FEATURES

Operating frequency 100 MHz to $\mathbf{4 0 0 0} \mathbf{~ M H z}$ Digitally controlled variable gain amplifier Supports both serial and parallel interfaces 6 -bit, 0.5 dB digital step attenuator 31.5 dB gain control range with $\pm 0.25 \mathrm{~dB}$ step accuracy Amplifier 1:

Gain: $\mathbf{2 0 . 0 ~ d B ~ @ ~} 900$ MHz
OIP3: $\mathbf{3 8 . 2 \mathrm { dBm } @ 9 0 0 \mathrm { MHz }}$
P1dB: $\mathbf{2 0 . 0 ~ d B m @ ~} 900 \mathbf{~ M H z}$
Noise figure: $\mathbf{2 . 9 ~ d B ~ @ ~} 900 \mathbf{~ M H z}$

Amplifier 2 :

P1dB: $\mathbf{2 5 . 4} \mathbf{~ d B m} @ 880 \mathrm{MHz}$
Noise figure: $\mathbf{4 . 1} \mathbf{d B}$ @ $880 \mathbf{~ M H z}$
Single supply operation from 4.75 V to 5.25 V
Low quiescent current 195 mA
Thermally efficient $5 \times 5 \mathrm{~mm}$ 32-Lead LFCSP

GENERAL DESCRIPTION

The ADL5243 is a high performance digitally controlled variable gain amplifier operating from 100 MHz to 4000 MHz . The VGA integrates two high performance amplifiers and a digital step attenuator (DSA). Amplifier 1 is a 20 dB gain internally matched amplifier, and amplifier 2 is a broadband $1 / 4$ W driver amplifier. The DSA is 6-bit with 31.5 dB gain control range, 0.5 dB steps, and $\pm 0.25 \mathrm{~dB}$ step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface.

The ADL5243 consumes just 195 mA and operates off a single supply ranging from 4.75 V to 5.25 V . The VGA is packaged in a thermally enhanced $5 \times 5 \mathrm{~mm} 32$-lead LFCSP, and is fully

Rev. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No

FUNCTIONAL BLOCK DIAGRAM

Figure 1
specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A fully populated evaluation board is available.

SPECIFICATIONS

$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VCC1}=5 \mathrm{~V}, \mathrm{VCC} 2=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		100		4000	MHz
Amplifier 1	Pins AMP1＿IN，AMP1＿OUT				
FREQUENCY $=140 \mathrm{MHz}$ Gain vs．Frequency vs．Temperature vs．Supply Output 1 dB Compression Point Output Third－Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 17.0 \\ & \pm 1.2 \\ & \pm 0.03 \\ & \pm 0.04 \\ & 17.2 \\ & 25 \\ & 3.4 \\ & \hline \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=400 \mathrm{MHz}$ Gain vs．Frequency vs．Temperature vs．Supply Output 1 dB Compression Point Output Third－Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 19.5 \\ & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.01 \\ & 20.0 \\ & 36.5 \\ & 3.0 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=900 \mathrm{MHz}$ Gain vs．Frequency vs．Temperature vs．Supply Output 1 dB Compression Point Output Third－Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 20.0 \\ & \pm 0.01 \\ & \pm 0.28 \\ & \pm 0.01 \\ & 20.0 \\ & 38.2 \\ & 2.9 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=2000 \mathrm{MHz}$ Gain vs．Frequency vs．Temperature vs．Supply Output 1 dB Compression Point Output Third－Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 18.2 \\ & \pm 0.04 \\ & \pm 0.35 \\ & \pm 0.04 \\ & 19.0 \\ & 37.6 \\ & 3.1 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=2600 \mathrm{MHz}$ Gain vs．Frequency vs．Temperature vs．Supply Output 1 dB Compression Point Output Third－Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 17.8 \\ & \pm 0.01 \\ & \pm 0.28 \\ & \pm 0.05 \\ & 18.7 \\ & 34.8 \\ & 3.4 \end{aligned}$		dB dB dB dB dBm dBm dB

Parameter	Conditions	Min	Typ	Max	Unit
FREQUENCY $=3500 \mathrm{MHz}$ Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 16.7 \\ & \pm 0.03 \\ & \pm 0.37 \\ & \pm 0.07 \\ & 18.2 \\ & 32.5 \\ & 3.8 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=4000 \mathrm{MHz}$ Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 15.5 \\ & \pm 0.19 \\ & \pm 0.73 \\ & \pm 0.08 \\ & 17.5 \\ & 28 \\ & 3.7 \end{aligned}$		dB dB dB dB dBm dBm dB

Parameter	Conditions	Min	Typ	Max	Unit
Amplifier 2	Pins AMP2_IN, AMP2_OUT				
FREQUENCY $=880 \mathrm{MHz}$ Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=10 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 16.9 \\ & \pm 0.3 \\ & \pm 0.6 \\ & \pm 0.1 \\ & 25.4 \\ & 45 \\ & 4.1 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=2100 \mathrm{MHz}$ Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=10 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 13.2 \\ & \pm 0.33 \\ & \pm 0.8 \\ & \pm 0.06 \\ & 25.7 \\ & 42 \\ & 4.4 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=2600 \mathrm{MHz}$ Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=10 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 12.6 \\ & \pm 0.4 \\ & \pm 0.7 \\ & \pm 0.07 \\ & 25.7 \\ & 41 \\ & 4.0 \end{aligned}$		dB dB dB dB dBm dBm dB
FREQUENCY $=3500 \mathrm{MHz}$ Gain vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure	$\begin{aligned} & \pm 50 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=10 \mathrm{dBm} \text { per tone } \end{aligned}$		$\begin{aligned} & 12.0 \\ & \pm 0.05 \\ & \pm 0.8 \\ & \pm 0.07 \\ & 25.7 \\ & 38 \\ & 4.9 \end{aligned}$		dB dB dB dB dBm dBm dB

Parameter	Conditions	Min	Typ	Max	Unit
Digital Step Attenuator	Pins DSA_IN, DSA_OUT				
FREQUENCY $=400-1000 \mathrm{MHz}$ Insertion Loss Attenuation Range Step Size Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept	Minimum Attenuation $\Delta f=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=8 \mathrm{dBm} / \text { tone, Minimum Attenuation }$		$\begin{aligned} & 1.7 \\ & 31.5 \\ & 0.5 \\ & 15 \\ & 13 \\ & 28 \\ & 51 \\ & \hline \end{aligned}$		dB dB dB dB dB dBm dBm
FREQUENCY $=1400-2200 \mathrm{MHz}$ Insertion Loss Attenuation Range Step Size Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept	Minimum Attenuation $\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {out }}=16 \mathrm{dBm} / \text { tone, Minimum Attenuation }$		$\begin{aligned} & 2.4 \\ & 31.5 \\ & 0.5 \\ & 12 \\ & 12 \\ & 28 \\ & 50 \\ & \hline \end{aligned}$		dB dB dB dB dB dBm dBm
FREQUENCY $=2200-2700 \mathrm{MHz}$ Insertion Loss Attenuation Range Step Size Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept	Minimum Attenuation $\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{out}}=15 \mathrm{dBm} / \text { tone, Minimum Attenuation }$		$\begin{aligned} & 3.4 \\ & 31.5 \\ & 0.5 \\ & 10 \\ & 10 \\ & 28 \\ & 49 \end{aligned}$		dB dB dB dB dB dBm dBm
POWER SUPPLIES Voltage Supply Current	Pin VDD	4.75	$\begin{aligned} & 5.0 \\ & 195 \end{aligned}$	5.25	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage，VDD	TBD V
Lead Temperature（Soldering， 60 sec ）	$\mathrm{TBD}{ }^{\circ} \mathrm{C}$
Internal Power Dissipation	TBD W
θ_{JA}（Exposed Paddle Soldered Down）	$\mathrm{TBD}{ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．This is a stress rating only；functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may affect

ESD CAUTION

device reliability．

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2．Pin Configuration
Table 3．Pin Function Descriptions

Pin No．	Mnemonic	Description
1,24	VDD	Supply voltage for DSA，Connect to 5V supply
$2,3,5,7,8,9,11,12,13$,	GND	Ground connection，connect to low impedance ground plane
$14,17,18,20,22,23$		
4	DSA＿IN	RF Input to DSA
6	AMP1＿OUT	RF Output from Amplifier 1
10	AMP1＿IN	RF Input to Amplifier 1
15	AMP2＿OUT	RF Output from Amplifier 2
16	VBIAS	Bias for Amplifier 2
19	AMP2＿IN	RF Input to Amplifier 2
21	DSA＿OUT	RF Output from DSA
25	D6	Data bit in Parallel Mode（LSB），Connect to supply in Serial Mode
26	D5	Data bit in Parallel Mode，Connect to ground in Serial Mode
27	D4	Data bit in Parallel Mode，Connect to ground in Serial Mode
28	D3	Data bit in Parallel Mode，Connect to ground in Serial Mode
29	D2	Data bit in Parallel Mode and Latch Enable in Serial Mode
30	D1	Data bit in Parallel Mode（MSB）and Data in Serial Mode
31	SEL1	Connect to ground in Parallel Mode and Clock in Serial Mode
32		Connect to supply for Parallel mode operation，connect to ground for serial mode operation

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3 Amp1：Gain vs．Freq and Temp

Figure 4 Amp1：P1dB and OIP3 vs．Freq and Temp

Figure 5 Amp1：OIP3 vs Pout and Freq

Figure 6 Amp1：Noise Figure vs．Freq

Figure 7 Amp1：S parameters vs．Freq

Figure 8 Amp1：Supply Current vs Temp

查询＂AD L5243＂供应商
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9 Amp2：Gain vs．Freq and Temp

Figure 10 Amp2：P1dB and OIP3 vs．Freq and Temp

Figure 11 Amp2：OIP3 vs Pout and Freq

Figure 12 Amp2：Noise Figure vs．Freq

Figure 13 Amp2：S parameters vs．Freq

Figure 14 Amp2：Supply Current vs Temp

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15 DSA：Gain vs Freq and Temp（minimum attenuation）

Figure 16 DSA：Attenuation vs．Freq

Figure 17 DSA：S11 vs Freq

Figure 18 DSA：S22 vs Freq

ADL5243

SPI TIMING SEQUENCE

Figure 19. SPI Timing Sequence
Figure 19 is the timing sequence for the SPI function using a 6 -bit operation. The clock can be as fast as 20 MHz . In serial mode operation register B5 (MSB) comes in first and register B0 (LSB) comes in last.

Table 4. Mode Selection Table

Pin SEL 1	Functionality
Ground	Serial Mode
Supply	Parallel Mode

Table 5. DSA Attenuation Truth Table - Serial Mode

Attenuation State	B5 (MSB)	B4	B3	B2	B1	B0 (LSB)
0 dB (reference)	1	1	1	1	1	1
0.5 dB	1	1	1	1	1	0
1.0 dB	1	1	1	1	0	1
2.0 dB	1	1	1	0	1	1
4.0 dB	1	1	0	1	1	1
8.0 dB	1	0	1	1	1	1
16.0 dB	0	1	1	1	1	1
31.5 dB	0	0	0	0	0	

Table 6. DSA Attenuation Truth Table - Parallel Mode

Attenuation State	D1 (MSB)	D2	D3	D4	D5	D6 (LSB)
0 dB (reference)	1	1	1	1	1	1
0.5 dB	1	1	1	1	1	0
1.0 dB	1	1	1	1	0	1
2.0 dB	1	1	1	0	1	1
4.0 dB	1	1	0	1	1	1
8.0 dB	1	0	1	1	1	1
16.0 dB	0	1	1	1	1	1
31.5 dB	0	0	0	0	0	

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
Figure 20. 2-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body, Very Very Thin Quad
(CP-32-13)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADL5243ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Lead Lead Frame Chip Scale Package LFCSP_WQ	CP-32-13
ADL5243-EVALZ			

