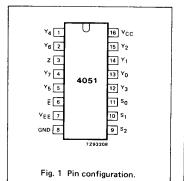
8-Ci鑫讷世74h16466100七十二世家市DEMULTIPLEXER

FEATURES

- Wide analog input voltage range: ± 5 V,
- Low "ON" resistance:
 - 80 Ω (typ.) at $V_{CC} V_{EE} = 4.5 \text{ V}$ 70 Ω (typ.) at $V_{CC} V_{EE} = 6.0 \text{ V}$
 - 70 Ω (typ.) at V_{CC} V_{EE} = 6.0 V 60 Ω (typ.) at V_{CC} - V_{EE} = 9.0 V
- Logic level translation:
 to enable 5 V logic to communicate
 with ± 5 V analog signals
- Typical "break before make" built in
- Output capability: non-standard
- I_{CC} category: MSI


GENERAL DESCRIPTION

The 74HC/HCT4051 are high-speed Si-gate CMOS devices and are pin compatible with the "4051" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4051 are 8-channel analog multiplexers/demultiplexers with three digital select inputs (S0 to S2), an active LOW enable input (\overline{E}), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z).

With \overline{E} LOW, one of the eight switches is selected (low impedance ON-state) by S_0 to S_2 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_0 to S_2 .

V_{CC} and GND are the supply voltage pins for the digital control inputs (S_Q to S_Z, and E). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y_Q to Y_Z, and Z) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} — V_{EE} may not exceed 10.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

SYMBOL	PARAMETER	CONDITIONS	TY	PICAL	UNIT	
OTHEOL	FANAMETER	CONDITIONS	нс	нс нст		
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os} S _n to V _{os}	C _L = 15 pF R _L = 1 kΩ	22 20	22 24	ns ns	
^t PHZ [/] ^t PLZ	turn "OFF" time E to V _{os} S _n to V _{os}	V _{CC} = 5 V	18 19	16 20	ns ns	
CI	input capacitance		3.5	3.5	рF	
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	25	25	pF	
CS	max. switch capacitance independent (Y) common (Z)		5 25	5 25	pF pF	

 V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

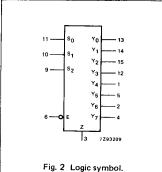
Note

1. CpD is used to determine the dynamic power dissipation (PD in μ W):

$$P_D = C_{PD} \times V_{CC^2} \times f_i + \Sigma \{(C_L + C_S) \times V_{CC^2} \times f_O\}$$
 where:

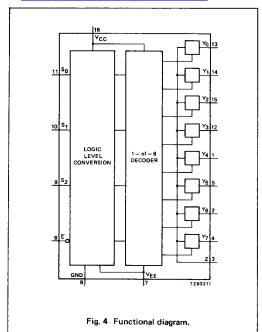
 $\begin{array}{lll} f_i = \text{input frequency in MHz} & \text{C}_L = \text{output load capacitance in pF} \\ f_o = \text{output frequency in MHz} & \text{C}_S = \text{max. switch capacitance in pF} \\ \mathbb{E}\left\{ \left(\text{C}_L + \text{C}_S \right) \times \text{V}_{CC}^2 \times f_o \right\} = \text{sum of outputs} \end{array}$

2. For HC $\,$ the condition is V $_{I}$ = GND to V $_{CC}$ $\,$ For HCT the condition is V $_{I}$ = GND to V $_{CC}$ - 1.5 V


PACKAGE OUTLINES

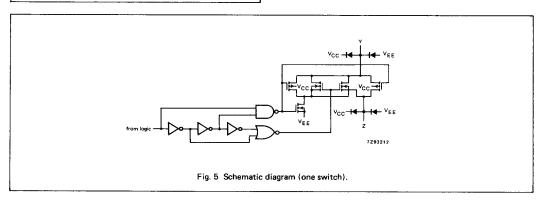
16-lead DIL; plastic (SOT38Z).

16-lead mini-pack; plastic (SO16; SOT109A).


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
3 6 7 8	Z E VEE GND	common input/output enable input (active LOW) negative supply voltage ground (0 V)	****
11, 10, 9	S ₀ to S ₂	select inputs	
13, 14, 15, 12, 1, 5, 2, 4	Y ₀ to Y ₇	independent inputs/outputs	
16	Vcc	positive supply voltage	

December 1990


APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

FUNCTION TABLE

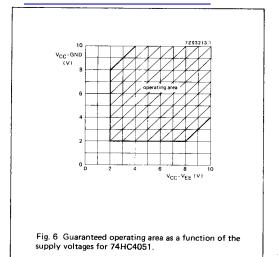
	INI	PUTS		channel
Ē	S ₂	S ₁	S ₀	ON
1111		LLHH	L H L	$Y_0 - Z$ $Y_1 - Z$ $Y_2 - Z$ $Y_3 - Z$
L L L	# # # # # #	L H H	L H L H	Y ₄ - Z Y ₅ - Z Y ₆ - Z Y ₇ - Z
н	×	×	х	none

- H = HIGH voltage level
- L = LOW voltage level
- X = don't care

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages are referenced to $V_{EE} = GND$ (ground = 0 V)


SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
Vcc	DC supply voltage	-0.5	+11.0	v	
±11K	DC digital input diode current		20	mA	for V ₁ < -0.5 V or V ₁ > V _{CC} + 0.5 V
±1SK	DC switch diode current		20	mA	for V _S < -0.5 V or V _S > V _{CC} + 0.5 V
±1s	DC switch current		25	mA	for -0.5 V < V _S < V _{CC} + 0.5 V
±1EE	DC VEE current		20	mA	3 00
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
PS ,	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n , the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Y_n . In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC	l		74HC	Г		
		min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
v _{cc}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	v	see Figs 6 and 7
v _{cc}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	ν	see Figs 6 and 7
V _I	DC input voltage range	GND	<u> </u>	Vcc	GND		Vcc	V	
VS	DC switch voltage range	VEE		Vcc	VEE		Vcc	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	80 140
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	see DC and AC CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V V _{CC} = 10.0 V

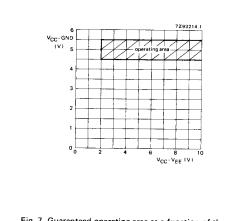


Fig. 7 Guaranteed operating area as a function of the supply voltages for 74HCT4051.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					T _{amb} (°C)			TEST CONDIT					3
SYMBOL	PARAMETER			7	4HC/F	ICT							١.,	
STWIBUL	FANAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	V _{EE}	lς μA	Vis	٧ı
		min.	typ.	max.	min.	max.	min.	max.						
R _{ON}	ON resistance (peak)		- 100 90 70	 180 160 130		_ 225 200 165		_ 270 240 195	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	VIH or VIL
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		_ 175 150 130		- 210 180 160	ΩΩ	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	VEE	VIH or VIL
R _{ON}	ON resistance (rail)		150 90 80 65	- 160 140 120		_ 200 175 150		_ 240 210 180	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 - 4 .5	100 1000 1000 1000	v _{cc}	V _{IH} or V _{IL}
ΔR _{ON}	maximum ∆ON resistance between any two channels		9 8 6						Ω Ω	2.0 4.5 6.0 4.5	0 0 0 - 4 .5		V _{CC} to V _{EE}	VIH or VIL

Notes to DC characteristics

- 1. At supply voltages (V_{CC} -V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring RON see Fig. 8.

880

March 1988

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

				т	amb (°C)					TEST	COND	ITIONS
					74HC	;			UNIT	VCC	V _{EE}	٧.	OTHER
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125			V	V	1	
		min.	typ.	max.	min.	max.	min.	max.					
VIH	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		٧	2.0 4.5 6.0 9.0			
VIL	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±l _l	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
±IS	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	VIH or VIL	V _S = V _{CC} - V _{EE} (see Fig. 10)
±IS .	analog switch OFF-state current all channels			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} - V _{EE} (see Fig. 10)
±1S	analog switch ON-state current			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} - V _{EE} (see Fig. 11)
lcc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	6.0 10.0	0	V _{CC} or GND	V _{is} = V _{EE} or V _{CC} ; V _{os} = V _{CC} or V _{EE}

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

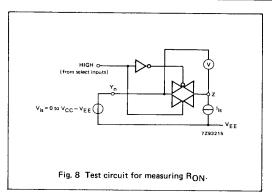
				-	「amb □	°C)					TEST	CONDITIONS
SYMBOL	PARAMETER				74H	•]			
OT INDOE		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	V _{EE}	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10	400	90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	R _L = ∞; C _L = 50 pF (see Fig. 17)
tPZH/ tPZL	turn "ON" time Ē to V _{os}		72 29 21 18	345 69 59 51		430 86 73 64		520 104 88 77	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Figs 18, 19 and 20)
tPZH/ tPZL	turn "ON" time S _n to V _{OS}		66 28 19 16	345 69 59 51		430 86 73 64		520 104 88 77	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Figs 18, 19 and 20)
^t PHZ [/] ^t PLZ	turn "OFF" time Ē to V _{OS}		58 31 17 18	290 58 49 42		365 73 62 53		435 87 74 72	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Figs 18, 19 and 20)
tPHZ/ tPLZ	turn "OFF" time S _n to V _{os}		61 25 18 18	290 58 49 42		365 73 62 53		435 87 74 72	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega$; $C_L = 50 \text{ pF}$ (see Figs 18, 19 and 20)

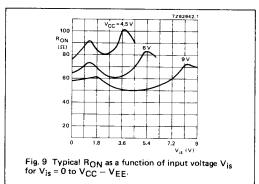
DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

				1	amb (°C)					TEST	CONDI	TIONS
					74HC	Т			UNIT	Vcc	VEE	٧.	OTHER
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		ONT	v	V	-1	· · · · · ·
		min.	typ.	max.	min.	max.	min.	max.					
v _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8	-	0.8	v	4.5 to 5.5			
±IĮ	input leakage current			0.1		1.0		1.0	μΑ	5.5	0	V _{CC} or GND	
±IS	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	VIH or VIL	IV _S I = V _{CC} - V _{EE} (see Fig. 10)
±1 _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} - V _{EE} (see Fig. 10)
±IS	analog switch ON-state current			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} - V _{EE} (see Fig. 11)
¹cc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 5.0	V _{CC} or GND	V _{is} = V _{EE} or V _{CC} ; V _{os} = V _{CC} or V _{EE}
ΔICC	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1v	other inputs at V _{CC} or GND

Note to HCT types


The value of additional quiescent supply current (\(\Delta\Log\)) for a unit load of 1 is given here.
 To determine \(\Delta\Log\) for input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
S _n	0.50 0.50


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_1 = 50 pF$

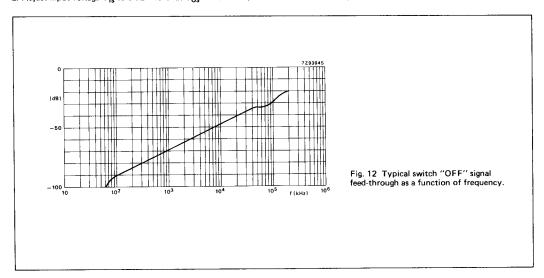
				1	amb	(°C)				TEST CONDITIONS			
SYMBOL	PARAMETER	74НСТ]				
STMBOL	FANAMETER		+25		-40	to +85	40 t	o +125	UNIT	VCC	VEE	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} /	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5		R _L = ∞; C _L = 50 pF (see Fig. 17)	
^t PZH [/] ^t PZL	turn "ON" time E to V _{os}		26 16	55 39		69 49		83 59	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega$; $C_L = 50 pF$ (see Figs 18, 19 and 20)	
^t PZH [/] ^t PZL	turn "ON" time S _n to V _{os}		28 16	55 39		69 49		83 59	ns	4.5 4.5	0 -4.5	$R_{L} = 1 \text{ k}\Omega; C_{L} = 50 \text{ pF}$ (see Figs 18, 19 and 20)	
^t PHZ [/] ^t PLZ	turn "OFF" time E to V _{OS}		19 16	45 32		56 40		68 48	ns	4.5 4.5	0 -4.5	$R_{L} = 1 \text{ k}\Omega$; $C_{L} = 50 \text{ pF}$ (see Figs 18, 19 and 20)	
tPHZ/ tPLZ	turn "OFF" time S _n to V _{os}		23 16	45 32		56 40		68 48	ns	4.5 4.5	0 -4.5	$R_{L} = 1 \text{ k}\Omega; C_{L} = 50 \text{ pF}$ (see Figs 18, 19 and 20)	

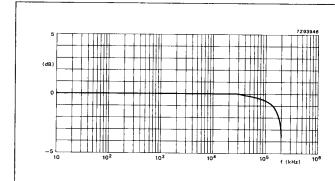
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC}	V _{EE}	V _{is(p-p)}	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	%	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig. 14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF}$ (see Fig. 14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	R _L = 600Ω ; C _L = $50 pF$ (see Figs 12 and 15)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		R _L = 600Ω ; C _L = 50 pF ; f = 1 MHz (E or S _n , square-wave between V _{CC} and GND, t _r = t _f = 6 ns) (see Fig. 16)
f _{max}	minimum frequency response (–3dB)	170 180	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
CS	maximum switch capacitance independent (Y) common (Z)	5 25	pF pF				


Notes to AC characteristics


General note

 V_{is} is the input voltage at a Y_{n} or Z terminal, whichever is assigned as an input, V_{OS} is the output voltage at a Y_{n} or Z terminal, whichever is assigned as an output.

Notes

- 1. Adjust input voltage $\rm V_{is}$ to 0 dBm level (0 dBm = 1 mW into 600 $\Omega).$
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

Note to Figs 12 and 13

Test conditions: $V_{CC} = 4.5 \text{ V}; \text{ GND} = 0 \text{ V}; V_{EE} = -4.5 \text{ V}; \\ R_L = 50 \Omega; R_{source} = 1 \text{ k}\Omega$

Fig. 13 Typical frequency response.

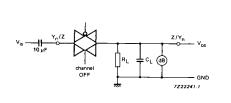


Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

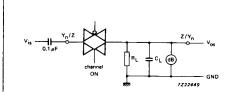
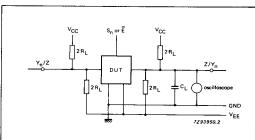
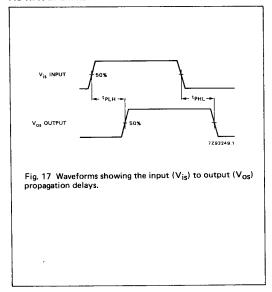


Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.




Fig. 16 Test circuit for measuring crosstalk between control and any switch.

Note to Fig. 16

The crosstalk is defined as follows (oscilloscope output):

AC WAVEFORMS

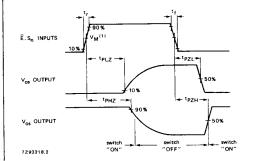


Fig. 18 Waveforms showing the turn-ON and turn-OFF times.

Note to Fig. 18

(1) HC: $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.

TEST CIRCUIT AND WAVEFORMS

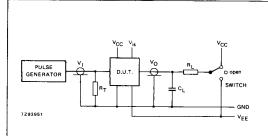


Fig. 19 Test circuit for measuring AC performance.

Fig. 20 Input pulse definitions.

Conditions

TEST	SWITCH	Vis
tpZH	VEE	VCC
tpZL	VCC	VEE
tpHZ	VEE	VCC
tpHZ	VCC	VEE
others	open	puise

Definitions for	Figs	19 and 20:

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for

values).

RT = termination resistance should be equal to the output impedance ZO of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

FAMILY	AMPLITUDE	V _M	t _r ; t _f	
			f _{max} ; PULSE WIDTH	OTHER
74HC	vcc	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns