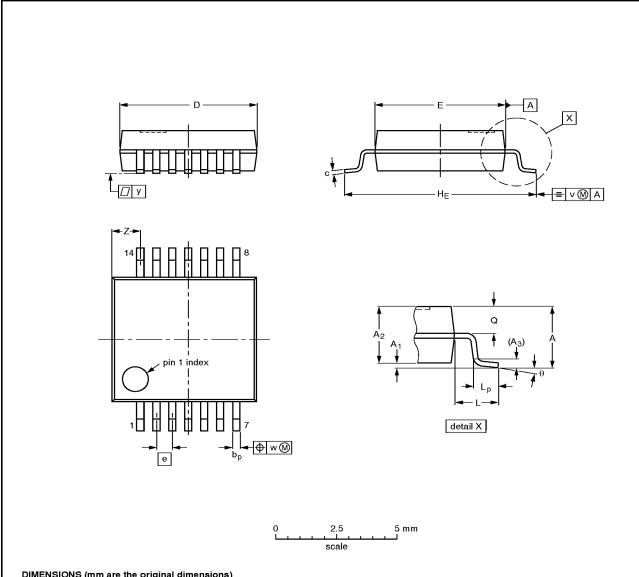

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	VERSION IEC JEDEC EIAJ			PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA			(92-11-17 95-03-11

SO14: plastic small outline package; 14 leads; body width 3.9 mm

DIMILIAS	WENSIONS (International are derived from the original film differsions)																	
UNIT	A max.	Α1	A ₂	Аз	bр	c	D ⁽¹⁾	E ⁽¹⁾	Ф	HE	L	Lp	O	v	8	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	เกษเฉ	0.0098 0.0039		0.01		0.0098 0.0075	0.35 0.34	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°


Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT108-1	076E06S	MS-012AB				91-08-13 95-01-23	

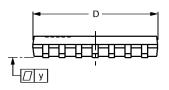
SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

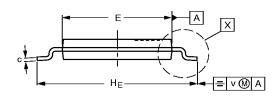
SOT337-1

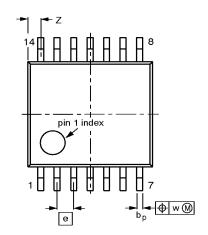
DIMENSIONS (mm are the original dimensions)

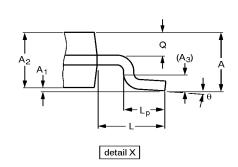
UNIT	A max.	A ₁	A ₂	A ₃	р _р	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

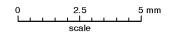
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT337-1		MO-150AB				-95-02-04 96-01-18	


1998 Apr 20 8


Product specification


TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm


SOT402-1

DIMENSIONS (mm are the original dimensions)

mile to the difference (in the difference)																		
UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT402-1		MO-153				94-07-12 95-04-04	