FAIRCHILD

SEMICONDUCTOR

MM74HCT32 Quad 2-Input OR Gate

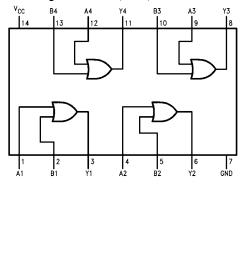
General Description

The MM74HCT32 is a logic function fabricated by using advanced silicon-gate CMOS technology, which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic and pin-out compatible with standard 74LS logic families. All inputs are protected from static discharge damage by internal diodes to V_{CC} and ground.

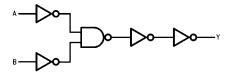
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

- Features ■ TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL} = 10 ns (typ)
- Low power: 10 μW at DC
- High fan-out, 10 LS-TTL loads

October 1987 Revised January 2005


Ordering Code:

Order Number	Package Number	Package Description
MM74HCT32M	M14A.	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCT32MX-NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCT32SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT32MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending suffix the letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP

Logic Diagram

© 2005 Fairchild Semiconductor Corporation DS009396

2
3
5
Ĭ
4
5
Ē

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t _r , t _f)		500	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	yond whic	h dam-
Note 2: Unless otherwise specified all voltages	are refere	nced to gr	ound.
Note 3. Power Dissipation temperature deratin	a — plaet	ic "N" pac	kada: _

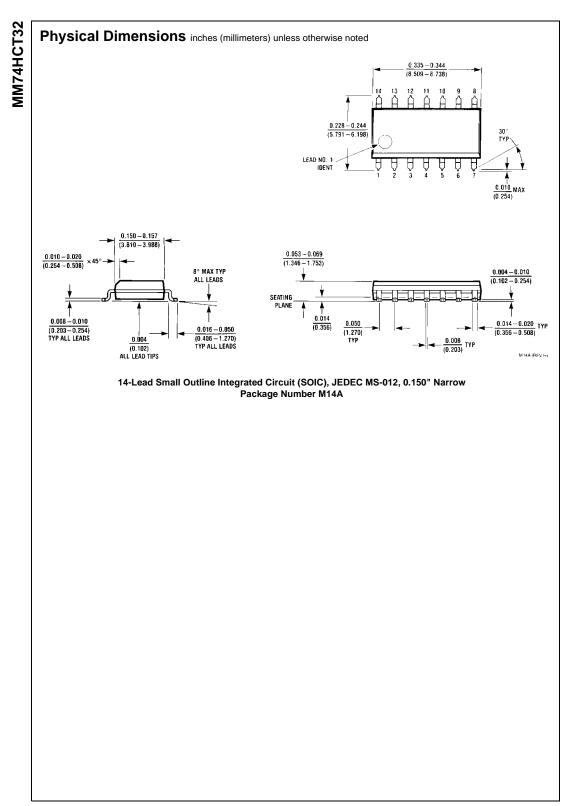
Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

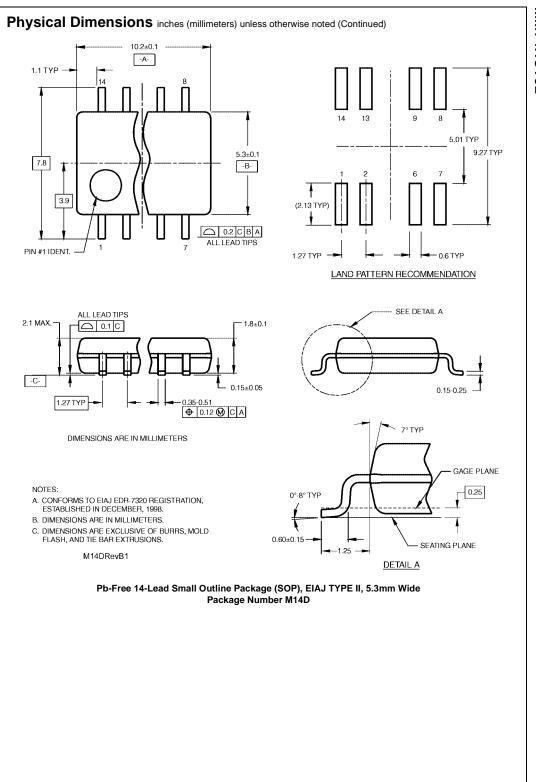
DC Electrical Characteristics

$V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

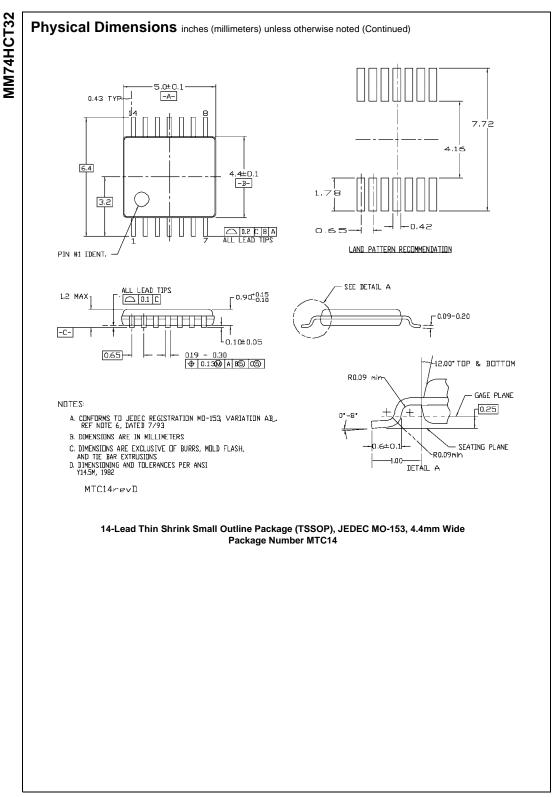
Symbol	Parameter	Conditions	$T_A = 25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units
Symbol			Тур	Guaranteed Limits		
V _{IH}	Minimum HIGH Level			2.0	2.0	V
	Input Voltage					
V _{IL}	Maximum LOW Level			0.8	0.8	V
	Input Voltage					
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$				
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	$V_{CC} - 0.1$	V _{CC} - 0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$				
	Voltage	I _{OUT} = 20 μA	0	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		± 0.1	± 1.0	μΑ
	Current					
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		2.0	20	μΑ
	Supply Current	$I_{OUT} = 0 \ \mu A$				
		V _{IN} = 2.4V or 0.5V (Note 4)		1.2	1.4	mA

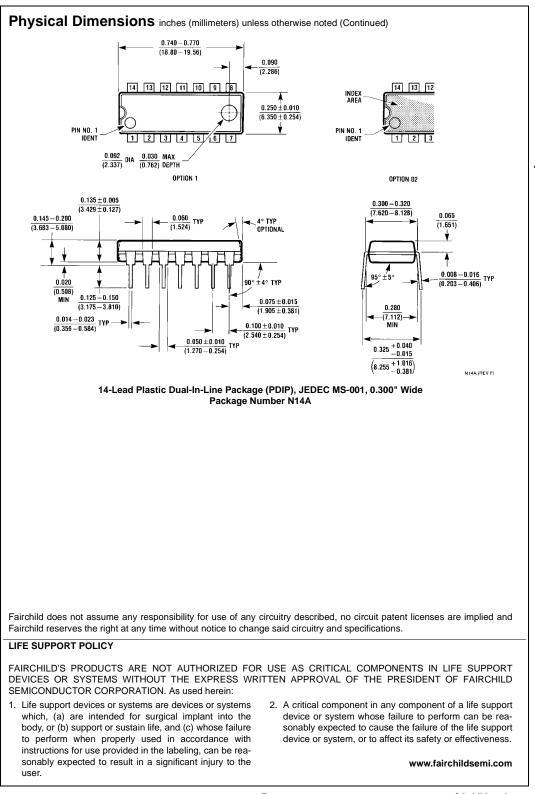
Note 4: This is measured per input with all other inputs held at V_{CC} or ground.


AC Electrical Characteristics						
$V_{CC} = 5.0V, t$	$r_r = t_f = 6 \text{ ns}, C_L = 15 \text{ pF}, T_A = 25 \text{C}^\circ$ (unle	ess otherwise noted)				
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units	
t _{PLH} , t _{PHL}	Maximum Propagation Delay		10		ns	


AC Electrical Characteristics

 $\text{V}_{CC}=5.0V\pm10\%,\,t_{r}^{}=t_{f}^{}=6$ ns, $C_{L}^{}=$ 15 pF (unless otherwise noted)


Symbol	Parameter	Conditions	$T_A = 25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$; Units	
Symbol	Falameter		Тур	Gua	ranteed Limits	Units	
t _{PLH} , t _{PHL}	Maximum Propagation Delay		12	20	25	ns	
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time		8	15	19	ns	
C _{PD}	Power Dissipation Capacitance	(Note 5)	48			pF	
CIN	Input Capacitance		5	10	10	pF	


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} 2 f + I_{CC}$.

MM74HCT32

MM74HCT32 Quad 2-Input OR Gate