

# LC<sup>2</sup>MOS Complete, 12-Bit, 100 kHz Sampling ADC

**AD7876** 

### 1.1 Scope.

This specification covers the detail requirement for a monolithic CMOS 12-bit sampling A/D converter. It features a track/hold amplifier, 8  $\mu$ s successive approximation ADC, 3 V buried Zener reference and an analog input range of  $\pm 10$  V.

### 1.2 Part Number.

The complete part number per Table 1 of this specification is as follows:

Device

Part Number

-1

AD7876TQ/883B

### 1.2.3 Case Outline.

See Appendix 1 of General Specification ADI-M-1000: package outline:

Package

Description

Q-24

24-Pin Cerdip

### 1.3 Absolute Maximum Ratings.

| V <sub>DD</sub> to AGND                                           | $\dots \dots -0.3 \text{ V dc to } +7 \text{ V dc}$                                                                  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| V <sub>ss</sub> to AGND                                           | $\dots + 0.3 \text{ V dc to } -7.0 \text{ V dc}$                                                                     |
| AGND to DGND                                                      | 1.000000000000000000000000000000000000                                                                               |
| V <sub>IN</sub> to AGND                                           | $\dots$ -15 V dc to +15 V dc                                                                                         |
| REF OUT to AGND                                                   | $\dots \dots $ |
| Digital Inputs to DGND                                            | $0.3 \text{ V dc to V}_{DD} + 0.3 \text{ V dc}$                                                                      |
| Digital Outputs to DGND                                           | $0.3 \text{ V dc to V}_{DD} + 0.3 \text{ V dc}$                                                                      |
| Power Dissipation ( $T_A = +75^{\circ}C$ ), $P_D \dots P_D \dots$ |                                                                                                                      |
| Lead Temperature (Soldering 10 sec)                               | +300°C                                                                                                               |
| Storage Temperature Range                                         | 65°C to +150°C                                                                                                       |
| Thermal Resistance, Junction-to-Case                              | . See MIL-M-38510, Appendix C                                                                                        |

### 1.4 Recommended Operating Conditions.

| Supply Voltage                             |                      |
|--------------------------------------------|----------------------|
| V <sub>DD</sub>                            | 5 V dc to +5.25 V dc |
| V <sub>SS</sub> 4.7                        | 5 V dc to -5.25 V dc |
| AGND                                       | 0 V dc               |
| DGND                                       | 0 V dc               |
| External Clock Frequency, f <sub>CLK</sub> | 2.5 MHz              |
| Ambient Operating Temperature Range        | -55°C to +125°C      |

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

ANALOG-TO-DIGITAL CONVERTERS 6-165

# AD7876—SPECIFICATIONS

Table 1.

|                                                                                   |                             |         |      |               |               | · · · · · · · · · · · · · · · · · · ·                                                                 |        |
|-----------------------------------------------------------------------------------|-----------------------------|---------|------|---------------|---------------|-------------------------------------------------------------------------------------------------------|--------|
|                                                                                   | <br>  <b> Standysl</b> B  4 | Perice. | 1    | mits<br>  Max | Sub<br>Groups | Test Condition <sup>1</sup> $(-55^{\circ}C \le T_A \le +125^{\circ}C \text{ unless otherwise noted})$ | Unit   |
| Resolution                                                                        | RES                         | Àii     | 12   |               | 1, 2, 3       | Guaranteed Minimum Resolution                                                                         | Bits   |
| Integral Nonlinearity                                                             | INL                         | All     |      | ±1            | 1, 2, 3       |                                                                                                       | LSB    |
| Differential Nonlinearity                                                         | DNL                         | Ali     |      | +1            | 1, 2, 3       |                                                                                                       | LSB    |
| Bipolar Zero Error                                                                | BZE                         | All     |      | ±6            | 1, 2, 3       |                                                                                                       | LSB    |
| Full-Scale Error <sup>2</sup>                                                     | F <sub>SE</sub>             | All     |      | ±8            | 1             |                                                                                                       | LSB    |
| Full-Scale Error Temperature<br>Coefficient <sup>2</sup>                          | ΔFSE/ΔΤ                     | All     |      | ±60           | 1, 2, 3       |                                                                                                       | ppm/°C |
| Track/Hold Acquisition Time                                                       | t <sub>ACQ</sub>            | All     |      | 2             | 9, 10, 11     |                                                                                                       | μs     |
| Analog Input Voltage Range                                                        | V <sub>IN</sub>             | All     |      | ±10           | 1, 2, 3       | £.                                                                                                    | v      |
| Analog Input Current                                                              | I <sub>IN</sub>             | All     |      | ±600          | 1, 2, 3       |                                                                                                       | μА     |
| REF OUT Voltage                                                                   | V <sub>REF</sub>            | All     | 2.99 | 3.01          | 1             |                                                                                                       | v      |
| REF OUT Voltage Temperature<br>Coefficient                                        | $\Delta V_{REF} \Delta T$   | All     |      | ±60           | 1, 2, 3       |                                                                                                       | ppm/°C |
| Reference Load Sensitivity                                                        | $\Delta / V_{REF} \Delta I$ | All     |      | -1.0          | 1, 2, 3       | Reference Load Current Change = 0 μA to 500 μA <sup>3</sup>                                           | mV     |
| Logic Input High Voltage                                                          | V <sub>INH</sub>            | All     | 2.4  |               | 1, 2, 3       |                                                                                                       | v      |
| Logic Input Low Voltage                                                           | V <sub>INL</sub>            | Att     |      | 0.8           | 1, 2, 3       |                                                                                                       | v      |
| Input Current                                                                     | I <sub>IN</sub>             | All     |      | ±10           | 1, 2, 3       | V <sub>IN</sub> = 0 V to V <sub>DD</sub>                                                              | μΑ     |
|                                                                                   |                             | All     |      | ±10           | 1, 2, 3       | $12/8$ /CLK Input Only, $V_{IN} = V_{SS}$ to $V_{DD}$                                                 | μA     |
| Input Capacitance <sup>3</sup>                                                    | Cin                         | All     |      | 10            | 1, 2, 3       |                                                                                                       | pF     |
| Output Logic High Voltage                                                         | V <sub>OH</sub>             | All     | 4.0  |               | 1, 2, 3       | I <sub>SOURCE</sub> = 40 μA                                                                           | v      |
| Output Logic Low Voltage                                                          | V <sub>OL</sub>             | All     |      | 0.4           | 1, 2, 3       | I <sub>SINK</sub> = 1.6 mA                                                                            | v      |
| DB11-DB0 Floating State<br>Leakage Current                                        | I <sub>L</sub>              | All     |      | 10            | 1, 2, 3       |                                                                                                       | μΑ     |
| DB11-DB0 Floating State<br>Output Capacitance <sup>3</sup>                        | Соит                        | All     |      | 15            | 4             |                                                                                                       | рF     |
| External Clock Conversion Time                                                    | t <sub>CONV</sub> (Ext)     | All     |      | 8.0           | 9, 10, 11     | $f_{CLK} = 2.5 \text{ MHz}$                                                                           | μs     |
| Internal Clock Conversion Time                                                    | t <sub>CONV</sub> (Int)     | All     | 7    | 9             | 9, 10, 11     |                                                                                                       | μs     |
| Supply Current                                                                    | $I_{DD}$                    | All     |      | 13            | 1, 2, 3       |                                                                                                       | mA     |
|                                                                                   | I <sub>ss</sub>             | All     |      | 6             | 1, 2, 3       |                                                                                                       | mA     |
| CONVST Pulse Width <sup>4</sup>                                                   | t <sub>1</sub>              | All     | 50   |               | 9             | Input tr, $tf = 5.0 \text{ ns}$                                                                       | ns     |
| $\overline{\text{CS}}$ to $\overline{\text{RD}}$ Setup Time <sup>4</sup> (Mode 1) | t <sub>2</sub>              | All     | 0    |               | -             | (10% to 90% of +5.0 V), Timing Voltage<br>Reference Level = 1.6 V, See Figure 1                       | ns     |
| RD Pulse Width                                                                    | t <sub>3</sub>              | All     | 75   |               | 9, 10, 11     |                                                                                                       | ns     |
| CS to RD Hold Time4 (Mode 1)                                                      | t <sub>4</sub>              | Ali     | 0    |               | 9             |                                                                                                       | ns     |
| RD to INT Delay Time4                                                             | t <sub>5</sub>              | All     |      | 70            | 9             |                                                                                                       | ns     |
| Data Access Time After RD <sup>5</sup>                                            | t <sub>6</sub>              | Ali     |      | 70            | 9, 10, 11     |                                                                                                       | ns     |
| Bus Relinquish Time After $\overline{RD}^6$                                       | t <sub>7</sub>              | All     | 5.0  | 50            | 9, 10, 11     |                                                                                                       | ns     |
| HBEN to RD Setup Time4                                                            | t <sub>8</sub>              | Ali     | 0    |               | 9             |                                                                                                       | ns     |
| HBEN to RD Hold Time4                                                             | t <sub>9</sub>              | All     | 0    |               | 9             |                                                                                                       | ns     |

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

6-166 ANALOG-TO-DIGITAL CONVERTERS

REV. A

| Test 查询"AD7876T                                  | <b>3√88</b> 8B" | <del>陝</del> 痖 | Lin<br>Min | nits<br>Max | Sub<br>Groups | Test Condition¹ (-55°C ≤ T <sub>A</sub> ≤ +125°C unless otherwise noted) | Unit |
|--------------------------------------------------|-----------------|----------------|------------|-------------|---------------|--------------------------------------------------------------------------|------|
| SSTRB to SCLK Falling Edge<br>Setup Time         | t <sub>10</sub> | All            | 100        |             | 9             | Input tr, tf = 5.0 ns<br>(10% to 90% of +5.0 V), Timing Voltage          | ns   |
| SCLK Cycle Time <sup>4, 7</sup>                  | t <sub>11</sub> | All            | 370        |             | 9             | Reference Level = 1.6 V, See Figure 1                                    | ns   |
| SCLK to Valid Data<br>Delay Time <sup>4, 8</sup> | t <sub>12</sub> | All            |            | 150         | 9             |                                                                          | ns   |
| SCLK Rising Edge to SSTRB <sup>4</sup>           | t <sub>13</sub> | All            | 20         | 100         | 9             |                                                                          | ns   |
| Bus Relinquish Time After<br>SCLK <sup>4</sup>   | t <sub>14</sub> | All            | 10         | 100         | 9             |                                                                          | ns   |
| CS to RD Setup Time (Mode 2)4                    | t <sub>15</sub> | Ali            | 60         |             | 9             |                                                                          | ns   |
| Propagation Delay Time,  CS to BUSY <sup>4</sup> | t <sub>16</sub> | All            |            | 120         | 9             |                                                                          | ns   |
| Data Setup Time Prior to<br>BUSY <sup>4</sup>    | t <sub>17</sub> | All            | 200        |             |               |                                                                          | ns   |
| CS to RD Hold Time (Mode 2)4                     | t <sub>18</sub> | AU 🐁           | 6          | 82.         | 2 .           |                                                                          | ns   |
| HBEN to CS Setup Time⁴                           | t <sub>19</sub> | Au             | 0          | 28          | 0             |                                                                          | ns   |
| HBEN to CS Hold Time⁴                            | t <sub>20</sub> | All            | 0          |             | 9             |                                                                          | ns   |

#### NOTES

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

ANALOG-TO-DIGITAL CONVERTERS 6-167

 $V_{ij} f_{CLK} = +2.5 \text{ MHz external, unless otherwise specified.}$  $^{11}V_{DD} = +4.75 \text{ V to } +5.25 \text{ V}; V_{SS} = -4.75 \text{ V or } -5.25 \text{ V}, \text{ AGND } -\text{DGN}$ 

<sup>&</sup>lt;sup>2</sup>Includes internal reference error and is calculated after bipolar zero error has been adjusted out.

<sup>3</sup>Reference load should not be changed during conversion.

<sup>\*</sup>Sample tested at +25°C to ensure compliance.

<sup>&</sup>lt;sup>5</sup>t<sub>6</sub> is defined as the time required for an output to cross 0.8 V or 2.4 V.

 $<sup>^{6}</sup>t_{7}^{\circ}$  is defined as the time required for the data lines to change 0.5 V.

 $<sup>^{7}</sup>$ SCLK mark/space ratio (measured from a voltage level of 1.6 V) is 40/60 to 60/40.  $^{8}$ SDATA will drive higher capacitive loads but this will add to  $^{12}$  since it increases the external RC time constant (4.7 k $\Omega$ ||C<sub>L</sub>) and hence the time to reach 2.4 V,  $C_L = 35 pF$ .

## 3.2.1 Functional Block Diagram and Terminal Assignments.

# 查询"AD7876TQ/883B"供应商



### 3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (81).

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

# 4.2.1 Life Test/Burn-In Circuit.

**查验词** And The Cost @ per MRL (共 post) Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).





a. Load Circuit for Access Time, High-Z to  $V_{\mathrm{OH}}$ 

c. Load Circuit for OutputFloat Delay,  $V_{\mathrm{OH}}$  to High-Z



b. Load Circuit for Access Time, High-Z to Vo.

d. Load Circuit for Output Float Delay, V<sub>oL</sub> to High-Z

Figure 1. Output Load Circuits and Waveforms

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

ANALOG-TO-DIGITAL CONVERTERS 6-169