

Logic Diagram

Absolute Maximum Ratings（Note 2）	
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V
DC Input Diode Current（ I_{IK} ）	
$V_{1}=-0.5 \mathrm{~V}$	－20 mA
$\mathrm{V}_{1}=\mathrm{V}_{C C}+0.5 \mathrm{~V}$	＋ 20 mA
DC Input Voltage（ V_{l} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current（ I_{OK} ）	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
DC Output Source or Sink Current（ I_{O} ）	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per Output Pin（ICC or $\mathrm{I}_{\mathrm{GND}}$ ）	$\pm 50 \mathrm{~mA}$
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature（ T_{J} ）	
PDIP	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.0 V to 6.0 V
Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	$125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC}	
$\mathrm{V}_{\mathrm{CC}} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	
Note 2：Absolute maximum ratings are those values beyond which damage	
to the device may occur．The databook specifications should be met，with－	
out exception，to ensure that the system design is reliable over its power	
suply，temperature，and output／input loading variables．Fairchild does not	
recommend operation of FACT TM circuits outside databook specifications．	

DC Electrical Characteristics

Symbol	Parameter	V_{CC} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note 3) } \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 3) } \end{aligned}$
I_{IN} （Note 5）	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\mathrm{l}_{\text {OLD }}$	Minimum Dynamic Output Current（Note 4）	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V} \mathrm{Max}$
$\mathrm{I}_{\text {OHD }}$		5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{C C}$ （Note 5）	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
$\mathrm{l}_{\text {OZT }}$	Maximum I／O Leakage Current	5.5		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$

Note 3：All outputs loaded；thresholds on input associated with output under test
Note 4：Maximum test duration 2.0 ms ，one output loaded at a time．
Note 5： I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit＠ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ．

AC Electrical Characteristics								
Symbol	Parameter	V_{cc} （V） （Note 6）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\overline{t_{\text {PLL }}}$	Propagation Delay Clock to Bus	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 1.5 \end{gathered}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & \hline 15.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \end{aligned}$	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Clock to Bus	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 1.5 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 13.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.5 \end{aligned}$	ns
${ }_{\text {tpLH }}$	Propagation Delay Bus to Bus	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 11.0 \\ 7.5 \end{gathered}$	ns
${ }_{\text {t }}$	Propagation Delay Bus to Bus	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 1.5 \end{gathered}$	$\begin{aligned} & \hline 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 8.0 \end{gathered}$	ns
$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { SBA or } S A B \text { to } A_{n} \text { or } B_{n} \\ & \text { (with } A_{n} \text { or } B_{n} \text { HIGH or LOW) } \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	ns
$\overline{t_{\text {PHL }}}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { SBA or } S A B \text { to } A_{n} \text { or } B_{n} \\ & \text { (with } A_{n} \text { or } B_{n} \text { HIGH or LOW) } \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 12.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \end{aligned}$	ns
$\overline{t_{\text {PZH }}}$	$\begin{aligned} & \text { Enable Time } \\ & \bar{G} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.5 \\ 9.0 \end{array}$	ns
$\overline{t_{\text {PZL }}}$	$\begin{aligned} & \text { Enable Time } \\ & \bar{G} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 7.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 12.5 \\ & 9.0 \end{aligned}$	ns
	Disable Time \bar{G} to A_{n} or B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	ns
$\overline{\text { tpLZ }}$	$\begin{aligned} & \hline \text { Disable Time } \\ & \bar{G} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 7.0 \\ 5.5 \end{gathered}$	$\begin{gathered} \hline 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	ns
$\overline{t_{\text {PzH }}}$	Enable Time DIR to A_{n} or B_{n}	$\begin{gathered} 3.3 \\ 5.0 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 10.5 \end{aligned}$	ns
$\overline{t_{\text {PZL }}}$	$\begin{aligned} & \text { Enable Time } \\ & \text { DIR to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns
$\overline{\mathrm{t}_{\text {PHz }}}$	Disable Time DIR to A_{n} or B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 13.5 \\ & 10.0 \end{aligned}$	ns
tPLZ	Disable Time DIR to A_{n} or B_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	V_{cc} （V） （Note 7）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ		teed Minimum	
t_{s}	Setup Time，HIGH or LOW， Bus to Clock	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	ns
t_{H}	Hold Time，HIGH or LOW， Bus to Clock	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline-1.5 \\ & -0.5 \end{aligned}$		$\begin{gathered} 0 \\ 1.0 \end{gathered}$	ns
$t_{\text {w }}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	3.5 3.0	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	ns

Note 7：Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ ；Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	65.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{/ / \mathrm{O}}$	Input／Output Capacitance	15.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

Fairchild does not assume any responsibility for use of any circuitry described，no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications．

LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or（b）support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be rea－ sonably expected to result in a significant injury to the user．

2．A critical component in any component of a life support device or system whose failure to perform can be rea－ sonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．
www．fairchildsemi．com

