查询"8001601CX"供应商

LTD					.01			RE	EVIS	IONS	•												
LTR					DES	CRIP	TION									DAT	E (YF	-MO-E	DA)	F	\PPF	POVE	D
В	Add c condi	rt to mil ase outli tions and ricals in	ine 2. 1 limi	Cha ts in	nges tab	to	1.3	and	1 1. i	4.	Chan	ges	to		68.	89	JUI	NE 10	0	N -	14	1	2
We.	4	IT 04																					
	RREN	NT CA											Ž.			1		de	=		T.	T C	5
REV		NT CA											L				E	al a	M'		T.	1	5
REV		NT CA								0		P						NA.	84.7				3
REV SHEET REV		NT CA									N.							No.	ad '				5
REV SHEET REV SHEET			GE (COI	DE	67	26	8		P	P							age age	64.7		i i		70
REV SHEET REV SHEET	TATUS	REV		COI	DE	67	26	8 B	В	В	В							uni	91)			j	7
REV SHEET SHEET REV ST. OF SHE	TATUS EETS		GE (B B	DE B 3	67 B 4	26	8 B		Н	B 9							W	617		T		70
REV SHEET REV SHEET REV ST. OF SHE	TATUS EETS	REV	GE (B 2	B 3 ED BY	67 B 4	26	8 B	В	Н	+	D	EFE					s su		CE	NTE	R	50
REV SHEET REV SHEET REV ST. OF SHE	TATUS EETS	REV	GE (B B 2	B 3 ED BY	67	26	8 B	В	Н	9				DAY	TON	, OHI	O 454	444	Ė		,	10 m
REV REV SHEET REV SHEET STA	TATUS EETS VA	REV SHEET	GE (B B 2	B 3 ED BY	67	26	8 B	В	Н	9 M		OCIR	CUI	DAY	LIN	EAR,		444 MPLE	: An		,	A)
REV SHEET REV SHEET SHEET OF SHE STA	ANDAR MILITADRAW	REV SHEET CDIZED ARY ING GAVAILABLE DEPARTMENT	GE (B B 2 PEPAR RAWIN	B 3 ED BY	67 B 4	26 B 5	8 B 6	В	Н	9 M1 H1	I CRO	OCIR	CUITED,	DAY	LIN	EAR, THIC	O 454	444 MPLE	: AN	ID H	OLD	
REV SHEET REV SHEET REV ST. OF SHE STA	ANDAR MILITADRAW	REV SHEET CDIZED ARY ING GAVAILABLE DEPARTMENT	GE I	B B 2 PREPAR	B 3 SED BY	67 B 4 WPROVI	26 B 5	8 B 6	В	Н	9 M1 H1	I CR(OCIR	CUITED,	DAY	LIN	EAR, THIC	O 454	444 MPLE	: AN	ID H	,	

5962-E1095

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". 1.2 Part number. The complete part number shall be as shown in the following example: 80016 Case outline Device type Lead finish per Drawing number (1.2.2)MIL-M-38510 1.2.1 Device type. The device type shall identify the circuit function as follows: Generic number Circuit function Device type 01 2420 Sample and hold amplifier 1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows: Outline letter Case outline D-1 (14-lead, .785" x .310" x .200"), dual-in-line package C-2 (20-terminal, .358" x .358" x .100"), square chip carrier package C 2 1.3 Absolute maximum ratings. Storage temperature range - - - - - - - - --65°C to +150°C Power dissapation (PD): 1.03 W at +75°C 1.14 W at +75°C Differential input voltage range (VID) - - - - - -±24 ¥ Lead temperature (soldering, 10 seconds) - - - - -+300°C +175°C Short circuit protected See MIL-M-38510, appendix C. Thermal resistance, junction-to-ambient (0JA): 96°C/W Case outline C - - - - - - - - - -88°C/W 1.4 Recommended operating conditions. +15 ¥ dc -15 V dc *10 Y -55°C to +125°C +2.0 V +0.8 ¥ SIZE STANDARDIZED A 80016 MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL SHEET DAYTON, OHIO 45444 B 2

DESC FORM 193A SEP 87

U. S. GOVERNMENT PRINTING GIFFICE: 1986-649-6

查询"8001601CX"供应商

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full ambient operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING	size A		80016			
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL	- В	SHEET 3	

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

Test	Symbol	Conditions -55°C < T _A < +125°C unless otherwise speci	<u>1</u> / fied	Group A subgroups			Uni
Input offset voltage	AIO	V _{CM} = 0		1		±4.0	те∀
	<u> </u>			2,3	ļ	±6.0	
Input common mode range	ACM			1, 2, 3	±10	İ	V
Input offset current	110	VCM = 0		1		±50	nA
	<u> </u>			2,3	<u></u>	±100	
Input bias current	IB	V _{CM} = 0		1 1		±200	n/
	<u> </u>			2, 3		±400	
Supply current	1+			1 1		5.5	m/
	<u>i</u>			2, 3		7.0	-
	I			1	<u> </u>	-3.5	! -
	<u> </u>			2, 3		-5.0	
Power supply rejection ratio	+PSRR 	V ⁺ = 10 V, V ⁻ = -15 V, V ⁺ = 20 V, V ⁻ = -15 V		1, 2, 3	80	[₫₽
	-PSRR	V- = -10 V, V+ = 15 V, V- = -20 V, V+ = 15 V			80] 	
Drift current	i _{ID}	V _{IN} = 0 V, R _L = 2 kΩ, C _L = 50 pF, V _{S/H} = 4.0 V		2		±10	n/
		CL = 50 pF, VS/H = 4.0 V		1, 3 2/		±10	
Hold step error	VERROR	$V_{IN} = 0 V$, $4 V$, $t_r (V_S/\mu) = 30 \text{ ns}$ $C_H = 1,000 \text{ pF}$		4		±20	m۷
Large signal voltage gain	Ays(±)	R _L = 2 kΩ, C _L = 50 pF, V _{OUT} = ±10 V	<u> </u>	1, 2, 3	25		٧,
Common mode rejection ratio	+CMRR	V+ = 25 V, V- = -5 V, V _{OUT} = +10 V, V _{S/H} = 10.	1, 2, 3	80		ď₿	
	I-CMRR	$V^{+} = 5 \text{ V, } V^{-} = -25 \text{ V,}$ $V_{OUT} = -10 \text{ V, } V_{S/H} = -9.$	2 V		80	 	
ee footnotes at end of table				1			
STANDARDIZED MILITARY DRAWI	_	SIZE A		Q.e	016		

DESC FORM 193A SEP 87

#U. S. GOVERNMENT PRINTING OPPICE: 1985-540-90

<u> 查询"8001601CX"供应商</u>	Electric	al pe	rformance	chara	teristics	- Continued.			
Test	Symbol 	ur	Cond 55°C < T _A less othe	itions < +12 rwise	5°C <u>1</u> / specified	Group A subgroups	Limi Min	ts Max	Unit
Output current	+1 ₀	V _{OUT}	= +10 V			1	+15		mA -
	-I ₀	V _{OUT}	= -10 V				-15		
Output voltage swing	+V _{OP}	R _L =	2 kΩ, CL	= 50	pF	1, 2, 3	+10		٧
-	-V _{OP}					 		-10	
Digital input current	I _{IN1}	VINI	= 0 V			1, 2, 3		800	μ Α
	I _{IN2}	VINZ	e = 5.0 V					20	
Digital input voltage	۷ _{IL}			- 1		1, 2, 3	 	0.8	٧
-	۷ _{IH}						2.0		
Transient response rise time	TR(tr)	CL =	= 50 pF, R = +1,	L = 2	kΩ	7		100	ns
		V _{OU}	r = 200 mV	peak-	to-peak	8a ² / 8b ² /	 	100]
Transient response overshoot	TRines	Cı =	50 pF, R	1 = 2	kΩ	7		40	%
The state of the s	(03)	Av =	= +1, r = 200 mV			8a ² /		40	
						8b 2/		60	
Transient response slew rate	TR(SR)	 CL = Av -	= 50 pF, R = +1,	L = 2	kΩ	7	3.5		V/μς Γ
]	YOU	= 10.0 V	peak-	to-peak	8a 2/	3.5	<u> </u>	ł
	<u>.</u> I					8b ^{2/}	1.5		
Acquisition time (0.1%) $\underline{2}$ /	+tacq (0.1%) 	ÎΤΑ: IRL: IAγ:	= +25°C = 2 kΩ, Cլ = ±1, VouT	= 50 = 0 \	pF, , +10 V	4	 	4 	µS
•	 -tacq (0.1%)	TA : RL : Ay :	= +25°C = 2 kΩ, C _L = ±1, V _{OUT}	= 50 = 0 \	pF, , -10 V	4	 	4	[
See footnotes at end of table.									
STANDARDIZED			SIZE				0016		
MILITARY DRAWI DEFENSE ELECTRONICS SUPP		t I			REVISION LE		SHEET	·	
DAYTON, OHIO 45444			i		В	<u> </u>	5		

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988-549-904

TABLE 1	. Electric	cal performance characteristics -	Continued.		
Test	[Symbol	Conditions 1/ i -55°C < T _A < +125°C unless otherwise specified	Group A subgroups		Unit
Acquisition time (0.01%) 2/	+tacq (0.01%)	$T_A = +25^{\circ}C$ $R_L = 2 k\Omega$, $C_L = 50 pF$, $A_V = \pm 1$, $V_{OUT} = 0 V$, $\pm 10 V$	4	6	μS
	-tacq (0.01%)	$T_A = +25^{\circ}C$ $R_L = 2 k\Omega$, $C_L = 50 pF$, $A_V = \pm 1$, $V_{OUT} = 0 V$, -10 V	4	6	

- 1/ Unless otherwise specified, V^+ = +15 V, V^- = -15 V, C_H = 1,000 pF, digital input V_{IL} = +0.8 V (Sample), V_{IH} = +2.0 V (Hold).
- 2/ If not tested, shall be guaranteed to the specified limits.
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) T_A = +125°C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARDIZED

MILITARY DRAWING

DEPENSE BLECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

B. SIZE
A

REVISION LEVEL.

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1969--849-95

80016

SHEET

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
80016

REVISION LEVEL
B
37

DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987—549-096

- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 4, 7
Group A test requirements (method 5005)	1, 2, 3, 4, 7, 8**
Groups C and D end-point electrical parameters (method 5005)	1, 4

^{*} PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

STANDARDIZED MILITARY DRAWING	SIZE A		84	0016	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	В	SHEET 8	

DESC FORM 193A SEP 87

U. S. GOVERNMENT PRINTING OFFICE: 1988--649-904

^{**} Subgroup 8 guaranteed if not tested to the limits specified in table I.

泃"8001601CX"供应商

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /
8001601CX	34371	 HA1-2420/883
80016012X	34371	 HA4-2420/883

performance requirements of this drawing.

Vendor CAGE number

34371

Vendor name and address

Harris Semiconductor P. O. Box 883 Melbourne, FL 32901

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE Α 80016 **REVISION LEVEL** SHEET 9 R

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1968-549-904