

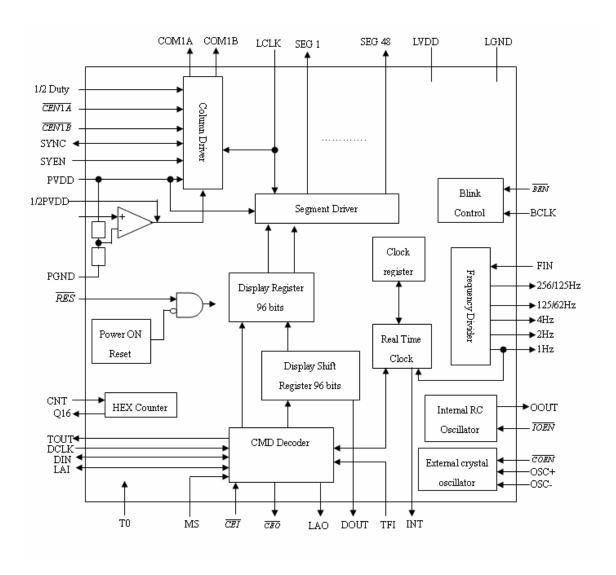
ML2002 Series Static/Half Duty LCD COG Driver with Real Time Clock

* Application

- ◆ General Purpose Clock
- ◆ High quality instrument
- ◆ Telephone, mobile phone
- **♦** Automotive
- ◆ Handheld Device like PDA, MP3, or PMP

***** Features

- A Gold Bump Chip
- Logic & LCD power supply: 2.0V to 6.0V
- Static or 1/2 Duty driving
- Number of segments: (Static) 48, (1/2 Duty) 96
- Cascading structure to increase the number of driving segments.
- Build in Real time clock
- Simple 2 pin serial interface for command and data transfer.
- Build-in LCD voltage driver, crystal oscillator, internal RC oscillator and display control circuit.
- Offer best contrast and widest viewing angle of TN LCD technology.
- No temperature compensation needed for Topr = -40°C to 80°C.


* General Description

ML2002 (COG) LCD driver can be cascaded to increase the number of segments drive, with Static driving it can form a single piece of 48 (1 ICs) or 96 (2 ICs cascaded) segments driver. With 1/2 Duty, the number of segment drive would be doubled. It targets at custom TN LCD COG Module product which requires the best quality of TN LCD technology and small to medium number of segment display. ML2002 series driver offers the best contrast, the widest viewing angle, the widest range of operating voltage and temperature when compared to the high duty cycle driver. EMI and Noise protection circuit has been added which tailor made for COG application. A real time clock has been built-in to target at the large LCD clock, watch or any handheld device.

Ordering Information

Part Number	Description	Package Form
ML2002-1U	One ML2002 LCD driver	Gold Bump Die
ML2002-2U	Two ML2002 LCD driver	Gold Bump Die
ML2002-3U	Three ML2002 LCD driver	Gold Bump Die
ML2002-4U	Four ML2002 LCD driver	Gold Bump Die

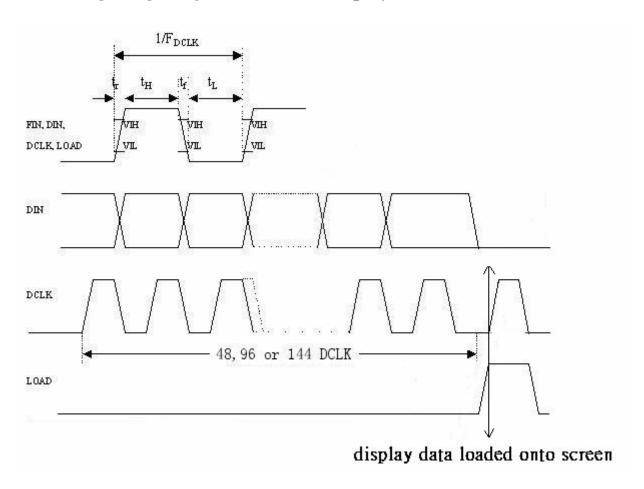
* Block Diagram

* Absolute Maximum Ratings

Parameter	Symbol	Condition	MIN	MAX	Unit
Supply voltage	V_{DD}		-0.5	+6.0	V
Supply Current	I_{DD}	$V_{\rm DD}$ = 3V, no Load	-50	+50	mA
Input Voltage	V_{IN}		GND-0.3	V _{DD} +0.3	V
Output Voltage	V _{OUT}		GND-0.3	V _{DD} +0.3	V
DC input Current	I _{IN}		-10	+10	mA
DC output Current	I_{OUT}		-10	+10	mA
Storage temperature	T _{stg}		-65	+150	°C
Total power dissipation	P _{tot}		-	400	mW

* DC Characteristic

 $V_{DD} = 3.0V$; $T_{amb} = 25^{\circ}C$; unless otherwise specified


Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Supplies						
Supply voltage	V_{DD}		2.5	-	6.0	V
Supply Current	I_{DD}	Disable Oscillator	-	0.1	0.5	uA
Supply Current	I_{DD}	Enable Oscillator	-	25	60	uA
Logic						
LOW-level input voltage	V_{IL}		GND	-	$0.3*V_{DD}$	V
HIGH-level input voltage	V_{IH}		$0.7*V_{DD}$	-	V_{DD}	V
LOW-level output current	I_{OL}	$V_{OL} = 1.0V$	1	-	-	mA
HIGH-level output	I _{OH}	$V_{OH} = 2.0V$	-1	-	-	mA
current						
LCD outputs						
Output resistance at pads	R _{SEG}		-	85	150	ohm
S1 to S40						
Output resistance at pads	R _{COM}		-	45	100	ohm
COM1A and COM1B						

* AC Characteristic

 $V_{DD} = 3.0V$; $T_{amb} = 25$ °C; unless otherwise specified

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Oscillator frequency at	f _{oout}		21	32	48	kHz
pad OOUT						
FIN, LOAD, DIN, DCLK	$t_{\rm H}$		0.4	-	-	us
High time						
FIN, LOAD, DIN, DCLK	$t_{ m L}$		0.4	-	-	us
Low time						
FIN, LOAD, DIN, DCLK	$t_{\rm r}$		-	-	10	us
Rise time						
FIN, LOAD, DIN, DCLK	t_{f}		-	-	10	us
Fall time						
DCLK Frequency	F_{DCLK}		1	-	250	kHz

* Timing Diagram for slave mode display

* Functional Description

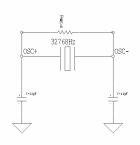
The display data should be input in reverse order from SEG48, SEG41... SEG2, SEG1 for proper display of data.

i) Internal Power on reset

At power on the ML2002 will reset the internal register and counter as follows.

- 1. The display Data RAM is cleared.
- 2. The clock register will be cleared, the alarm will be disabled by setting the AE to logic 1, and the RTC stops running by setting STOP to 1.
- 3. The command/data decoder will be reset to initial state.

ii) Oscillator


The LCD driving signal of ML2002 is clocked either by the built-in oscillator, crystal oscillator or from an external clock.

a) Internal clock

When the internal oscillator is used, BIOEN should be connected to GND and the OOUT should be connected to FIN. The internal oscillator will oscillate at 32 kHz and the frequency is independent in the range of $2.5 \text{V} \leq \text{V}_{DD} \leq 6.0 \text{V}$. Then connect OOUT to FIN.

b) Crystal clock

When using the crystal oscillator, BCOEN is connected to GND, then connect the crystal to OSC+, and OSC-. Then connect OSC- to FIN. The OSC+ and OSC- should connect as:

c) External clock

When using an external clock, BCOEN & BIOEN is connected to VDD then connects the external clock to FIN.

iii) Timing

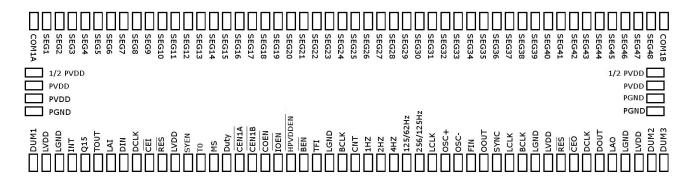
ML2002 have several frequencies of clock signal for the users to choose for the LCD display clock (ie. LCLK) and the blink clock (ie.BCLK). They include the following clock signals:

Frequency of Clock Signal at FIN = 32 kHz	Actual Divider of FIN	Target Input Pin
256/128 Hz	1/256(1/2 Duty) or 1/128(Static)	LCLK
128/64 Hz	1/128(1/2 Duty) or 1/64(Static)	LCLK
4 Hz	1/8192	
2 Hz	1/16384	BCLK
1 Hz	1/32768	

iv) Segment outputs

ML2002 has 48 segment outputs which should be connected directly to the LCD. If less than 48 segments a re required, the unused segments should be left open circuit.

v) Common outputs


ML2002 consists of 2 common signals (ie. COM1A & COM1B). The common outputs should be left open-circuit if the outputs are unused. Users can disable the COM1A and COM1B by connecting the $\overline{CEN1A}$ and $\overline{CEN1B}$ to VDD, respectively. The common outputs will change to GND after disabling it.

vi) Blink

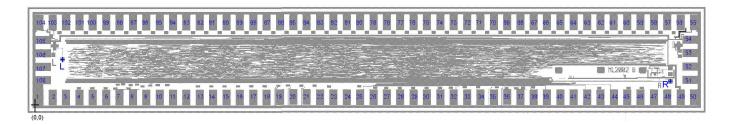
ML2002 has a blink function that users shall connect \overline{BEN} to GND and input the blink clock (ie. BCLK) either by connecting ML2002 output clock signal from Frequency Divider or an external clock signal. Users shall disable blink function by connecting \overline{BEN} to VDD.

* Pad Configuration

Chip Size:

Part Number	Description	Chip Size
ML2002-1U	One ML2002 LCD driver	3660 x 660
ML2002-2U	Two ML2002 LCD driver	7320 x 660
ML2002-3U	Three ML2002 LCD driver	10980 x 660
ML2002-4U	Four ML2002 LCD driver	14640 x 660

Chip Thickness: $700 \text{ um} \pm 25 \text{ um}$ Gold Bump Pad Size: $32 \text{ um} \times 72 \text{ um}$ Gold Bump Height: $18 \text{ um} \pm 2 \text{ um}$

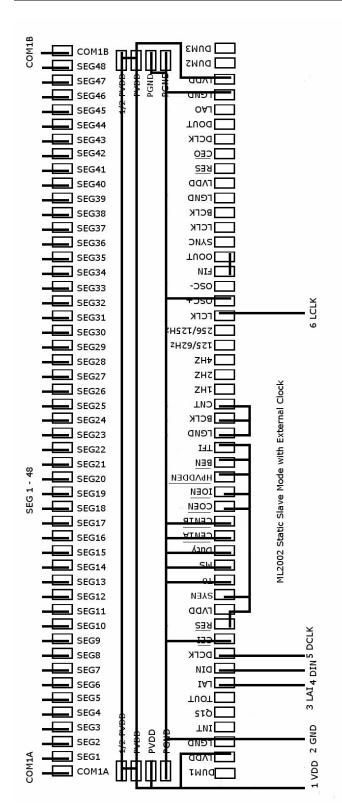

Left alignment mark: (141.05, 238.5) Right alignment mark: (3325.5, 121.6)

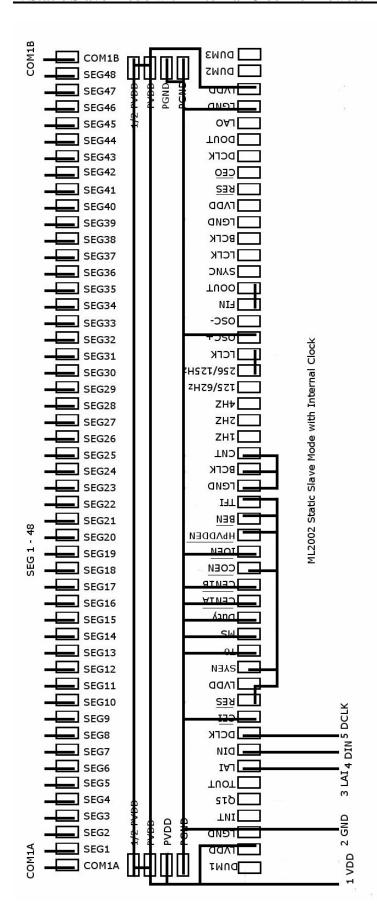
Note:

The die faces up in the diagram

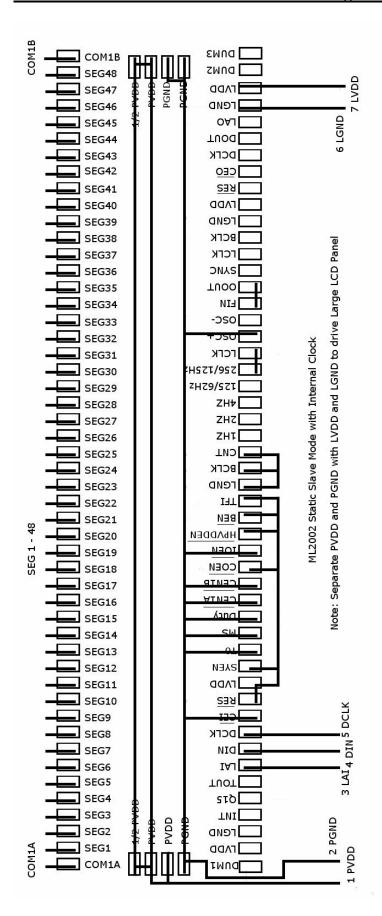
Pad Orientation:

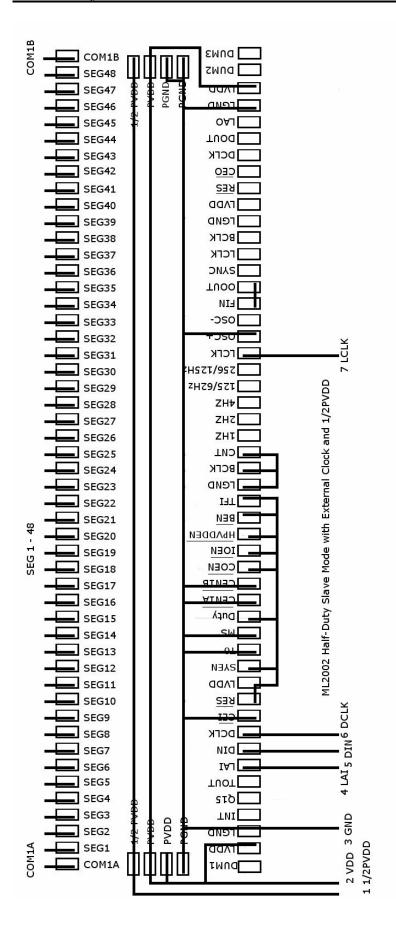
Pad	Pad Name	Х	Y	Pad	Pad Name	X	Y	Pad	Pad Name	X	Y
1	DUM1	0	0	51	PGND	3390	110	101	SEG3	210	390
2	LADD	70	0	52	PGND	3390	180	102	SEG2	140	390
3	LGND	140	0	53	PVDD	3390	250	103	SEG1	70	390
4	INT	210	0	54	1/2PVDD	3390	320	104	COM1A	0	390
5	015	280	0	55	COM1B	3430	390	105	1/2PVDD	0	320
6	TOUT	350	0		SEG48	3360	390	106	PVDD	0	250
7	LAI	420	0	57	SEG47	3290	390	107	PVDD	0	180
8	DIN	490	0	58	SEG46	3220	390	108	PGND	0	110
9	DCLK	560	0	59	SEG45	3150	390				
10	CEI	630	0	60	SEG44	3080	390				
11	RES	700	0	61	SEG43	3010	390				
12	LADD	770	0	62	SEG42	2940	390				
13	SYEN	840	0	63	SEG41	2870	390				
14	TO	910	0	64	SEG40	2800	390				
15	MS	980	0	65	SEG39	2730	390				
16	DUTY	1050	0	66	SEG38	2660	390				
17	CEN1A	1120	0	67	SEG37	2590	390				
18	CENIB	1190	0	68	SEG36	2520	390				
19	COEN	1260	0	69	SEG35	2450	390				
20	IOEN	1330	0	70	SEG34	2380	390				
21	HPVDDEN	1400	0	71	SEG33	2310	390				
22	BEN	1470	0		SEG32	2240	390				
23	TFI	1540	0	73	SEG31	2170	390				
24	LGND	1610	0		SEG30	2100	390				
25	BCLK	1680	0		SEG29	2030	390				
26	CNT	1750	0	76	SEG28	1960	390				
27	1HZ	1820	0	77	SEG27	1890	390				
28	2HZ	1890	0	78	SEG26	1820	390				
29	4HZ	1960	0	79	SEG25	1750	390				
30	125/62HZ	2030	0		SEG24	1680	390				
31	256/125HZ	2100	0	81	SEG23	1610	390				
32	LCLK	2170	0		SEG22	1540	390				
33	OSC+	2240	0	83	SEG21	1470	390				
34	OSC-	2310	0	84	SEG20	1400	390				
35	FIN	2380	0	85	SEG19	1330	390				
36	OOUT	2450	0	86	SEG18	1260	390				
37	SYNC	2520	0	87	SEG17	1190	390				
38	LCLK	2590	0	88	SEG16	1120	390				
39	BCLK	2660	0	89	SEG15	1050	390				
40	LGND	2730	0	90	SEG14	980	390				
41	LADD	2800	0	91	SEG13	910	390				
42	RES	2870	0		SEG12	840	390				
43	CEO	2940	0		SEG11	770	390				
44	DCLK	3010	0	94	SEG10	700	390				
45	DOUT	3080	0	95	SEG9	630	390				
46	LAO	3150	0	96	SEG8	560	390				
47	LGND	3220	0	97	SEG7	490	390				
48	LADD	3290	0		SEG6	420	390				
49	DUM2	3360	0		SEG5	350	390				
50	DUM3	3430	0	100	SEG4	280	390				

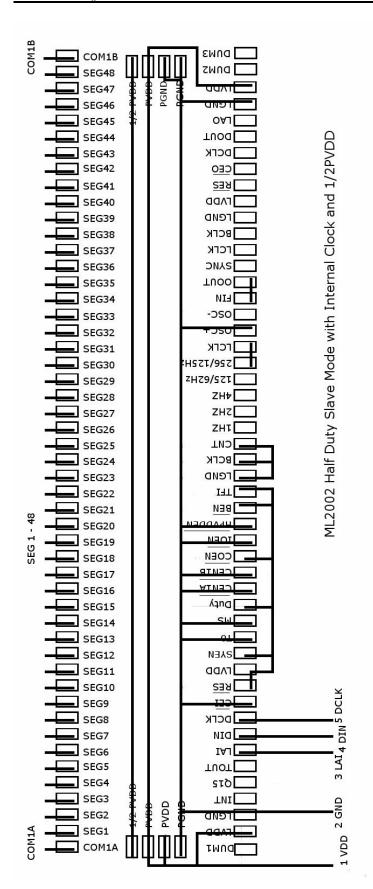

Note: Pad 1, 49 and 50 are DUM Pads which must be open.

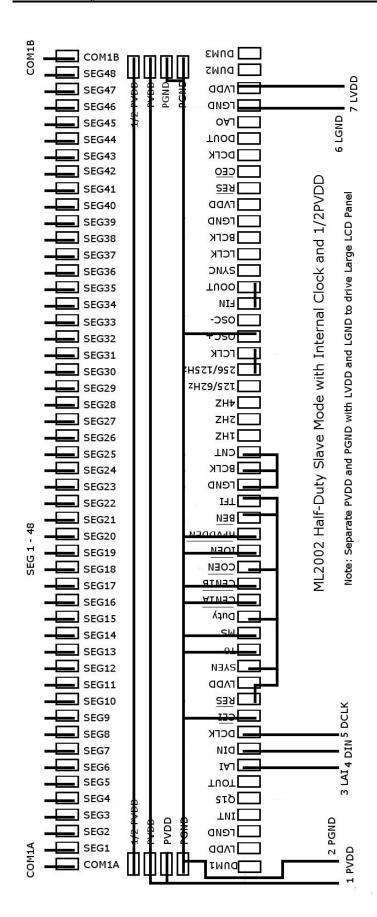

* Application Circuit

Slave Mode for Original ML1001 Users

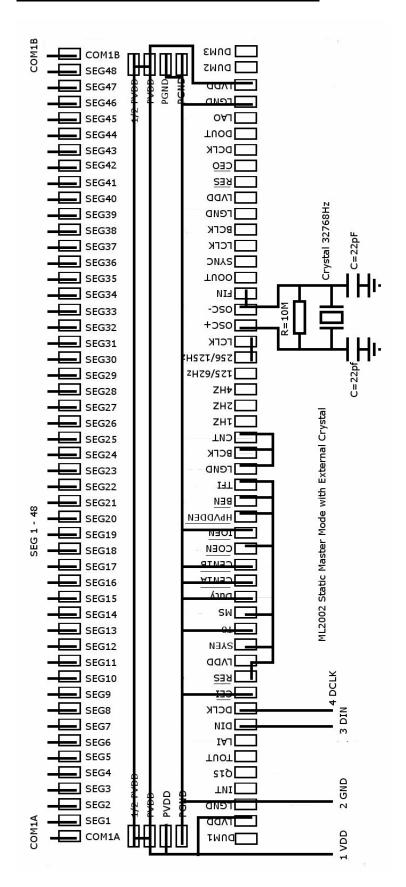

1. Static Slave Mode with External Clock for Low Power Consumption


2. Static Slave Mode with Internal Clock for Fewest External Pins

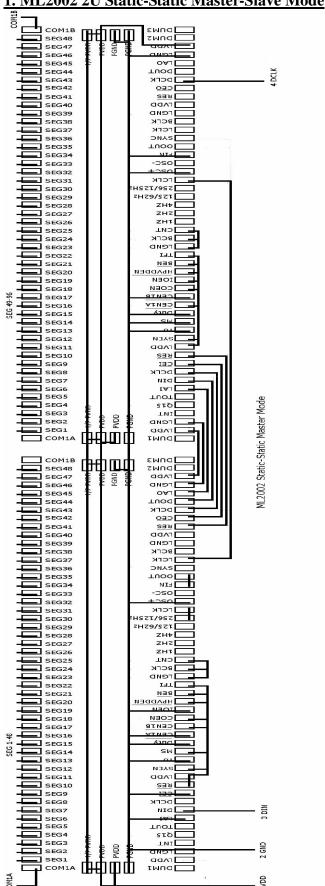

3. Static Slave Mode with Internal Clock for Large LCD Panel


4. Half-Duty Slave Mode with External Clock and 1/2PVDD for Low Power Consumption

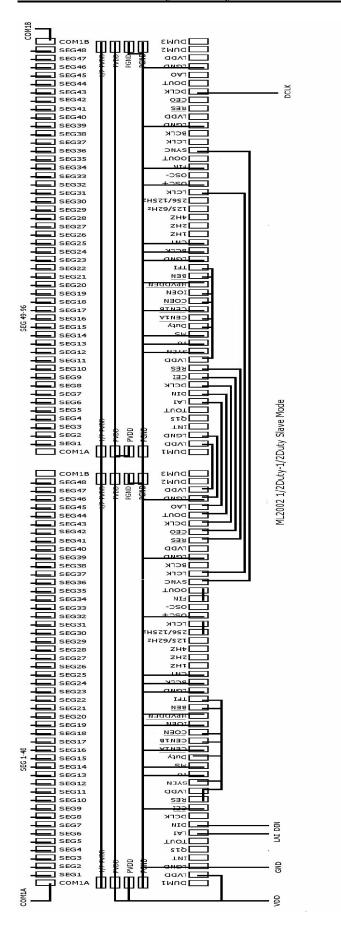
5. Half-Duty Slave Mode with Internal Clock and 1/2PVDD for Fewest External Pins

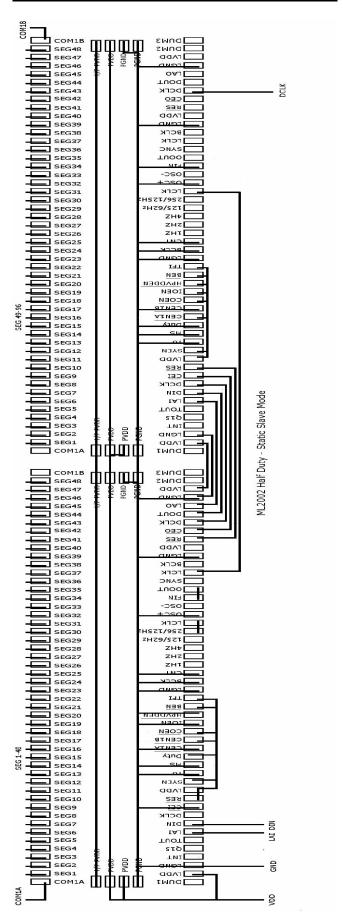


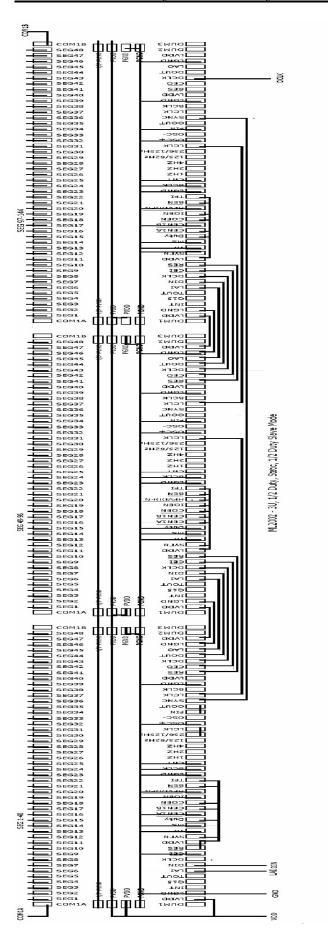
6. Half-Duty Slave Mode with Internal Clock and 1/2PVDD for Large LCD Panel


Master Mode for using ML2002 Real Time Clock

1. Static Master Mode with External Crystal




ML2002 Cascode Structure Connection 1. ML2002 2U Static-Static Master-Slave Mode


2. ML2002 2U 1/2Duty-1/2Duty Slave-Slave Mode

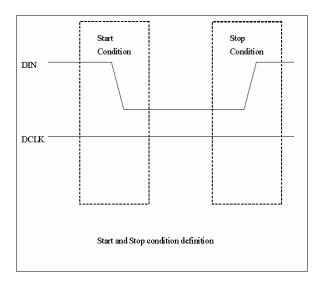
3. ML2002 2U 1/2Duty-Static Slave-Slave Mode

4. ML2002 3U 1/2Duty-Static-1/2Duty Slave-Slave Mode

* Pin Description

SYMBOL	PAD	DESCRIPTION
BRES	I	External reset input (active LOW)
LGND	-	Logic Ground
INT	I	Alarm interrupt output
LVDD	1	Logic Supply voltage
MS	I	"1" – Master, "0" – Slave
DIN		Data line input, for 2 pin interface, it need to connect to a pull high resistor and
DIN	I/O	would output ACK.
DCLK	I	Data clock input
LAI	I/O	If used as Master, it would output ACK and can be connected to DIN when used as 2
LAI	1/0	pin interface. If used as slave, it is an input pin which LOAD the display onto the
		LCD screen during rising edge.
LAO	0	Send out LOAD signal to the cascade slave ML2002 for displaying data onto LCD
Ento		screen.
<u>CEI</u>	I	Enable Chip for receive data/command in the DIN pin
CEO	0	Send out chip enable signal to the following cascade slave IC
DOUT	0	Data output from the display data RAM
CNT	I	Input clock, count number of rising edge clock
Q15	0	Output High on the 16 th clock from CNT
FIN	I	32768Hz Oscillator input
4,2,1Hz	0	4, 2, 1Hz clock output
250/125 Hz	0	125Hz clock output for static/ 250 clock output for 1/2 duty
125/62 Hz	0	62Hz clock output for static/125 clock output for 1/2 duty
LCLK	I	LCD Clock signal frequency
SEG1 SEG48	О	Segment output
COM1A/B	О	Common output
PVDD	-	Power VDD supply
1/2 PVDD	I	1/2 PVDD LCD driving voltage
1/2 Duty	I	"1" – Halfduty, "0" – Static
CEN1A, CEN1B	I	Common Enable. "0" – Enable, "1" – Disable
T0	I	Test mode. "0" – Normal mode, "1" – Testing Mode
OOUT	О	32K internal clock output
COEN	I	Crystal oscillator enable. "0" – Enable, "1" – Disable
<u>IOEN</u>	I	32K internal clock enable. "0" – Enable, "1" – Disable
HPVDDEN	I	1/2 PVDD enable. "0" – Enable, "1" – Disable
\overline{BEN}	I	Blink control circuit enable "0" – Enable, "1" – Disable
BCLK	I	Blink clock input
OSC+/-	I	Crystal oscillator input
SYNC	I/O	To synchronize COMMON signal to the following cascade IC
TFI	I	2/4 pin interface, "1" - 2pin , "0" - 4pin
SYEN	I	SYNC enable. If in Master mode, SYNC will output signal to the next cascade IC,
		but in slave mode, SYEN is "1" – SYNC output, "0" – SYNC will be high
		impredence.
TOUT	О	When select 4pin interface, it would output timer data.
DUM1,2,3	=.	Dummy Pad, Left it open only

Note: 1. In cascade format of ML2002(ie. ML2002-2U and -3U), one pin is the input of current ML2002 and the other is for the connection with the corresponding input pin of next ML2002.


2. Condition : FIN = 32 KHz Clock.

* MLS Interface

MiniLogic Device corporation's serial interface designed for LCD cascading structure. The First IC will be treated as master IC and receive command from MCU. Then it processed to send out to the preceding slave IC in the cascading structure. In 2 pin mode, the master IC will send out ACK though the DIN pin to acknowledge the command/data sent by the MCU, if in 4 pin mode; it would be the LAI pin. Transfer is initiated by START and ends by STOP. If there is any error in the transfer, like couldn't receive ACK from LCD driver, then MCU could send START and STOP repeatedly, to restart the communication or by disabling the IC by connect BCEI to VDD and then enable it again.

The interface is initiated by a START and ends with a STOP.

❖ Clock architecture

The built-in clock has a control status register on address (00H) to control the alarm and start/stop of the clock. Then memory address from 01H to 07H are as counters storing the seconds up to years value. Alarm registers address from 08H to 0BH are defining the condition of the alarm.

• Clock Status register Address (00H)

Bit	Symbol	Value	Description
7 to 3	0		Default value is 0
2	AF	0 (read)	Alarm flag inactive
		1 (read)	Alarm flag active
		0 (write)	Alarm flag clear
		1 (write)	Alarm flag unchanged
1	AIE	0	Alarm interrupt disabled
		1	Alarm interrupt enable
0	STOP	0	Real Time Clock runs
		1	Real Time Clock stops

• Seconds register Address (01H)

Bit	Symbol	Value	Description
6 to 0	seconds	00 to 59	Seconds value coded in BCD format. Example 101 1001 = 59
			seconds

• Minutes register Address (02H)

Bit	Symbol	Value	Description
6 to 0	minutes	00 to 59	Minutes value coded in BCD format.

• Hours register Address (03H)

Bit	Symbol	Value	Description
5 to 0	hours	00 to 23	Hours value coded in BCD format.

• Days register Address (04H)

Bit	Symbol	Value	Description
5 to 0	days	01 to 31	Days value coded in BCD format.
The ML20	02 will add	a 29 th day to	February if the year is a lunar year.

• Weekdays register Address (05H)

Bit	Symbol	Value	Description
2 to 0	weekdays	00 to 06	Weekdays value

Weekdays assignment

Day	Bit 2	Bit 1	Bit 0
Sunday	0	0	0
Monday	0	0	1
Tuesday	0	1	0
Wednesday	0	1	1
Thursday	1	0	0
Friday	1	0	1
Saturday	1	1	0

• Months/Century register Address (06H)

Bit	Symbol	Value	Description
7	Century		This bit toggled when the years register overflows from 99 to 00
		0	Indicates the century is 20xx
		1	Indicates the century is 21xx
4 to 0	Months	01 to 12	Month value coded in BCD format

• Years register Address (07H)

Bit	Symbol	Value	Description	
7 to 0	Years	00 to 99	Years value coded in BCD format	
			P21/29	Preliminary, April 2007

* Alarm function modes

By clearing the MSB of one or more of the alarm registers (bit AE = enable), the corresponding alarm conditions will be active. In this way an alarm can be generated from once per minute up to once per week. The alarm condition sets the Alarm Flag (AF). The asserted AF can be used to generate an interrupt (INT). When one or more of these registers are loaded with a valid minute, hour, day, or weekday and its corresponding bit Alarm Enable (AE) is logic 0, then that information will be compared with the current minute, hour, day and weekday. When all enabled comparisons first match, the Alarm Flag (AF) is set. Alarm Flag will be cleared when the comparison fails to match or the user disable the alarm register that AE bit at logic 1.

• Minutes alarm register Address (08H)

Bit	Symbol	Value	Description
7	AE	0	Minute alarm is enabled
		1	Minute alarm is disabled
6 to 0	Alarm minutes	00 to 59	Minutes value coded in BCD format.

• Houralarm register Address (09H)

Bit	Symbol	Value	Description
7	AE	0	Hour alarm is enabled
		1	Hour alarm is disabled
6 to 0	Alarm hours	00 to 23	Hours value coded in BCD format.

• Day alarm register Address (0AH)

Bit	Symbol	Value	Description
7	AE	0	Day alarm is enabled
		1	Day alarm is disabled
5to 0	Alarm days	01 to 31	Days value coded in BCD format.

• Weekday alarm register Address (0BH)

Bit	Symbol	Value	Description
7	AE	0	Weekday alarm is enabled
		1	Weekday alarm is disabled
2 to 0	Alarm weekdays	00 to 06	Hours value coded in BCD format.

* Command table

Command	OPCODE	Data follow
NOP	101000	-
Display LOAD	101001	-
Send Display data	101010	48 bit output from MCU for static
		96 bit output from MCU for 1/2 duty
Clock Read	101011	MCU input word address then ML2002 output
		data
Clock Write	101100	MCU input word address then ML2002 input
		data
Prevent COM Output	101101	1 bit, "1 : ON, 0 : OFF"
Toggle during Send		
display data		

* Protocol

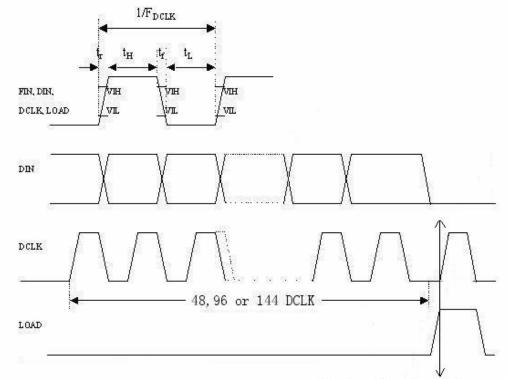
With MS connect to VDD, it represent as a Master. It will accept command through DIN pin.

Send Display data starting from MSB (Seg 48) to LSB (Seg 1)

S	CMD	ACK	Data	ACK	P
		l	l		ı

Send LOAD to load display onto screen

Clock register Read / Write one byte

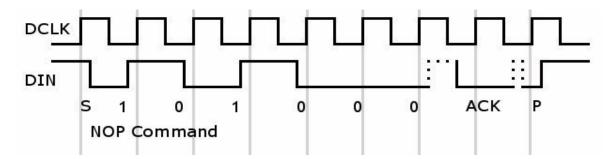

s cm	ACK	Address	ACK	Data	ACK	P
------	-----	---------	-----	------	-----	---

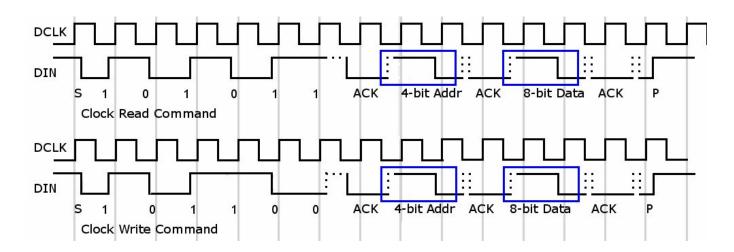
Prevent COM Output Toggle during Send display data

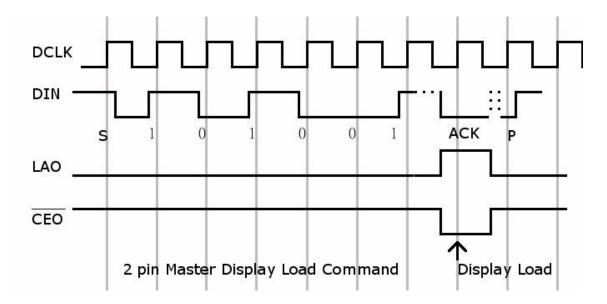
S CMD ACK	ON/OFF	ACK	Р	
-----------	--------	-----	---	--

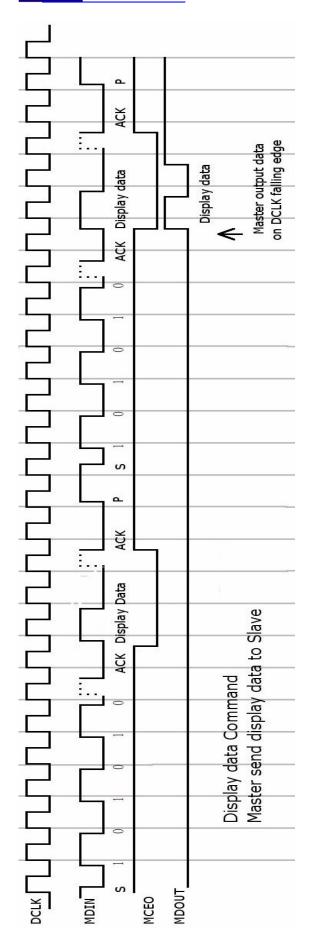
If there is no ACK from the ML2002, the MCU should send S and P repeatedly to reset the CMD/Data decoder and send S again to resend the command.

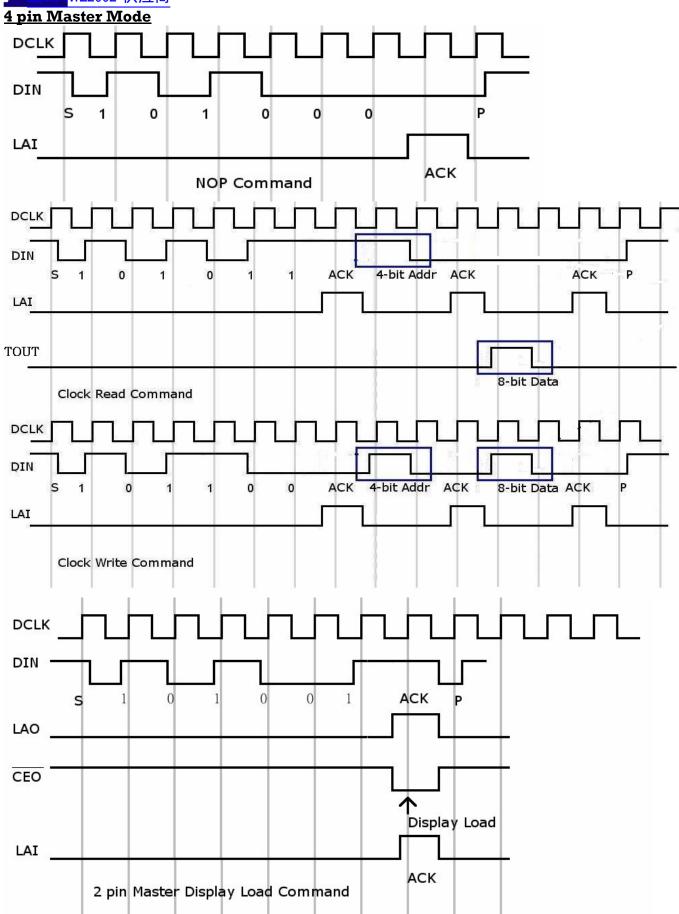
With MS connected to GND, it represents it is in slave mode. It will treat all the DIN data as display data and will be sent to ML 2002's Display shift register directly through DIN and DCLK.


display data loaded onto screen


To load display data onto the screen. LAI need to be high, then a rising edge of DCLK would load the display, then the LAI need to be low.




* Command Timing Diagram


2 pin Master Mode

Minil ogic Device Corporation ACK Master output data _I on DCLK falling edge Display data Command Master send display data to Slave M

* Remarks

There are 48 segments in static mode. There are 96 segments in half duty mode.

DISCLAIMER:

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use.