Features

- Epitaxial Planar Die Construction
- Ideal for Medium Power Amplification and Switching
- Lead Free/RoHS Compliant (Note 3)
- "Green" Device, Note 4 and 5

Mechanical Data

- Case: SOT-26
- Case Material: Molded Plastic, "Green" Molding Compound, Note 5. UL Flammability Classification Rating $94 \mathrm{~V}-0$
- Moisture Sensitivity: Level 1 per J-STD-020C

- Terminal Connections: See Diagram
- Terminals: Finish - Matte Tin Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Copper leadframe).
- Marking (See Page 2): K3M

SOT-26				
Dim	Min	Max	Typ	
A	0.35	0.50	0.38	
B	1.50	1.70	1.60	
C	2.70	3.00	2.80	
D	-	-	0.95	
F	-	-	0.55	
H	2.90	3.10	3.00	
J	0.013	0.10	0.05	
K	1.00	1.30	1.10	
L	0.35	0.55	0.40	
M	0.10	0.20	0.15	
α	0°	8°	-	
All Dimensions in	$\mathbf{m m}$			

- Ordering \& Date Code Information: See Page 2
- Weight: 0.008 grams (approximate)

Maximum Ratings @ $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	300	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	300	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	6.0	V
Collector Current (Note 1) (Note 2)	I_{C}	500	mA
Power Dissipation (Note 1)	P_{d}	300	mW
Thermal Resistance, Junction to Ambient (Note 1)	$\mathrm{R}_{\text {ӨJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage and Temperature Range	$\mathrm{T}_{\mathrm{j},}, \mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes: 1. Device mounted on FR-4 PCB, 1 inch $\times 0.85$ inch $\times 0.062$ inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
2. When operated under collector-emitter saturation conditions within the safe operating area defined by the thermal resistance rating ($\mathrm{R}_{\theta \mathrm{JA}}$), power dissipation rating $\left(\mathrm{P}_{\mathrm{d}}\right)$ and power derating curve (figure 1).
3. No purposefully added lead.
4. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com./products/lead_free/index.php.
5. Product manufactured with Date Code 0609 (week 9,2006) and newer are built with Green Molding Compound. Product manufactured prior to Date Code 0609 are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless othervise specified

	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 6)					
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ CBO	300	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ CEO	300	-	V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
Emitter-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }} \text { (}}$	6.0	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{l} \mathrm{I}^{2}=0$
Collector Cutoff Current	Icbo	-	100	nA	$\mathrm{V}_{\mathrm{CB}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$
Collector Cutoff Current	Iebo	-	100	nA	$\mathrm{V}_{\text {CE }}=6.0 \mathrm{~V}, \mathrm{l}$ C $=0$
ON CHARACTERISTICS (Note 6)					
DC Current Gain	$h_{\text {FE }}$	$\begin{aligned} & 25 \\ & 40 \\ & 40 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \\ & \mathrm{IC}=10 \mathrm{~mA}, \mathrm{VCE}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \end{aligned}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	-	0.5	V	$\mathrm{IC}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=2.0 \mathrm{~mA}$
Base-Emitter Saturation Voltage	$\mathrm{V}_{\text {BE(SAT }}$	-	0.9	V	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=2.0 \mathrm{~mA}$
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	C_{cb}	-	3.0	pF	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{I}_{\mathrm{E}}=0$
Current Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	50	-	MHz	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, I_{C}=10 \mathrm{~mA}, \\ & f=100 \mathrm{MHz} \end{aligned}$

Notes: 6. Short duration test pulse used to minimize self-heating effect.

Ordering Information (Note 5 \& 7)

Device	Packaging	Shipping
MMDTA42-7-F	SOT-26	$3000 /$ Tape \& Reel

Notes: 5. Product manufactured with Date Code 0609 (week 9, 2006) and newer are built with Green Molding Compound. Product manufactured prior to Date Code 0609 are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.
7. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

K3M = Product Type Marking Code
YM = Date Code Marking
$Y=$ Year ex: $P=2003$
$\mathrm{M}=$ Month ex: $9=$ September

Date Code Key

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	R	S	T	U	V	W	X	Y	Z

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D

Fig. 1, Max Power Dissipation vs Ambient Temperature

I , COLLECTOR CURRENT (mA)
Fig. 3, DC Current Gain vs Collector Current

I_{C}, COLLECTOR CURRENT (mA)
Fig. 5, Gain Bandwidth Product vs Collector Current

IMPORTANT NOTICE
查询＂MMDTA 42＂供应商
Biodes incorporated and its subsidiaties reserve the right to make modifications，enhancements，improvements，corrections or other changes without further notice to any product herein．Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein；neither does it convey any license under its patent rights，nor the rights of others．The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website，harmless against all damages．

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated．

