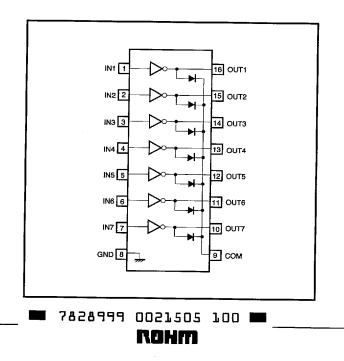
High voltage, high current Darlington transistor array BA12001B/BA12002/BA12003B/BA12003BF/ BA12004B

The BA12001B, BA12002, BA12003B, BA12003BF, and BA12004B are high current transistor arrays featuring high voltage withstand resistance and consisting of seven circuits of Darlington transistors.

Because it incorporates built-in surge-absorbing diodes and base current-control resistors needed when using inductive loads such as relay coils, attachments can be kept to a minimum.

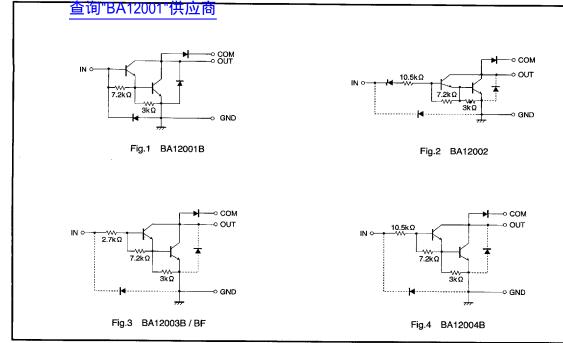
With an output withstanding voltage as high as 60V (BA12001B, BA12003B, BA12003BF, and BA12004B) and an output current (sink current) of 500mA, this product is ideal for use with various drivers and as an interface with other elements.

Applications


Drivers for LEDs, lamps, relays and solenoids Interface with other elements

Features

- 1) High output current. (lout = 500mA max.)
- 2) High output voltage withstand resistance. ($V_{OUT} = 50V \text{ max.}$)
- 3) Seven Darlington transistors built in.
- Equipped with output surge-absorbing clamp diode.


Block diagram

254

BA12001B/BA12002/BA12003B/BA12003BF/BA12004B

Internal circuit configuration diagram

●Absolute maximum ratings (Ta=25℃)

Para	ameter	Symbol	Limits	Unit	
Power supply	other than BA12002	N.	60	- v	
voltage	BA12002	Vce	50		
Input voltage	other than BA12001B	Vin	-0.5~30	v	
Input current	put current BA12001B		25	mA / unit	
Output current		Ιουτ	500	mA / unit	
Ground pin current		IGND	2.3 *1	A	
Power dissipation	DIP package		1250 * ²		
	SOP package	Pd –	625 * ³	mW	
Diode reverse voltage		VR	60	V	
Diode forward current		İ۶	500	mA	
Operating temperature		Topr	-25~75	°	
Storage temperature		Tstg	-55~150	°C	

*1 Pulse width \leq 20 ms, duty cycle \leq 10%, same current for all 7 circuits

 $\ast\,2$ Reduced by 10 mW for each increase in Ta of 1°C over 25°C .

 $\ast 3$ Reduced by 50 mW for each increase in Ta of 1°C over 25°C .

7828999 0021506 047 🛤

ROHM

255

●Recommended operating conditions (Ta=25℃)

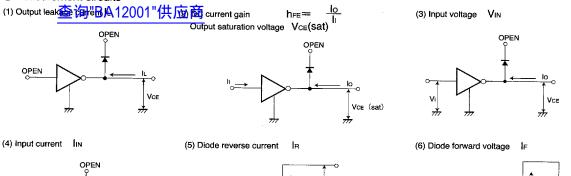
查询"最高级的计"供应商		Symbol	Min.	Тур.	Max.	Unit	Conditions
Output current		Ιουτ	-	-	350	mA	Fig.8, 9
Power supply voltage	Other than BA12002	VCE	—	-	55	v	—
	BA12002			-	50		-
Input voltage (excluding BA12001B)		Vin	-	-	30	v	
Input current (BA12001B only)		lın	_		25	mA / unit	—

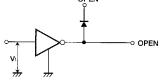
●Electrical characteristics (unless otherwise noted, Ta=25℃)

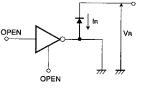
Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit	
Output leakage current		l.	-	0	10	μA	VCE=50V	Fig.4	
DC current gain		hfe	1000	2400	—	v	VCE=2V, IOUT=350mA	Fig.4	
Output saturation voltage		VCE(sat)	_	0.94	1.1	v	lout=100mA, lin=250 μA	Fig.4	
				1.14	1.3		lout=200mA, lin=350 μA	Fig.4	
				1.46	1.6		lout=350mA, lin=500 μ A	Fig.4	
Input voltage	BA12002	Vin	_	10.2	11	v	Vce=2V, lout=100mA	Fig.4	
	BA12003B/BF			1.75	2				
	BA12004B			2.53	5				
	BA12002	Vin		10.4	12	v	Vce=2V, lout=200mA	Fig.4	
	BA12003B/BF			1.91	2.4				
	BA12004B			2.75	6				
	BA12002	Vin	_	10.7	13.5	v	Vce=2V, lout=350mA	Fig.4	
	BA12003B/BF			2.17	3.4				
	BA12004B	1		3.27	8				
Input current	BA12002		_	0.88	1.3	mA	V _{IN} =17V		
	BA12003B/BF			0.90	1.35		V _{IN} =3.85V	Fig.4	
	BA12004B			0.39	0.5		VIN=5V		
Diode reverse current		lR	—	0	50	μA	$V_R=50V$	Fig.4	
Diode forward voltage		VF	_	1.73	2	v	l⊧=350mA	Fig.4	
Input capacitance		CIN	—	30	-	pF	V _{IN} =0V, f=1MHz	Fig.4	

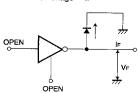
Note: Input voltage and input current for BA12001 vary based on external resistor.

🖬 7828999 0021507 T&3 |

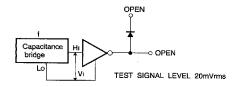

ROHM

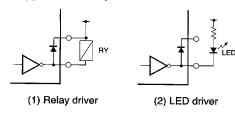

256


Standard ICs


BA12001B/BA12002/BA12003B/BA12003BF/BA12004B

Measurement circuits





Application example

Reference items when using in application

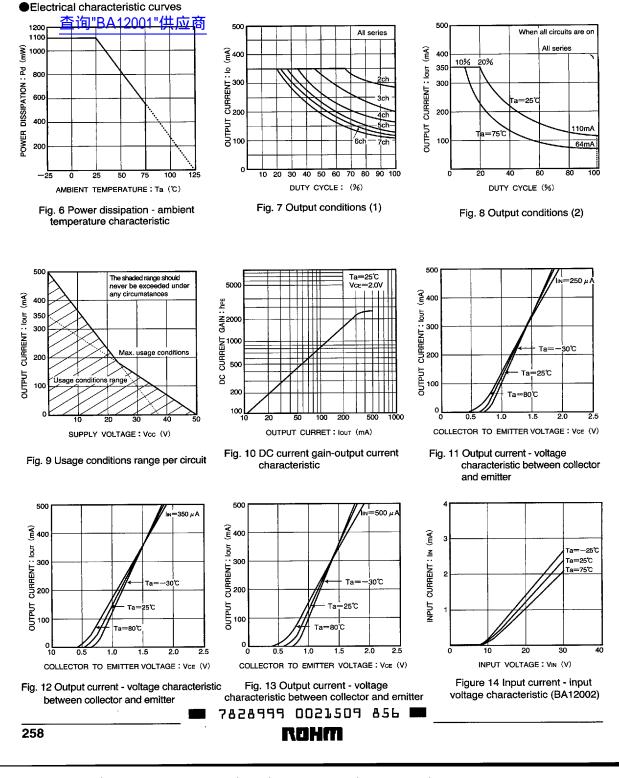
The BA12001B is a transistor array which can be directly coupled to a general logic circuit such as PMOS, CMOS, or TTL.

Because the base current is limited to 25mA, a current limiting resistor needs to be connected in series with the input.

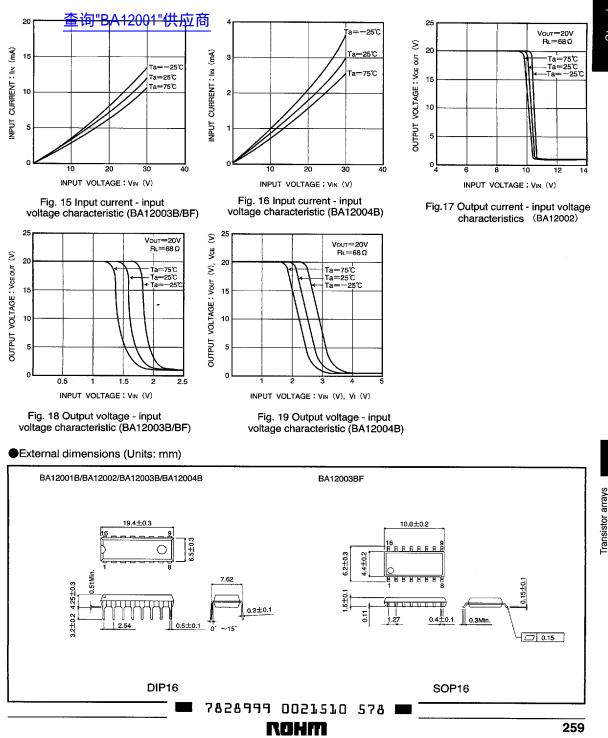
The BA12002 is designed for direct coupling with a 14 to 25V system PMOS. In order to limit the input current, a level shift diode (7V) and resistor are connected in series to each of the inputs.

The BA12003B/BF can be coupled directly to TTL or CMOS output (when operating at 5V). In order to limit the input current to a stable value, resistors are connected in series to each of the inputs.

The BA12004B is designed for direct coupling to CMOS or PMOS output using a 6 to 15V power supply voltage. In order to limit the input current to a stable value, resistors are connected in series to each of the inputs.


The load for each of these products should be connected between the driver output and the power supply. To protect the IC from excessive swing voltage, the COM pin (Pin 9) should be connected to the power supply.

7828999 0021508 91T **ROHM**


Standard ICs

Standard ICs

BA12001B/BA12002/BA12003B/BA12003BF/BA12004B

BA12001B/BA12002/BA12003B/BA12003BF/BA12004B

