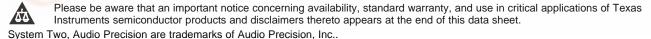
查询"PCM1754-Q1"供应商

www.ti.com SLES254 - APRIL 2010

24-BIT 192-kHz SAMPLING ENHANCED MULTI-LEVEL DELTA-SIGMA AUDIO DIGITAL-TO-ANALOG CONVERTER

Check for Samples: PCM1754-Q1

FEATURES


- Qualified for Automotive Applications
- 24-Bit Resolution
- Analog Performance (V_{CC} = 5 V)
 - Dynamic Range: 106 dB
 - SNR: 106 dB, TypicalTHD+N: 0.002%, Typical
 - Full-Scale Output: 4 V_{PP}, Typical
- 4x/8x Oversampling Digital Filter
 - Stop-Band Attenuation: -50 dB
 - Pass-Band Ripple: ±0.04 dB
- Sampling Frequency: 5 kHz to 200 kHz
- System Clock: 128 f_S, 192 f_S, 256 f_S, 384 f_S, 512 f_S, 768 f_S, 1152 f_S with Auto Detect
- Hardware Control (PCM1754)
 - I²S and 16-Bit Word, Right-Justified
 - 44.1 kHz Digital De-Emphasis
 - Soft Mute
 - Zero Flag for L-, R-Channel Common Output
- Power Supply: 5-V Single Supply
- Small 16-Lead SSOP Package, Lead-Free

APPLICATIONS

- A/V Receivers
- DVD Movie Players
- DVD Add-On Cards for High-End PCs
- DVD Audio Players
- HDTV Receivers
- Car Audio Systems
- Other Applications Requiring 24-Bit Audio

DESCRIPTION

The PCM1754 is a CMOS, monolithic, integrated circuit, which includes stereo digital-to-analog converters and support circuitry in a small 16-lead SSOP package. The data converters use TI's enhanced multilevel delta-sigma architecture, which employs 4th-order noise shaping and 8-level amplitude quantization to achieve excellent dynamic performance and improved tolerance to clock jitter. The PCM1754 accepts industry standard audio data formats with 16- to 24-bit data, providing easy interfacing to audio DSP and decoder chips. Sampling rates up to 200 kHz are supported. A full set of user-programmable functions is accessible through a three-wire serial control port, which supports register write functions.

df.dzsc.com

INSTRUMENTS

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 105°C	SSOP - DBQ	Reel of 2000	PCM1754TDBQRQ1	P1754Q

- For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

Supply voltage: V _{CC}	-0.3 V to 6.5 V	
Ground voltage differences: AGND, DGND	±0.1 V	
Input voltage	-0.3 V to 6.5 V	
Input current (any pins except supplies)	±10 mA	
Ambient temperature under bias -40°C to 7		
Storage temperature -55°C to 15		
Junction temperature 150		

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

All specifications at T_A = 25°C, V_{CC} = 5 V, f_S = 44.1 kHz, system clock = 384 f_S, and 24-bit data (unless otherwise noted)

	PARAMETER	TEST CONDITION	S MIN TY	P MAX	UNIT	
	Resolution		2	4	Bits	
DATA	FORMAT					
	Audio-data interface format		I ² S, stan	dard		
	Audio-data bit length		16-24-bit 16-bit (star			
	Audio data format		MSB fii 2s comple			
f_S	Sampling frequency		5	200	kHz	
	System clock frequency		128 f _S , 192 f _S 384 f _S , 512 f _S 1152	, 768 f _S ,		
DIGIT	AL INPUT/OUTPUT					
	Logic family		TTL comp	atible		
V_{IH}	Input logic level		2		VDC	
V_{IL}				0.8	VDC	
$I_{IH}^{(1)}$	Input logic current	$V_{IN} = V_{CC}$		10		
$I_{IL}^{(1)}$		$V_{IN} = 0 V$		-10		
I _{IH} (2)		$V_{IN} = V_{CC}$	6	5 100	μΑ	
$I_{IL}^{(2)}$		$V_{IN} = 0 V$		-10		
V _{OH} (3)	Output logic level	$I_{OH} = -1 \text{ mA}$	2.4		VDC	
$V_{OL}^{(3)}$	·	I _{OL} = 1 mA		0.4	VDC	

- Pins 16, 1, 2, 3: SCK, BCK, DATA, LRCK
- Pins 12-15: TEST, DEMP, MUTE, FMT
- (3)Pin 11: ZEROA

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

<u>₩營物門CM1754 Q1"供应商</u>

SLES254 -APRIL 2010

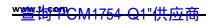
ELECTRICAL CHARACTERISTICS (continued)

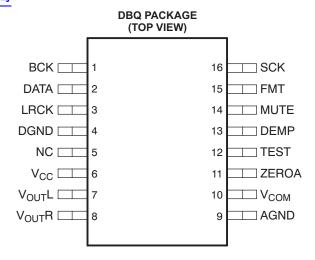
All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DYNAMIC PERFORMANCE ⁽⁴⁾⁽⁵⁾		1			
	f _S = 44.1 kHz		0.00%	0.01%	
THD+N at VOUT = 0 dB	f _S = 96 kHz		0.00%		
	f _S = 192 kHz		0.00%		
	f _S = 44.1 kHz		0.65%		
THD+N at VOUT = -60 dB	f _S = 96 kHz		0.80%		
	f _S = 192 kHz		0.95%		
	EIAJ, A-weighted, f _S = 44.1 kHz	100	106		
Dynamic range	A-weighted, f _S = 96 kHz		104		dB
	A-weighted, f _S = 192 kHz		102		
	EIAJ, A-weighted, f _S = 44.1 kHz	100	106		
Signal-to-noise ratio	A-weighted, f _S = 96 kHz		104		dB
	A-weighted, f _S = 192 kHz		102		
	f _S = 44.1 kHz	97	103		
Channel separation	f _S = 96 kHz		101		dB
	f _S = 192 kHz		100		
Level linearity error	VOUT = -90 dB		±0.5		dB
DC ACCURACY		1			
Gain error			±1	±6	% of FSR
Gain mismatch, channel-to-channel			±1	±3	% of FSR
Bipolar zero error	VOUT = 0.5 V _{CC} at BPZ		±30	±60	mV
ANALOG OUTPUT					
Output voltage	Full scale (0 dB)	80% of V _{CC}			V_{PP}
Center voltage		50% of V _{CC}			VDC
Load impedance	AC-coupled load	5			kΩ
DIGITAL FILTER PERFORMANCE					
FILTER CHARACTERISTICS (SHARP ROLLOF	F)				
Pass band	±0.04 dB			0.454 f _S	
Stop band		0.546 fs			
Pass-band ripple				±0.04	dB
Stop-band attenuation	Stop band = 0.546 f _S	-50			dB

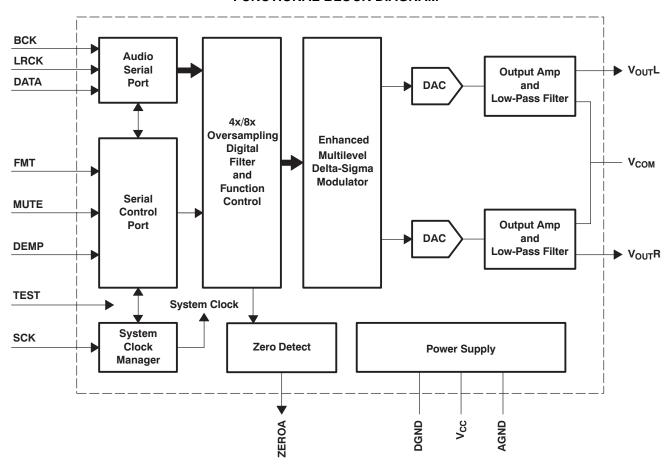
Analog performance specifications are measured using the System Two™ Cascade audio measurement system by Audio Precision™ in the averaging mode.

Conditions in 192-kHz operation are system clock = 128 f_S and oversampling rate = 64 f_S of register 18.




ELECTRICAL CHARACTERISTICS (continued)

All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANAL	OG FILTER PERFORMANCE		•			
	Fraguesey reesees	At 20 kHz		-0.03		٩D
	Frequency response	At 44 kHz		-0.20		dB
POWI	ER SUPPLY REQUIREMENTS (6)		•			
V _{CC}	Voltage range		4.5	5	5.5	VDC
	CC Supply current	f _S = 44.1 kHz		16	21	
I_{CC}		$f_S = 96 \text{ kHz}$		25		mA
		f _S = 192 kHz		30		
		f _S = 44.1 kHz		80	105	
	Power dissipation	$f_S = 96 \text{ kHz}$		125		mW
	f _S = 192 kHz		150			
TEMP	PERATURE RANGE					
	Operation temperature		-40		105	°C
θ_{JA}	Thermal resistance	16-pin SSOP		115		°C/W

⁽⁶⁾ Conditions in 192-kHz operation are system clock = 128 f_S and oversampling rate = 64 f_S of register 18.

FUNCTIONAL BLOCK DIAGRAM

SL型器 1998 1998 4 Q1" 供应商

TERMINAL FUNCTIONS

NAME	NO.	I/O	DESCRIPTION
AGND	9	-	Analog ground
BCK	1	I	Audio-data bit-clock input
DATA	2	I	Audio-data digital input
DEMP	13	Ţ	De-emphasis control ⁽¹⁾
DGND	4	_	Digital ground
FMT	15	I	Data format select ⁽¹⁾
LRCK	3	Ĺ	L-channel and R-channel audio data latch enable input
MUTE	14	ı	Analog mixing control ⁽¹⁾
NC	5	_	No connection
SCK	16	I	System clock input
TEST	12	I	Test pin. Ground or open ⁽¹⁾
V _{CC}	6	-	Analog power supply, 5 V
V _{COM}	10	_	Common voltage decoupling
V _{OUT} L	7	0	Analog output for L-channel
V _{OUT} R	8	0	Analog output for R-channel
ZEROA	11	0	Zero flag output for L/R channels

⁽¹⁾ Schmitt-trigger input with internal pulldown

www.hfonCM1754 O1"供应商

TYPICAL PERFORMANCE CURVES

All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data, (unless otherwise noted)

DIGITAL FILTER (DE-EMPHASIS OFF)

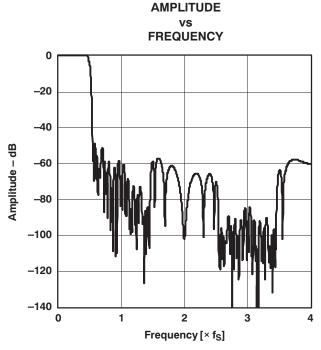


Figure 1. Frequency Response, Sharp Rolloff

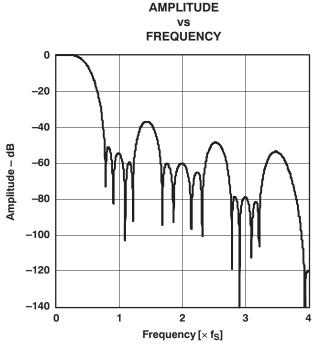


Figure 3. Frequency Response, Slow Rolloff

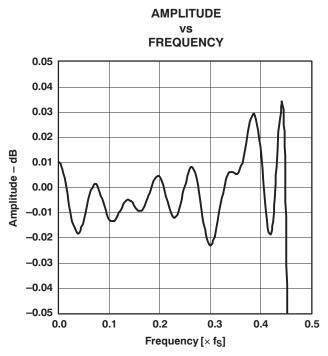
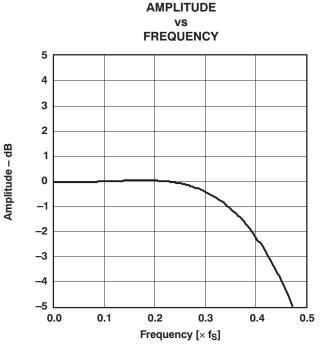
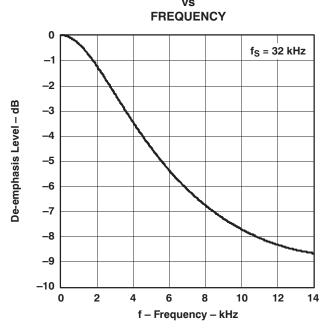
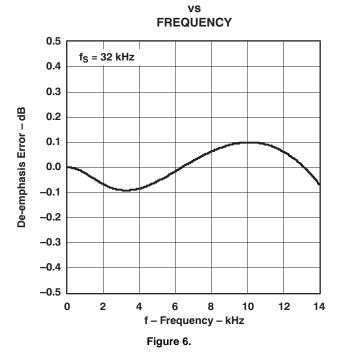


Figure 2. Pass-Band Ripple, Sharp Rolloff

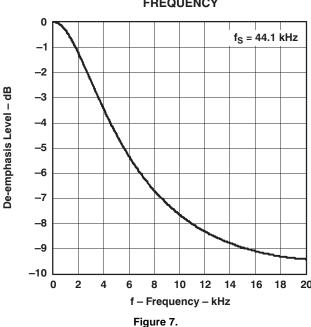



Figure 4. Transition Characteristics, Slow Rolloff


TYPICAL PERFORMANCE CURVES (continued)

All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data, (unless otherwise noted)

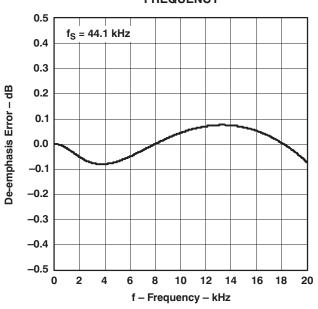
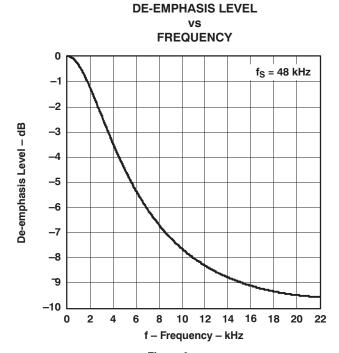
DE-EMPHASIS LEVEL

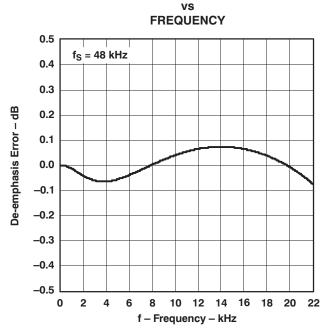

DE-EMPHASIS ERROR

DE-EMPHASIS LEVEL

Figure 5.

DE-EMPHASIS ERROR


Figure 8.

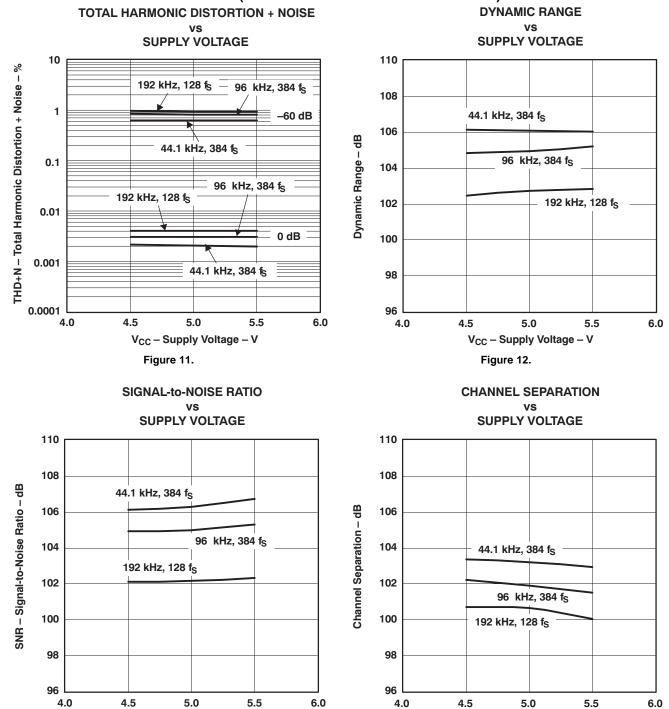
<u>₩豐街岬CM1754 Q1"供应商</u>

TYPICAL PERFORMANCE CURVES (continued)

All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data, (unless otherwise noted)

DE-EMPHASIS ERROR

Figure 9.


Figure 10.

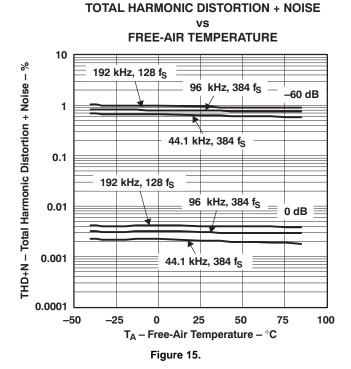
TYPICAL PERFORMANCE CURVES (continued)

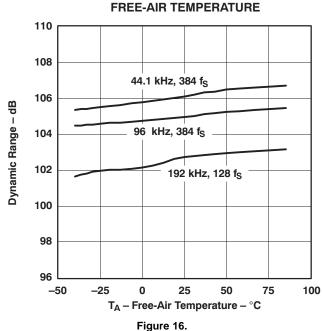
All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data, (unless otherwise noted)

ANALOG DYNAMIC PERFORMANCE (SUPPLY VOLTAGE CHARACTERISTICS)

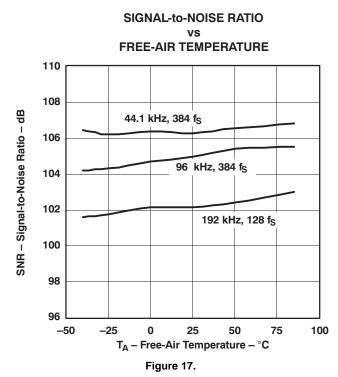
V_{CC} - Supply Voltage - V

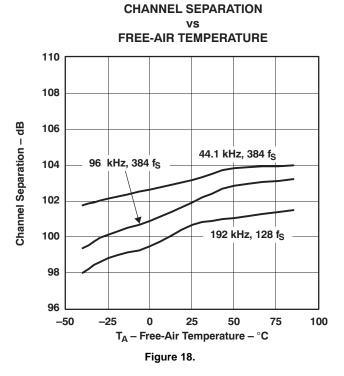
Figure 13.


V_{CC} - Supply Voltage - V


Figure 14.

TYPICAL PERFORMANCE CURVES (continued)


All specifications at $T_A = 25$ °C, $V_{CC} = 5$ V, $f_S = 44.1$ kHz, system clock = 384 f_S , and 24-bit data, (unless otherwise noted)


ANALOG DYNAMIC PERFORMANCE (TEMPERATURE CHARACTERISTICS)

DYNAMIC RANGE

Copyright © 2010, Texas Instruments Incorporated

SYSTEM CLOCK AND RESET FUNCTIONS

System Clock Input

The PCM1754 requires a system clock for operating the digital interpolation filters and multilevel delta-sigma modulators. The system clock is applied at the SCK input (pin 16). Table 1 shows examples of system clock frequencies for common audio sampling rates.

Figure 19 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock source with low phase-jitter and noise. Tl's PLL170x family of multiclock generators is an excellent choice for providing the PCM1754 system clock.

Table 1. System Clock Rates for Common Audio Sampling Frequencies

SAMPLING	SYSTEM CLOCK FREQUENCY (f _{SCLK}) (MHz)						
FREQUENCY	128 f _S	192 f _S	256 f _S	384 f _S	512 f _S	768 f _S	1152 f _S
8 kHz	1.024	1.536	2.048	3.072	4.096	6.144	9.216
16 kHz	2.048	3.072	4.096	6.144	8.192	12.288	18.432
32 kHz	4.096	6.144	8.192	12.288	16.384	24.576	36.864
44.1 kHz	5.6448	8.4672	11.2896	16.9344	22.5792	33.8688	(1)
48 kHz	6.144	9.216	12.288	18.432	24.576	36.864	(1)
88.2 kHz	11.2896	16.9344	22.5792	33.8688	45.1584	(1)	(1)
96 kHz	12.288	18.432	24.576	36.864	49.152	(1)	(1)
192 kHz	24.576	36.864	(1)	(1)	(1)	(1)	(1)

(1) This system clock rate is not supported for the given sampling frequency.

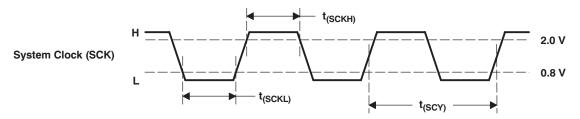


Figure 19. System Clock Input Timing

Table 2. System Clock Input Timing

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
System clock pulse duration, high	t _(SCKH)	7			ns
System clock pulse duration, low	t _(SCKL)	7			ns
System clock pulse cycle time	t _(SCY)		(1)		ns

(1) $1/128 f_S$, $1/256 f_S$, $1/384 f_S$, $1/512 f_S$, $1/768 f_S$, or $1/1152 f_S$

<u>₩豐物**P**CM1754 Q1"供应商</u>

SLES254 - APRIL 2010

Power-On Reset Functions

The PCM1754 includes a power-on reset function. Figure 20 shows the operation of this function. With the system clock active and $V_{CC} > 3$ V (typical, 2.2 V to 3.7 V), the power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time $V_{CC} > 3$ V (typical, 2.2 V to 3.7 V).

During the reset period (1024 system clocks), the analog output is forced to the bipolar zero level, or $V_{CC}/2$. After the reset period, an internal register is initialized in the next $1/f_S$ period and if SCK, BCK, and LRCK are provided continuously, the PCM1754 provides proper analog output with unit group delay against the input data.

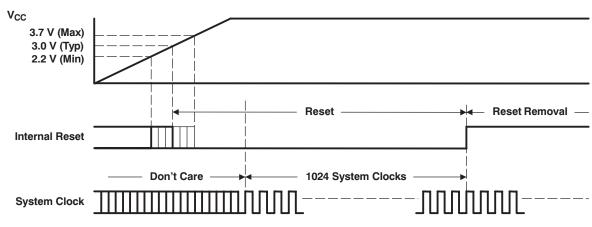


Figure 20. Power-On Reset Timing

AUDIO SERIAL INTERFACE

The audio serial interface for the PCM1754 consists of a 3-wire synchronous serial port. It includes LRCK (pin 3), BCK (pin 1), and DATA (pin 2). BCK is the serial audio bit clock, and it is used to clock the serial data present on DATA into the serial shift register of the audio interface. Serial data is clocked into the PCM1754 on the rising edge of BCK. LRCK is the serial audio left/right word clock. It is used to latch serial data into the internal registers of the serial audio interface.

Both LRCK and BCK should be synchronous to the system clock. Ideally, it is recommended that LRCK and BCK be derived from the system clock input, SCK. LRCK is operated at the sampling frequency, f_S . BCK can be operated at 32, 48, or 64 times the sampling frequency for standard (right-justified) format, and 32 times the sampling frequency of BCK is limited to 16-bit right-justified format only. BCK can be operated at 48 or 64 times the sampling frequency for the I^2S and left-justified formats. 48 times the sampling frequency of BCK is limited to 192/384/768 f_S SCKI.

Internal operation of the PCM1754 is synchronized with LRCK. Accordingly, internal operation is held when the sampling rate clock of LRCK is changed or when SCK and/or BCK is interrupted for a 3-bit clock cycle or longer. If SCK, BCK, and LRCK are provided continuously after this held condition, the internal operation is re-synchronized automatically in a period of less than 3/f_S. External resetting is not required.

Audio Data Formats and Timing

The PCM1754 supports I²S and 16-bit-word right-justified audio data formats. The data formats are shown in Figure 22. Data formats are selected using the FMT pin on the PCM1754. The default data format is 24-bit left-justified. All formats require binary 2s-complement MSB-first audio data. Figure 21 shows a detailed timing diagram for the serial audio interface.

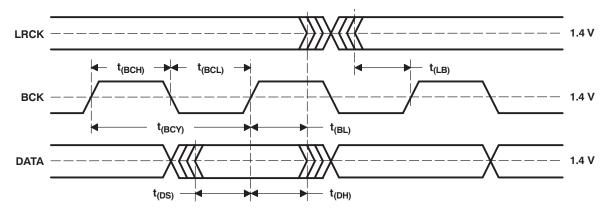
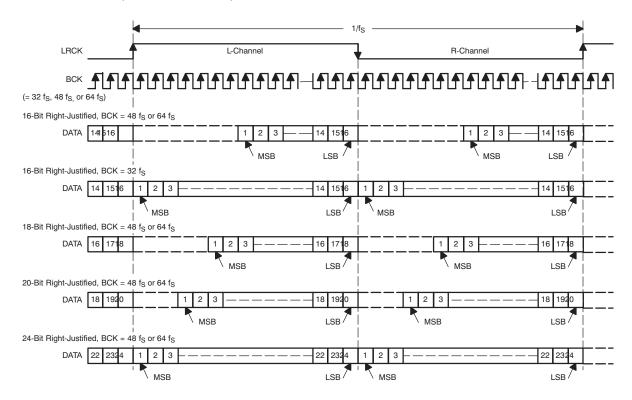
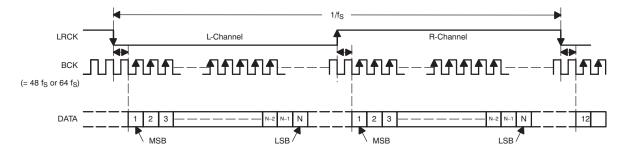


Figure 21. Audio Interface Timing


Table 3. Audio Interface Timing

PARAMETER	SYMBOL	MIN MA	XX UNIT
BCK pulse cycle time	t _(BCY)	1/(32 f _S), 1/(48 f _S), 1/(64 f _S) ⁽¹⁾	
BCK high-level time	t _(BCH)	35	ns
BCK low-level time	t _(BCL)	35	ns
BCK rising edge to LRCK edge	t _(BL)	10	ns
LRCK falling edge to BCK rising edge	t _(LB)	10	ns
DATA setup time	t _(DS)	10	ns
DATA hold time	t _(DH)	10	ns


⁽¹⁾ f_S is the sampling frequency (e.g., 44.1 kHz, 48 kHz, 96 kHz, etc.).

(1) Standard Data Format; L-Channel = HIGH, R-Channel = LOW

(2) I²S Data Format; L-Channel = LOW, R-Channel = HIGH

(3) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW

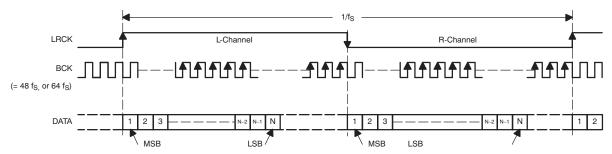


Figure 22. Audio Data Input Formats

Copyright © 2010, Texas Instruments Incorporated

ZERO FLAG

The PCM1754 has a ZERO flag pin, ZEROA (pin 11). ZEROA is the L-channel and R-channel common zero flag pin. If the data for L-channel and R-channel remains at a 0 level for 1024 sampling periods (or LRCK clock periods), ZEROA is set to a logic 1 state.

HARDWARE CONTROL

The digital functions of the PCM1754 are capable of hardware control. Table 4 shows selectable formats, Table 5 shows de-emphasis control, and Table 6 shows mute control.

Table 4. Data Format Select

FMT (PIN 15)	DATA FORMAT
LOW	16- to 24-bit, I ² S format
HIGH	16-bit right-justified

Table 5. De-Emphasis Control

DEMP (PIN 13) DE-EMPHASIS FUNCTION	
LOW	44.1 kHz de-emphasis OFF
HIGH	44.1 kHz de-emphasis ON

Table 6. Mute Control

MUTE (PIN 14)	MUTE
LOW	Mute OFF
HIGH	Mute ON

OVERSAMPLING RATE CONTROL

The PCM1754 automatically controls the oversampling rate of the delta-sigma D/A converters with the system clock rate. The oversampling rate is set to 64× oversampling with every system clock and sampling frequency.

SLES254 -APRIL 2010

<u>₩營物PCM1754 Q1"供应商</u>

ANALOG OUTPUTS

The PCM1754 includes two independent output channels, $V_{OUT}L$ and $V_{OUT}R$. These are unbalanced outputs, each capable of driving 4 V_{PP} typical into a 5-k Ω ac-coupled load. The internal output amplifiers for $V_{OUT}L$ and $V_{OUT}R$ are biased to the dc common-mode (or bipolar zero) voltage, equal to 0.5 V_{CC} .

The output amplifiers include an RC continuous-time filter, which helps to reduce the out-of-band noise energy present at the DAC outputs due to the noise shaping characteristics of the PCM1754 delta-sigma D/A converters. The frequency response of this filter is shown in Figure 23. By itself, this filter is not enough to attenuate the out-of-band noise to an acceptable level for many applications. An external low-pass filter is required to provide sufficient out-of-band noise rejection. Further discussion of DAC post-filter circuits is provided in the Applications Information section of this data sheet.

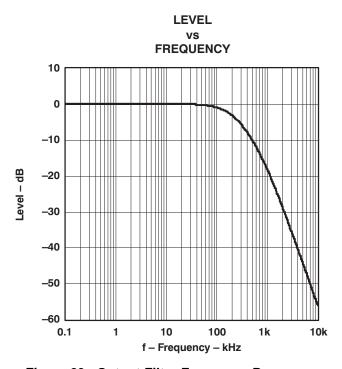
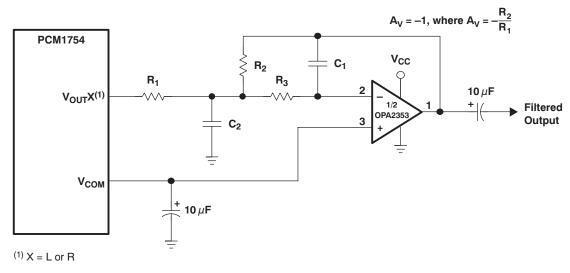
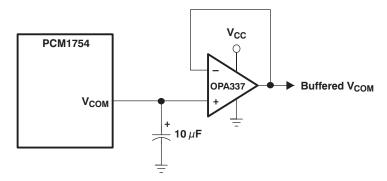



Figure 23. Output Filter Frequency Response



V_{COM} Output

One unbuffered common-mode voltage output pin, V_{COM} (pin 10) is brought out for decoupling purposes. This pin is nominally biased to a dc voltage level equal to 0.5 V_{CC} . This pin can be used to bias external circuits. Figure 24 shows an example of using the V_{COM} pin for external biasing applications.

(a) Using V_{COM} to Bias a Single-Supply Filter Stage

(b) Using a Voltage Follower to Buffer V_{COM} When Biasing Multiple Nodes

Figure 24. Biasing External Circuits Using the V_{COM} Pin

<u>₩響簡**P**CM1754 Q1"供应商</u>

APPLICATION INFORMATION

CONNECTION DIAGRAMS

A basic connection diagram is shown in Figure 25, with the necessary power supply bypassing and decoupling components. TI recommends using the component values shown in Figure 25 for all designs.

The use of series resistors (22 Ω to 100 Ω) is recommended for the SCK, LRCK, BCK, and DATA inputs. The series resistor combines with the stray PCB and device input capacitance to form a low-pass filter, which reduces high-frequency noise emissions and helps to dampen glitches and ringing present on clock and data lines.

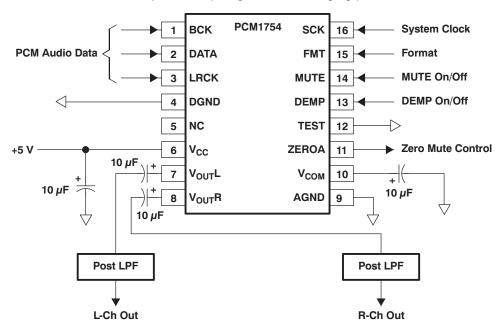


Figure 25. Basic Connection Diagram

POWER SUPPLIES AND GROUNDING

The PCM1754 requires 5 V for V_{CC} .

Proper power supply bypassing is shown in Figure 25. The 10- μ F capacitors should be tantalum or aluminum electrolytic.

D/A OUTPUT FILTER CIRCUITS

Delta-sigma D/A converters use noise-shaping techniques to improve in-band signal-to-noise ratio (SNR) performance at the expense of generating increased out-of-band noise above the Nyquist frequency, or $f_{\rm S}/2$. The out-of-band noise must be low-pass filtered in order to provide the optimal converter performance. This is accomplished by a combination of on-chip and external low-pass filtering.

Figure 24(a) and Figure 26 show the recommended external low-pass active filter circuits for single- and dual-supply applications. These circuits are 2nd-order Butterworth filters using the multiple feedback (MFB) circuit arrangement, which reduces sensitivity to passive component variations over frequency and temperature. For more information regarding MFB active filter design, see Burr-Brown applications bulletin (SBAA055), available from the TI Web site at http://www.ti.com.

Because the overall system performance is defined by the quality of the D/A converters and their associated analog output circuitry, high-quality audio operational amplifiers are recommended for the active filters. TI's OPA2353 and OPA2134 dual operational amplifiers are shown in Figure 24(a) and Figure 26, and are recommended for use with the PCM1754.

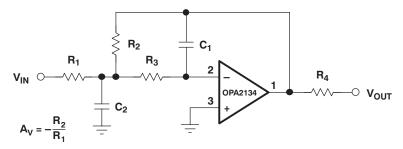


Figure 26. Dual-Supply Filter Circuit

PCB LAYOUT GUIDELINES

A typical PCB floor plan for the PCM1754 is shown in Figure 27. A ground plane is recommended, with the analog and digital sections being isolated from one another using a split or cut in the circuit board. The PCM1754 should be oriented with the digital I/O pins facing the ground plane split/cut to allow for short, direct connections to the digital audio interface and control signals originating from the digital section of the board.

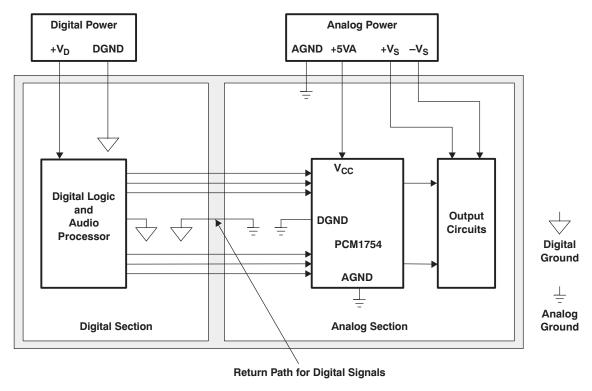


Figure 27. Recommended PCB Layout

Separate power supplies are recommended for the digital and analog sections of the board. This prevents the switching noise present on the digital supply from contaminating the analog power supply and degrading the dynamic performance of the PCM1754. In cases where a common 5-V supply must be used for the analog and digital sections, an inductance (RF choke, ferrite bead) should be placed between the analog and digital 5-V supply connections to avoid coupling of the digital switching noise into the analog circuitry. Figure 28 shows the recommended approach for single-supply applications.

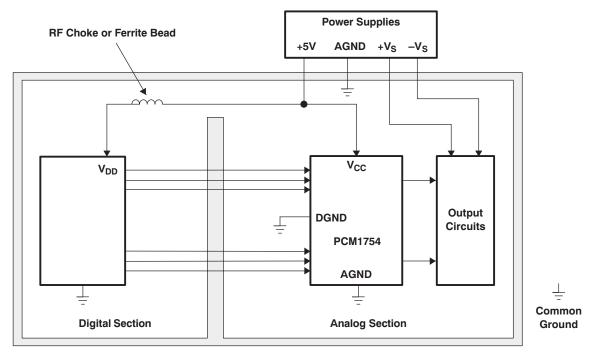


Figure 28. Single-Supply PCB Layout

THEORY OF OPERATION

The delta-sigma section of the PCM1754 is based on an 8-level amplitude quantizer and a 4th-order noise shaper. This section converts the oversampled input data to 8-level delta-sigma format. A block diagram of the 8-level delta-sigma modulator is shown in Figure 29. This 8-level delta-sigma modulator has the advantage of stability and clock jitter sensitivity over the typical one-bit (2-level) delta-sigma modulator.

The combined oversampling rate of the delta-sigma modulator and the interpolation filter is 64 fs.

The theoretical quantization noise performance of the 8-level delta-sigma modulator is shown in Figure 30 and Figure 31. The enhanced multilevel delta-sigma architecture also has advantages for input clock jitter sensitivity due to the multilevel quantizer, with the simulated jitter sensitivity shown in Figure 32.

KEY PERFORMANCE PARAMETERS AND MEASUREMENT

This section provides information on how to measure key dynamic performance parameters for the PCM1754. In all cases, an Audio Precision System Two Cascade audio measurement system or equivalent is used to perform the testing.

Total Harmonic Distortion + Noise

Total harmonic distortion + noise (THD+N) is a significant figure of merit for audio D/A converters because it takes into account both harmonic distortion and all noise sources within a specified measurement bandwidth. The average value of the distortion and noise is referred to as THD+N.

For the PCM1754, THD+N is measured with a full-scale, 1-kHz digital sine wave as the test stimulus at the input of the DAC (see Figure 33). The digital generator is set to 24-bit audio word length and a sampling frequency of 44.1 kHz or 96 kHz. The digital generator output is taken from the unbalanced S/PDIF connector of the measurement system. The S/PDIF data is transmitted via a coaxial cable to the digital audio receiver on the DEM-DAI1753 demonstration board. The receiver is then configured to output 24-bit data in either I²S or left-justified data format. The DAC audio interface format is programmed to match the receiver output format. The analog output is then taken from the DAC post filter and connected to the analog analyzer input of the measurement system. The analog input is band limited using filters resident in the analyzer. The resulting THD+N is measured by the analyzer and displayed by the measurement system.

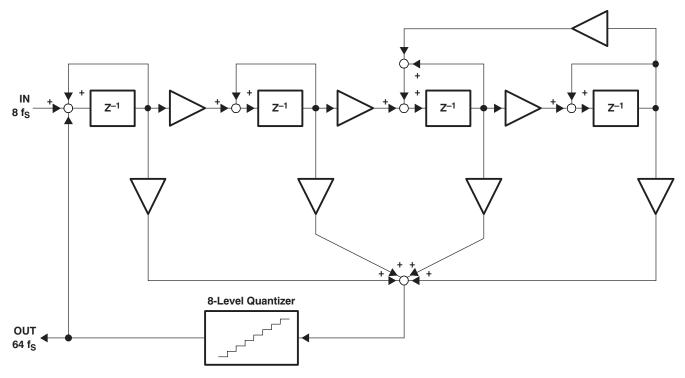


Figure 29. Eight-Level Delta-Sigma Modulator

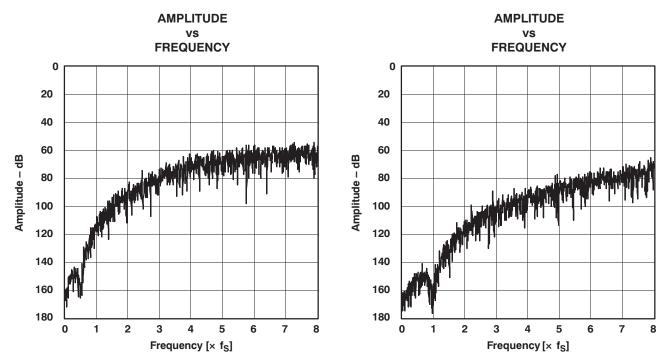


Figure 30. Quantization Noise Spectrum (×64 Oversampling)

Figure 31. Quantization Noise Spectrum (×128 Oversampling)

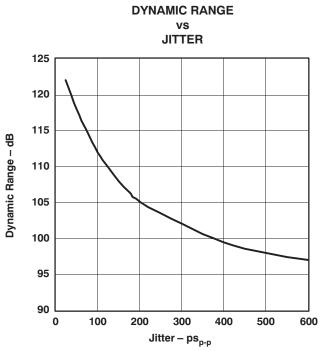


Figure 32. Jitter Dependence (x64 Oversampling)

Dynamic Range

Dynamic range is specified as A-weighted THD+N measured with a -60-dB full-scale, 1-kHz digital sine wave stimulus at the input of the D/A converter. This measurement is designed to give a good indicator of how the DAC performs given a low-level input signal.

The measurement setup for the dynamic range measurement is shown in Figure 34, and is similar to the THD+N test setup discussed previously. The differences include the band limit filter selection, the additional A-weighting filter, and the –60-dB full-scale input level.

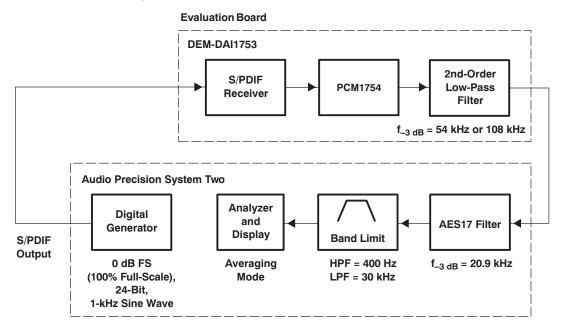
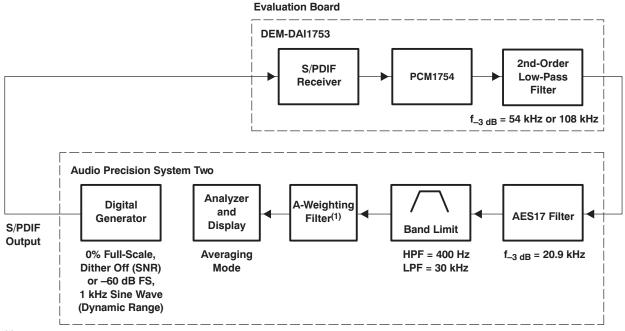


Figure 33. Test Setup for THD+N Measurement



Idle Channel Signal-to-Noise Ratio (SNR)

The SNR test provides a measure of the noise floor of the D/A converter. The input to the D/A is all-0s data, and the dither function of the digital generator must be disabled to ensure an all-0s data stream at the input of the D/A converter.

The measurement setup for SNR is identical to that used for dynamic range, with the exception of the input signal level.

(See the note provided in Figure 34).

(1) Results without A-Weighting are approximately 3 dB worse.

Figure 34. Test Setup for Dynamic Range and SNR Measurement

24 Submit

PACKAGE OPTION ADDENDUM

查询"PCM1754-Q1"供应商

16-Apr-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins P	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
PCM1754TDBQRQ1	ACTIVE	SSOP/ QSOP	DBQ	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

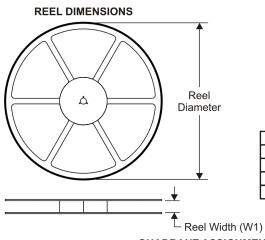
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

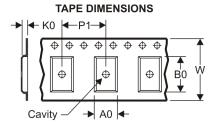
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF PCM1754-Q1:

• Catalog: PCM1754

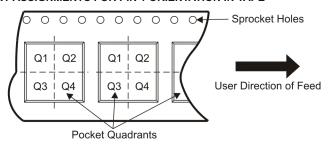
NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product



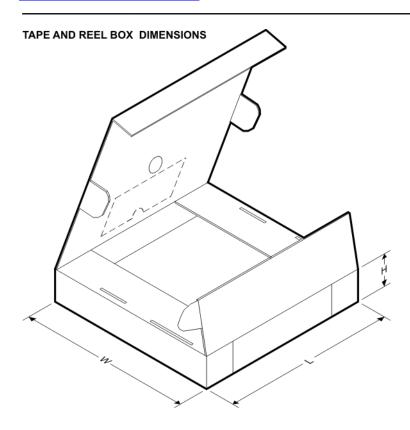
查询"BCM1754-Q1"供应商

20-Jul-2010


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

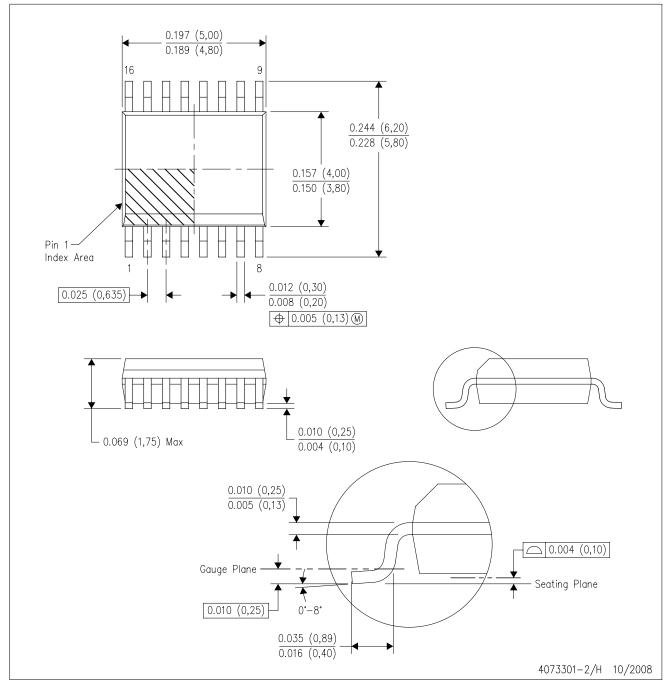


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PCM1754TDBQRQ1	SSOP/ QSOP	DBQ	16	2000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

查询"BCM1754-Q1"供应商

20-Jul-2010

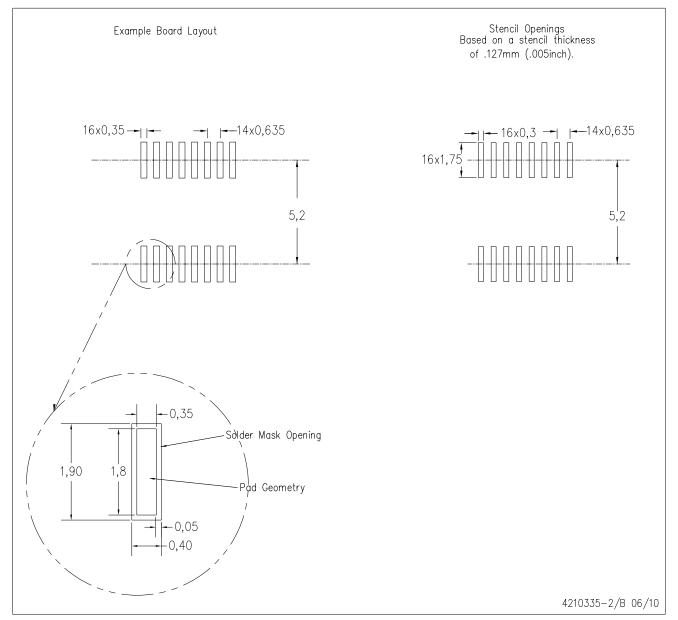


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCM1754TDBQRQ1	SSOP/QSOP	DBQ	16	2000	346.0	346.0	29.0

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AB.

DBQ (R-PDSO-G16)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

查询"PCM1754-Q1"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio		
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive		
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications		
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers		
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps		
Interface	interface.ti.com	Energy	www.ti.com/energy		
Logic	logic.ti.com	Industrial	www.ti.com/industrial		
Power Mgmt	<u>power.ti.com</u>	Medical	www.ti.com/medical		
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security		
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense		
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video		
		Wireless	www.ti.com/wireless-apps		