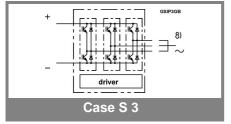
SKiiP 942GB120-317CTV ...

6 6 6 6

SKiiP[®] 2

2-pack - integrated intelligent Power System

Power section


SKiiP 942GB120-317CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request

Abstance	∰Maximum Ratings [⊤]	T_s = 25 °C unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (70) °C	900 (675)	Α				
Inverse diode							
$I_F = -I_C$	T _s = 25 (70) °C	900 (675)	Α				
I _{FSM}	$T_{j} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}.$	6480	Α				
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	210	kA²s				
T _j , (T _{stg})		- 40 (- 25) + 150 (125)	°C				
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V				

Characteristics					$T_s = 25$ °C unless otherwise specified			
Symbol	Conditions				min.	typ.	max.	Units
IGBT					•			
V _{CEsat}	I _C = 750 A	, T _i = 25 (1	25) °C			2,6 (3,1)	3,1	V
V _{CEO}	$T_i = 25 (12)$	5) °C				1,2 (1,3)	1,5 (1,6)	V
r _{CE}	$T_{j} = 25 (12)$					1,8 (2,3)	2,1 (2,7)	mΩ
I _{CES}	$V_{GE} = 0 V$	$V_{CE} = V_{CE}$	ES,			(45)	1,2	mA
	$T_i = 25 (12)$	5) °C						
E _{on} + E _{off}	I _C = 750 A	, V _{CC} = 600	O V				225	mJ
	T _i = 125 °C, V _{CC} = 900 V						397	mJ
R _{CC' + EE'}	terminal ch	nip, T _i = 12	5 °C			0,17		mΩ
L _{CE}	top, botton	า ้				5		nΗ
C _{CHC}	per phase,	per phase, AC-side				4,2		nF
Inverse diode								
$V_F = V_{EC}$	$I_F = 750 A$		25) °C			2,1 (2)	2,6	V
V_{TO}		T _i = 25 (125) °C					1,4 (1,1)	V
r _T		$T_{j} = 25 (125) ^{\circ}C$				1,1 (1,3)		mΩ
E _{rr}	$I_C = 750 \text{ A}, V_{CC} = 600 \text{ V}$						29	mJ
	T _j = 125 °C, V _{CC} = 900 V						37	mJ
Mechani	cal data							
M_{dc}	DC termina	als, SI Unit	s		6		8	Nm
M _{ac}	AC terminals, SI Units				13		15	Nm
W	SKiiP® 2 System w/o heat sink					2,7		kg
w	heat sink					6,6		kg
Thermal	characte	ristics (P16 hea	t sink; 2	95 m³/h)	; " _r " refer	ence to	
	ture sens	or			i	•		
$R_{th(j-s)I}$	per IGBT						0,03	K/W
$R_{th(j-s)D}$	per diode						0,083	K/W
R _{th(s-a)}	per module						0,036	K/W
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)			
_	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	3	23	4		1	0,13	0,001	
$Z_{th(j-r)D}$	9	64	10		1	0,13	0,001	
$Z_{th(r-a)}$	11,1	18,3	3,5	3,1	204	60	6	0,02

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 942GB120-317CTV ...

	010		1491		191
F		*			-
E					
₭		+			
-170		1.	D 4	· ·	101

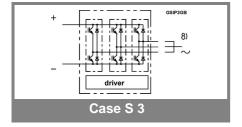
SKiiP® 2

查询"SKIIP942GB120-317C Abstice Maximum Ratings Symbol Conditions **Values** Units stabilized 15 V power supply 18 V_{S1} 30 V_{S2} unstabilized 24 V power supply V V_{iH} 15 + 0.3٧ input signal voltage (high) dv/dt secondary to primary side 75 kV/μs input / output (AC, r.m.s., 2s) 3000 Vac V_{isollO} $\rm V_{\rm isol12}$ output 1 / output 2 (AC, r.m.s., 2s) 1500 Vac switching frequency 16 kHz f_{max} operating / storage temperature - 25 ... + 85 °C $T_{op} (T_{stq})$

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 942GB120-317CTV


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP® 2 gate driver)

Characte	(T _a = 25 °C			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	260+32	260+320*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	200+21	200+210*f/f _{max} +1,0*(I _{AC} /A)		
V_{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		900		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{OI}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1125		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

