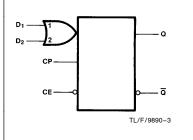
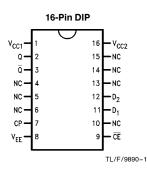


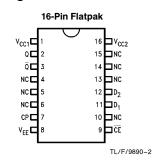
Not Intended For New Designs

August 1992

11C06 750 MHz D-Type Flip-Flop


General Description


The 11C06 is a high-speed ECL D-Type Master-Slave Flip-Flop capable of toggle rates over 750 MHz. Designed primarily for high-speed prescaling, it can also be used in any application which does not require preset inputs. The circuit is voltage-compensated, which makes input thresholds and


output levels insensitive to $V_{\mbox{\scriptsize EE}}$ variations. Complementary Q and \overline{Q} outputs are provided, as are two Data inputs, Clock and Clock Enable inputs. The 11C06 is pin-compatible with the Motorola MC1690L but is a higher-frequency replace-

Logic Symbol

Connection Diagrams

Truth Table

Pin Names	Description				
D _n	Data Input				
CP	Clock Input				
CE	Clock Enable (Active LOW)				
Q, \overline{Q}	Outputs				

CE	СР	D	Qn
L	L	Х	Q_{n-1}
L	Н	X	$egin{array}{l} Q_{n-1} \ Q_{n-1} \end{array}$
L	_	L	L
L	_	Н	Н
Н	X	Х	Q_{n-1}

H = HIGH Voltage Level L = LOW Voltage Level

= Don't Care

= LOW to HIGH Transition

 Q_{n-1} = Previous State

查询"11C06DC"供应商

Absolute Maximum Ratings

Above which the useful life may be impaired

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Operating Range $$-5.7\mathrm{V}\ \mathrm{to}\ -4.7\mathrm{V}$$ Lead Temperature (Soldering, 10 sec.) $300^{\circ}\mathrm{C}$

Recommended Operating Conditions

 Min
 Typ
 Max

 Supply Voltage (V_{EE})
 -5.7V
 -5.2V
 -4.7V

 Ambient Temperature (T_A)
 0°C
 +75°C

DC Electrical Characteristics

 $V_{EE} = -5.2V$, $V_{CC} = GND$

Output Current (DC Output HIGH)

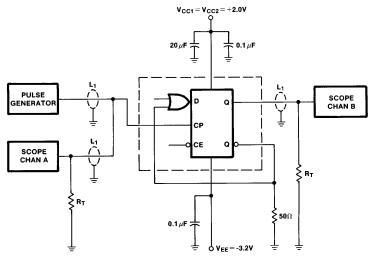
Symbol	Parameter	Min	Тур	Max	Units	TA	Conditions
V_{OH}	Output Voltage HIGH	-1000		-840	mV	0°C	$V_{IN} = V_{IH (Max)}$ or $V_{IL (Min)}$ per Truth
		-960		-810	mV	+25°C	Table Loading 50 Ω to $-2V$
		-900		-720	mV	+75°C	
V_{OL}	Output Voltage LOW	-1870		-1635	mV	0°C	
		-1850		-1620	mV	+25°C	
		-1830		−1595	mV	+75°C	
V_{OHC}	Output Voltage HIGH	-1020			mV	0°C	$V_{IN} = V_{IH (Min)}$ or $V_{IL (Max)}$ for D_n Inputs
		-980			mV	+25°C	Loading 50Ω to $-2V$
		-920			mV	+75°C	
V_{OLC}	Output Voltage LOW			-1615	mV	0°C	
				-1600	mV	+25°C	
				-1575	mV	+75°C	
V_{IH}	Input Voltage HIGH	-1135		-840	mV	0°C	Guaranteed Input Voltage HIGH
		-1095		-810	mV	+25°C	for All Inputs
		-1035		-720	mV	+75°C	
V_{IL}	Input Voltage LOW	-1870		-1500	mV	0°C	Guaranteed Input Voltage LOW
		-1850		-1485	mV	+25°C	for All Inputs
		-1830		-1460	mV	+75°C	
I _{IH}	Input Current HIGH						V _{IN} = V _{IH (Max)}
	Clock Input			250	μΑ	+ 25°C	,,
	Data Input			270	μΑ	+25°C	
I _{IL}	Input Current LOW	0.5			μΑ	+ 25°C	$V_{IN} = V_{IH \text{ (Min)}}$
I _{EE}	Power Supply Current	-59	-40		mA	+25°C	All Inputs Open

-50~mA

AC Electrical Characteristics

 $V_{EE} = -5.2V$, $V_{CC} = GND$, $T_A = +25$ °C

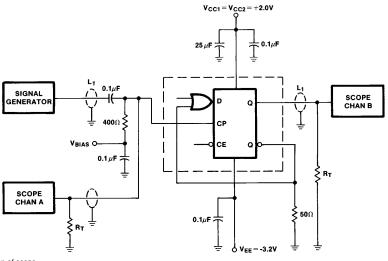
Symbol	Parameter	Min	Тур	Max	Units	Conditions
t _{PHL} t _{PLH}	Propagation Delay (CP-Q) Propagation Delay (CP-Q)	0.7 0.7	1.0 1.0	1.2 1.2	ns ns	
t _{TLH}	Transition Time 20% to 80% Transition Time 80% to 20%	0.5 0.5	0.8 0.8	1.0 1.0	ns ns	See <i>Figure 1</i>
t _S Set-up Time t _H Hold Time			0.2		ns	
			0.2		ns	
fTOG (MAX)	Toggle Frequency (CP)	650	750		MHz	See Figure 2, Note


Functional Description

While the clock is LOW, the slave is held steady and the information on the D input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master-slave changes when the clock has slow rise or fall

The CP and $\overline{\text{CE}}$ inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the $\overline{\text{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{\text{CE}}$ should go HIGH while CP is still HIGH.

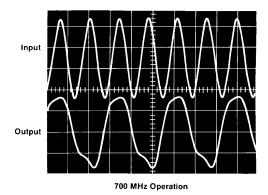
TL/F/9890-4


TL/F/9890-5

 $R_T\,=\,50\Omega$ termination of scope

 $L_1 = 50\Omega$ impedance lines All input transition times are 2.0 ns \pm 0.2 ns

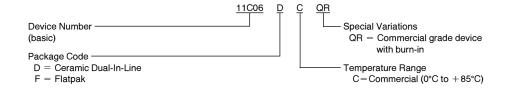
FIGURE 1. Propagation Delay (CP to Q)

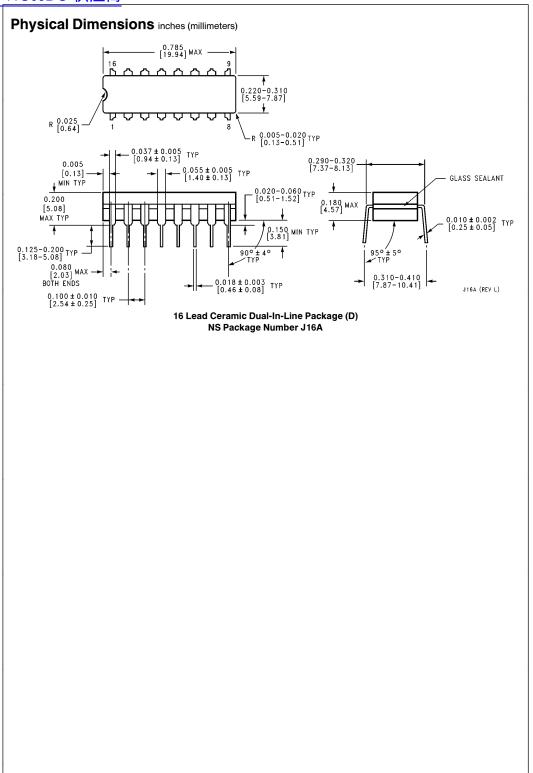

 $R_T = 50\Omega$ termination of scope

 $L_1 = 50\Omega$ impedance lines

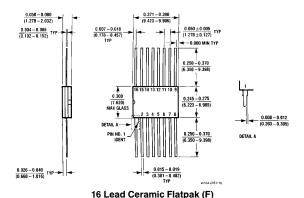
Adjust V_{BIAS} for +0.7V baseline of 800 mV peak-to-peak sinewave input. All input transition times are 2.0 ns $\,\pm\,0.2$ ns

FIGURE 2. Toggle Frequency Test Circuit


Typical Waveforms



Horizontal Scale = 1.0 ns/div Vertical Scale = 200 mV/div TL/F/9890-6


Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408