M96194 TruTherm<sup>™</sup> Hardware Monitor with PI Fan Control for Workstation Management

±2% FS (max)

9-bits, 0.5°C

±2.5 °C (max)

-40°C to +85°C

-40°C to +125°C

+3.0V to +3.6V

1.6 mA



# LM96194 TruTherm<sup>™</sup> Hardware Monitor with PI Fan Control for Workstation Management

### **1.0 General Description**

The LM96194 hardware monitor has a two wire digital interface compatible with SMBus 2.0. Using a  $\Sigma\Delta$  ADC, the LM96194 measures the temperature of four remote diode connected transistors as well as its own die and 9 power supply voltages. The LM96194 has new TruTherm technology that supports precision thermal diode measurements of processors on sub-micron processes.

To set fan speed, the LM96194 has two PWM outputs that are each controlled by up to six temperature zones. The fancontrol algorithm can be based on a lookup table, PI (proportional/integral) control loop, or a combination of both. The LM96194 includes digital filters that can be invoked to smooth temperature readings for better control of fan speed such that acoustical noise is minimized. The LM96194 has four tachometer inputs to measure fan speed. Limit and status registers for all measured values are included.

The LM96194 includes most of the features of the LM94, dual CPU motherboard server management ASIC, such as measurement and control support for dynamic Vccp monitoring for VRD10/11 and PROCHOT but is targeted for single processor systems.

### 2.0 Features

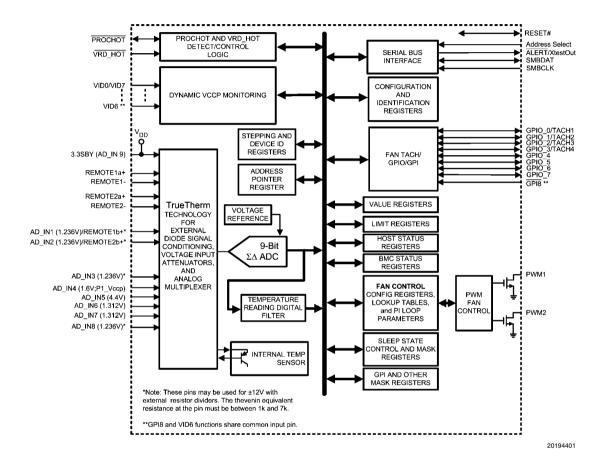
- ΣΔ ADC architecture
- Monitors 9 power supplies
- Monitors 4 remote thermal diodes and 2 LM60
- New TruTherm technology support for precision thermal diode measurements
- Internal ambient temperature sensing
- Programmable autonomous fan control based on temperature readings with fan boost support
- Fan boost support on tachometer limit error event
- Fan control based on 13-step lookup table or PI Control Loop or combination of both
- PI fan control loop supports Tcontrol
- Temperature reading digital filters
- 0.5°C digital temperature sensor resolution
- 0.0625°C filtered temperature resolution for fan control

- 2 PWM fan speed control outputs
- 4 fan tachometer inputs
- Processor thermal throttling (PROCHOT) monitoring
- Dynamic VID monitoring (6/7 VIDs per processor) supports VRD10.2/11
- 8 general purpose I/Os:
  - 4 can be configured as fan tachometer inputs
  - 2 can be configured to connect to processor THERMTRIP
  - 2 are standard GPIOs that could be used to monitor IERR signal
- A general purpose inputs that can be used to monitor the 7th VID signal for VRD11
- Limit register comparisons of all monitored values
- 2-wire serial digital interface, SMBus 2.0 compliant Supports byte/block read and write Selectable slave address (tri-level pin selects 1 of 3 possible addresses)
  ALERT output supports interrupt or comparator modes
- LLP-48 package
- XOR-tree test mode

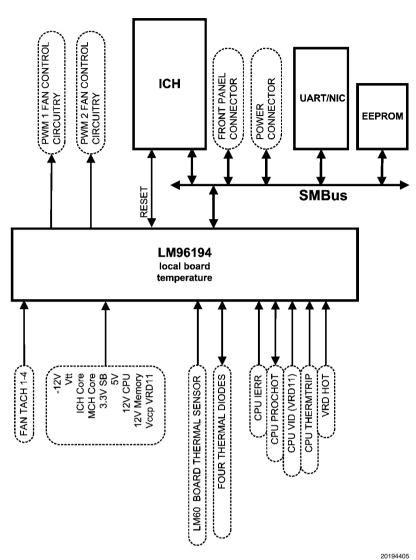
## 3.0 Key Specifications

- Voltage Measurement Accuracy
- Temperature Resolution
- Temperature Sensor Accuracy
- Temperature Range:
- LM96194 Operational Remote Temp Accuracy
- Power Supply VoltagePower Supply Current

4.0 Applications


- Servers
- Workstations
- Processor based equipment

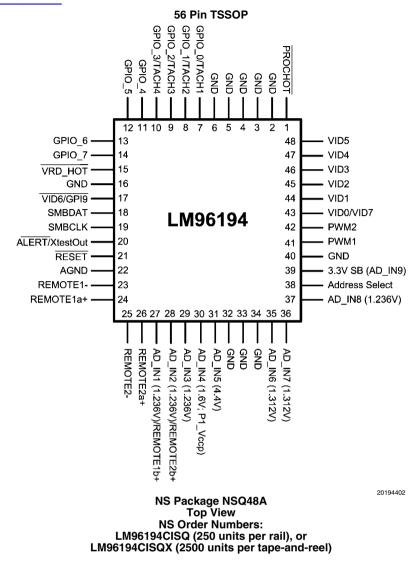
# 5.0 Ordering Information


| 1 | Order Number | NS Package | Transport media     |  |
|---|--------------|------------|---------------------|--|
|   |              | Number     |                     |  |
|   | LM96194CISQ  | SQA48A     | 250 units in rail   |  |
|   | LM96194CISQX | SQA48A     | 2500 units in tape- |  |
|   |              |            | and-reel            |  |

## 6.0 Block Diagram

The block diagram of LM96194 hardware is illustrated below. The hardware implementation is a single chip ASIC solution.




**7.0 Application** 查询"LM96194CISO"供应商 The system diagram show in *Figure* /1's a single processor workstation example.



**FIGURE 1. Workstation Management** 

LM96194

#### **8.0 Connection Diagram** 查询"LM96194CISQ"供应商



| Symbol             | Pin # | Туре                            | Function                                                                                                                                                                                                                    |
|--------------------|-------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROCHOT            | 1     | Digital I/O (Open-<br>Drain)    | Connected to CPU1 PROCHOT (processor hot) signal through a bidirectional level shifter. Supports TTL input logic levels and AGTL compatible input logic levels.                                                             |
| GND                | 2     | Ground                          | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                 |
| GND                | 3     | Ground                          | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                 |
| GND                | 4     | Ground                          | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                 |
| GND                | 5     | Ground                          | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                 |
| GND                | 6     | Ground                          | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                 |
| GPIO_0/TACH1       | 7     | Digital I/O (Open-<br>Drain)    | Can be configured as fan tach input or a general purpose open-drain digita I/O.                                                                                                                                             |
| GPIO_1/TACH2       | 8     | Digital I/O (Open-<br>Drain)    | Can be configured as fan tach input or a general purpose open-drain digita I/O.                                                                                                                                             |
| GPIO_2/TACH3       | 9     | Digital I/O (Open-<br>Drain)    | Can be configured as fan tach input or a general purpose open-drain digita I/O.                                                                                                                                             |
| GPIO_3/TACH4       | 10    | Digital I/O (Open-<br>Drain)    | Can be configured as fan tach input or a general purpose open-drain digita I/O                                                                                                                                              |
| GPIO_4 / THERMTRIP | 11    | Digital I/O (Open-<br>Drain)    | A general purpose open-drain digital I/O. Can be configured to monitor a CPU's THERMTRIP signal to mask other errors. Supports TTL input logic levels and AGTL compatible input logic levels.                               |
| GPIO_5             | 12    | Digital I/O (Open-<br>Drain)    | A general purpose open-drain digital I/O. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                           |
| GPIO_6             | 13    | Digital I/O (Open-<br>Drain)    | Can be used to detect the state of CPU's IERR or a general purpose open-<br>drain digital I/O. Supports TTL input logic levels and AGTL compatible input<br>logic levels.                                                   |
| GPIO_7             | 14    | Digital I/O (Open-<br>Drain)    | A general purpose open-drain digital I/O. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                           |
| VRD1_HOT           | 15    | Digital Input                   | CPU1 voltage regulator HOT. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                         |
| GND                | 16    | Ground Input                    | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                 |
| VID6/GPI9          | 17    | Digital Input                   | CPU VID6 input. Could also be used as a general purpose input to trigger<br>an error event. Supports TTL input logic levels and AGTL compatible input<br>logic levels.                                                      |
| SMBDAT             | 18    | Digital I/O (Open-<br>Drain)    | Bidirectional System Management Bus Data. Output configured as 5V tolerant open-drain. SMBus 2.0 compliant.                                                                                                                 |
| SMBCLK             | 19    | Digital Input                   | System Management Bus Clock. Driven by an open-drain output, and is 5V tolerant. SMBus 2.0 Compliant.                                                                                                                       |
| ALERT/XtestOut     | 20    | Digital Output (Open-<br>Drain) | Open-drain ALERT output used in an interrupt driven system to signal that<br>an error event has occurred. Masked error events do not activate the<br>ALERT output. When in XOR tree test mode, functions as XOR Tree output |

ſ

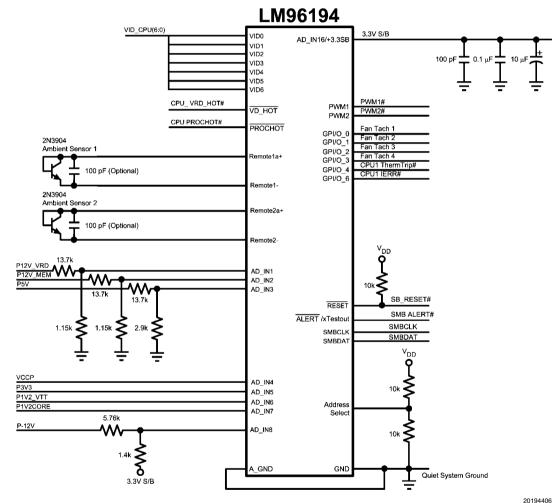
| Symbol                                         | Pin #              | Туре                                                | Function                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------|--------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 査査<br>同世 FM96194CIS                            | Q <sup>-</sup> 供应ī | Digital I/O (Open-<br>Drain)                        | Open-drain reset output when power is first applied to the LM96194. Used<br>as a reset for devices powered by 3.3V stand-by. After reset, this pin<br>becomes a reset input. See Section (TBD) for more information. If this pin<br>is not used, connection to an external resistive pull-up is required to prevent<br>LM96194 malfunction.                                                                                      |
| to                                             |                    | GROUND Input                                        | Analog Ground. All grounds need to be tied together at the chip then taken<br>to a low noise system ground. A voltage difference between grounds may<br>cause erroneous results.                                                                                                                                                                                                                                                 |
| Diode_1- Input (CPU c<br>THERMDC) c<br>in<br>c |                    | Diode_1- Input (CPU                                 | This is the negative input (current sink) from both of the CPU thermal diodes. Connected to THERMDC pin of Pentium processor or the emitter of a diode connected MMBT3904 NPN transistor. Serves as the negative input into the A/D for thermal diode voltage measurements. A 100 pF capacitor is optional and can be connected between REMOTE1– and REMOTE1+.                                                                   |
| REMOTE1a+                                      | 24                 | Remote Thermal<br>Diode_1a+ I/O (CPU<br>THERMDA1)   | This is a positive connection to the first CPU thermal diode. Serves as the positive input into the A/D for thermal diode voltage measurements. It also serves as a current source output that forward biases the thermal diode. Connected to THERMDA pin of Pentium processor or the base of a diode connected MMBT3904 NPN transistor. A 100 pF capacitor is optional and can be connected between REMOTE1– and each REMOTE1+. |
| REMOTE2- 25 Remote Thermal Diode_2 - Input     |                    |                                                     | This is the negative input (current sink) from both of the CPU2 thermal diodes. Connected to THERMDC pins of Pentium processor or the emitter of a diode connected MMBT3904 NPN transistor. Serves as the negative input into the A/D for thermal diode voltage measurements. A 100 pF capacitor is optional and can be connected between REMOTE2– and each REMOTE2+.                                                            |
| REMOTE2a+ 26 Remote Thermal<br>Diode_2a + I/O  |                    |                                                     | This is a positive connection to the third thermal diode. Serves as the positive input into the A/D for thermal diode voltage measurements. It also serves as a current source output that forward biases the thermal diode. Connected to THERMDA pin of Pentium processor or the base of a diode connected MMBT3904 NPN transistor. A 100 pF capacitor is optional and can be connected between REMOTE2– and REMOTE2+.          |
| AD_IN1/REMOTE1b+                               | 27                 | Analog Input (+12V1 or<br>CPU1 THERMDA2)            | Analog Input for +12V Rail 1 monitoring, for CPU1 voltage regulator.<br>External attenuation resistors required such that 12V is attenuated to<br>0.927V for nominal ¾ scale reading. This pin may also serve as the second<br>positive thermal diode input for the CPU.                                                                                                                                                         |
| AD_IN2/REMOTE2b+                               | 28                 | Analog Input or<br>Remote Thermal<br>Diode_2b + I/O | Analog Input for +12V Rail 2 monitoring. External attenuation resistors required such that 12V is attenuated to 0.927V for nominal ¾ scale reading. This pin may also serve as the fourth positive thermal diode input.                                                                                                                                                                                                          |
| AD_IN3                                         | 29                 | Analog Input (+12V3)                                | Analog Input for +12V Rail 3, for Memory/3GIO slots. External attenuation resistors required such that 12V is attenuated to 0.927V for nominal <sup>3</sup> / <sub>4</sub> scale reading.                                                                                                                                                                                                                                        |
| AD_IN4 (Vccp)                                  | 30                 | Analog Input<br>(CPU1_Vccp)                         | Analog input for +Vccp (processor voltage) monitoring.                                                                                                                                                                                                                                                                                                                                                                           |
| AD_IN5                                         | 31                 | Analog Input (+3.3V)                                | Analog input for +3.3V monitoring, nominal 3/4 scale reading                                                                                                                                                                                                                                                                                                                                                                     |
| GND                                            | 32                 | Ground                                              | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                                                                                                                                                                                                                      |
| GND                                            | 33                 | Ground                                              | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                                                                                                                                                                                                                      |
| GND                                            | 34                 | Ground                                              | All grounds need to be tied together at the chip then taken to a low noise system ground. A voltage difference between grounds may cause erroneous results.                                                                                                                                                                                                                                                                      |

| Symbol           | Pin #   | Туре                                            | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|---------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AD_IN6 查询"LM96   | 1994CIS | Anatogunput<br>(Mem_Vtt)                        | Analog input for +0.984V monitoring, nominal <sup>3</sup> / <sub>4</sub> scale reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AD_IN7           | 36      | Analog Input<br>(Gbit_Core)                     | Analog input for +0.984V S/B monitoring, nominal <sup>3</sup> / <sub>4</sub> scale reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AD_IN8           | 37      | Analog Input (-12V)                             | Analog input for -12V monitoring. External resistors required to scale to positive level. Full scale reading at 1.236V, , nominal ¾ scale reading. This pin may also be used to monitor an analog temperature sensor such as the LM60, since readings from this input can be routed to the fan control logic.                                                                                                                                                                                                                                  |
| Address Select   | 38      | 3 level analog input                            | This input selects the lower two bits of the LM96194 SMBus slave address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.3V SB (AD_IN8) | 39      | POWER (V <sub>DD</sub> ) +3.3V<br>standby power | $V_{DD}$ power input for LM96194. Generally this is connected to +3.3V standby<br>power.<br>The LM96194 can be powered by +3.3V if monitoring in low power states<br>is not required, but power should be applied to this input before any other<br>pins.<br>This pin also serves as the analog input to monitor the 3.3V stand-by (SB)<br>voltage. It is necessary to bypass this pin with a 0.1 µF in parallel with 100<br>pF. A bulk capacitance of 10 µF should be in the near vicinity. The 100 pF<br>should be closest to the power pin. |
| GND              | 40      | Ground                                          | Digital Ground. All grounds need to be tied together at the chip then taken<br>to a low noise system ground. A voltage difference between grounds may<br>cause erroneous results.                                                                                                                                                                                                                                                                                                                                                              |
| PWM1             | 41      | Digital Output (Open-<br>Drain)                 | Fan control output 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PWM2             | 42      | Digital Output (Open-<br>Drain)                 | Fan control output 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VID0/VID7        | 43      | Digital Input                                   | Voltage Identification signal from the processor. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VID1             | 44      | Digital Input                                   | Voltage Identification signal from the processor. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VID2             | 45      | Digital Input                                   | Voltage Identification signal from the processor. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VID3             | 46      | Digital Input                                   | Voltage Identification signal from the processor. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VID4             | 47      | Digital Input                                   | Voltage Identification signal from the processor. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VID5             | 48      | Digital Input                                   | Voltage Identification signal from the processor. Supports TTL input logic levels and AGTL compatible input logic levels.                                                                                                                                                                                                                                                                                                                                                                                                                      |

The over-score indicates the signal is active low ("Not").

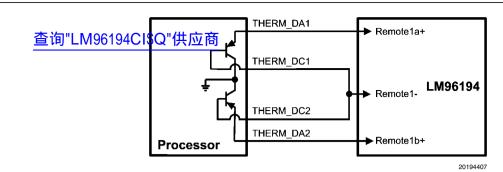
## 10.0 Server Terminology

| A/D                        | Analog to Digital Converter                   |  |
|----------------------------|-----------------------------------------------|--|
| ACPI                       | Advanced Configuration and Power              |  |
|                            | Interface                                     |  |
| ALERT                      | SMBus signal to bus master that an event      |  |
|                            | occurred that has been flagged for attention. |  |
| ASF                        | Alert Standard Format                         |  |
| BMC                        | Baseboard Management Controller               |  |
| BW                         | Bandwidth                                     |  |
| DIMM                       | Dual in line memory module                    |  |
| DP Dual-processor          |                                               |  |
| ECC                        | Error checking and correcting                 |  |
| FRU Field replaceable unit |                                               |  |
|                            |                                               |  |


| FSB                                             | Front side bus         |  |
|-------------------------------------------------|------------------------|--|
| FW Firmware                                     |                        |  |
| Gb                                              | Gigabit                |  |
| GB                                              | Gigabyte               |  |
| Gbe                                             | Gigabit Ethernet       |  |
| GPI                                             | General purpose input  |  |
| GPIO                                            | General purpose I/O    |  |
| HW                                              | Hardware               |  |
| I <sup>2</sup> C Inter integrated circuit (bus) |                        |  |
| LAN Local area network                          |                        |  |
| LSb Least Significant Bit                       |                        |  |
| LSB                                             | Least Significant Byte |  |

LM96194

|                    | LVDS      | Low-Voltage Differential Signaling     |  |  |
|--------------------|-----------|----------------------------------------|--|--|
| 查                  | 间JEM96194 | ColsQup集高的                             |  |  |
|                    | Mb        | Megabit                                |  |  |
|                    | MB        | Megabyte                               |  |  |
|                    | MP        | Multi-processor                        |  |  |
| MSB N              |           | Most Significant Bit                   |  |  |
|                    |           | Most Significant Byte                  |  |  |
|                    |           | Mean time between failures             |  |  |
|                    | MTTR      | Mean time to repair                    |  |  |
|                    | NIC       | Network Interface Card (Ethernet Card) |  |  |
| OS Operating syste |           | Operating system                       |  |  |
|                    |           |                                        |  |  |


| P/S                  | Power Supply                                                                                                            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| PCI                  | PCI Local Bus                                                                                                           |
| PDB                  | Power Distribution Board                                                                                                |
| POR                  | Power On Reset                                                                                                          |
| PS                   | Power Supply                                                                                                            |
| SMBCLK and<br>SMBDAT | These signals comprise the SMBus<br>interface (data and clock) See the SMBus<br>Interface section for more information. |
| VRD                  | Voltage Regulator Down - regulates Vccp voltage for a CPU                                                               |

### **11.0 Recommended Implementation**



Recommended implementation without thermal diode connections

www.national.com



Note: 100 pF cap across each thermal diode is optional and should be placed close to the LM96194, if used. The maximum capacitance between thermal diode pins is 300 pF.

Thermal diode recommended implementation

# 12.0 Functional Description

<mark>旬『LM96194CISO</mark>"供应商 <u>he LM96194 provides 9 channe</u>ls of voltage monitoring, 4 remote thermal diode monitors, an internal/local ambient temperature sensor, a PROCHOT monitor, 4 fan tachometers, 8 GPIOs, THERMTRIP monitor for masking error events, 1 sets of 7 VID inputs, an ALERT output and all the associated limit registers on a single chip, and communicates to the rest of the baseboard over the System Management Bus (SMBus). The LM96194 also provides 2 PWM outputs and associated fan control logic for controlling the speed of system fans. There are two sets of fan control logic, a lookup table and a PI (proportional/integral) loop controller. The lookup table and PI controller are interactive, such that the fans run at the fastest required speed. Upon a temperature or fan tach error event, the PWM outputs may be programmed such that they automatically boost to 100% duty cycle. A timer is included that sets the minimum time that the fans are in the boost condition when activated by a fan tach error.

The LM96194 incorporates National Semiconductor's TruTherm technology for precision "Remote Diode" readings of processors on 90nm process geometry or smaller. Readings from the external thermal diodes and the internal temperature sensor are made available as an 9-bit two's-complement digital value with the LSb representing 0.5°C. Filtered temperature readings are available as a 12-bit two's-complement digital value with the LSb representing 0.0625° C.

All of the analog inputs include internal scaling resistors, exept for AD\_IN1, AD\_IN2, AD\_IN3 and AD\_IN8. External scaling resistors are required for measuring  $\pm 12V$ . The inputs are converted to 8-bit digital values such that a nominal voltage appears at  $\frac{3}{4}$  scale for positive voltages and  $\frac{1}{4}$  scale for negative voltages. The analog inputs are intended to be connected to both baseboard resident VRDs and to standard voltage rails supplied by a SSI compliant power supply.

The LM96194 has logic that ties a set of dynamically moving VID inputs to their associated Vccp analog input for real time window comparison fault determination. Voltage mapping for VRD10, VRD10 extended and VRD11are supported by the LM96194. When VRD10 mode is selected GPI8 and GPI9 can be used to detect external error flags whose state is reflected in the status registers.

Error events are captured in two sets of mirrored status registers (BMC Error Status Registers and Host Status Registers) allowing two controllers access to the status information without any interference.

The LM96194's ALERT output supports interrupt mode or comparator mode of operation. The comparator mode is only functional for thermal monitoring.

The LM96194 provides a number of internal registers, which are detailed in the register section of this document.

12.1 Please contact your local sales office for complete LM96194 applications information.

## 13.0 Registers

#### **13.1 REGISTER WARNINGS**

In most cases, reserved registers and register bits return zero when read. This should not be relied upon, since reserved registers can be used for future expansion of the LM96194 functions.

Some registers have "N/D" for their default value. This means that the power-up default of the register is not defined. In the case of value registers, care should be taken to ensure that software does not read a value register until the associated measurement function has acquired a measurement. This applies to temperatures, voltages, fan RPM, and PROCHOT monitoring.

#### 13.2 REGISTER SUMMARY TABLE

| Term               | Description            |  |  |
|--------------------|------------------------|--|--|
| N/D Not Defined    |                        |  |  |
| N/A Not Applicable |                        |  |  |
| R Read Only        |                        |  |  |
| R/W Read or Write  |                        |  |  |
| RWC                | Read or Write to Clear |  |  |

**Register Key** 

| Loc  | Register Name              | Address | Description                                                        |
|------|----------------------------|---------|--------------------------------------------------------------------|
| k    |                            |         |                                                                    |
| FAC  | FORY REGISTERS             |         |                                                                    |
| х    | XOR Test                   | 00h     | Used to set the XOR test tree mode                                 |
|      | SMBus Test                 | 01h     | SMBus read/write test register                                     |
|      | Reserved                   | 02h-04h |                                                                    |
| "REN | IOTE DIODE" MODE SELECT    | 2       |                                                                    |
| х    | Transistor Mode Select     | 05h     | Selects Diode Mode (default) or Transistor Mode for "Remote Diode" |
|      |                            |         | measurements                                                       |
| VALI | JE REGISTER SECTION 1      |         |                                                                    |
|      | Zone 1b (CPU Diode b) Temp | 06h     | Measured value of remote thermal diode temperature channel 1b      |

| Loc<br>k | Register Name<br>查询"LM96194CISQ"供应商         | Address   | Description                                                                                          |
|----------|---------------------------------------------|-----------|------------------------------------------------------------------------------------------------------|
|          | Zone 2b (MMBT3904 Diode b) Temp             | 07h       | Measured value of remote thermal diode temperature channel 2b                                        |
|          | Zone 1b (CPU Diode b) Filtered Temp         | 08h       | Filtered value of remote thermal diode temperature channel 1b                                        |
|          | Zone 2b (MMBT3904 Diode b) Fitlered<br>Temp | 09h       | Filtered value of remote thermal diode temperature channel 2b                                        |
|          | PWM1 8-bit Duty Cycle Value                 | 0Ah       | 8- bit value of the PWM1 duty cycle.                                                                 |
|          | PWM2 8-bit Duty Cycle Value                 | 0Bh       | 8-bit value of the PWM2 duty cycle                                                                   |
| HIGH     | RESOLUTION PWM OVERIDE REGISTE              | RS        |                                                                                                      |
| (        | PWM1 Duty Cycle Override (low byte)         | 0Ch       | Lower byte of the high resolution PWM1 duty cycle register                                           |
| (        | PWM1 Duty Cycle Override (high byte)        | 0Dh       | Upper byte of the high resolution PWM1 duty cycle register                                           |
| (        | PWM2 Duty Cycle Override (low byte)         | 0Eh       | Lower byte of the high resolution PWM2 duty cycle register                                           |
| (        | PWM2 Duty Cycle Override (high byte)        | 0Fh       | Upper byte of the high resolution PWM2 duty cycle register                                           |
| EXTE     | ENDED RESOLUTION TEMPERATURE V              | ALUE REGI | STERS                                                                                                |
|          | Z1a_LSB                                     | 10h       | Zone 1a (CPU) extended resolution unfiltered temperature value register least-significant byte       |
|          | Z1a_MSB                                     | 11h       | Zone 1a (CPU) extended resolution unfiltered temperature value register most-significant byte        |
|          | Z1b_LSB                                     | 12h       | Zone 1b (CPU) extended resolution unfiltered temperature value register least-significant-byte       |
|          | Z1b_MSB                                     | 13h       | Zone 1b (CPU) extended resolution unfiltered temperature value register<br>most-significant byte     |
|          | Z2a_LSB                                     | 14h       | Zone 2a (MMBT2904) extended resolution unfiltered temperature value register, least-significant-byte |
|          | Z2a_MSB                                     | 15h       | Zone 2a (MMBT3904) extended resolution unfiltered temperature value register, most-significant byte  |
|          | Z2b_LSB                                     | 16h       | Zone 2b (MMBT3904) extended resolution unfiltered temperature value register, least-significant-byte |
|          | Z2b_MSB                                     | 17h       | Zone 2b (MMBT3904) extended resolution unfiltered temperature value register, most-significant byte  |
|          | Z1a_F_LSB                                   | 18h       | Zone 1a (CPU) extended resolution filtered temperature value register, least-significant byte        |
|          | Z1a_F_MSB                                   | 19h       | Zone 1a (CPU) extended resolution filtered temperature value register, most-significant byte         |
|          | Z1b_F_LSB                                   | 1Ah       | Zone 1b (CPU) extended resolution filtered temperature value register, least-significant-byte        |
|          | Z1b_F_MSB                                   | 1Bh       | Zone 1b (CPU) extended resolution filtered temperature value register, most-significant byte         |
|          | Z2a_F_LSB                                   | 1Ch       | Zone 2a (MMBT3904) extended resolution filtered temperature value register, least-significant-byte   |
|          | Z2a_F_MSB                                   | 1Dh       | Zone 2a (MMBT3904) extended resolution filtered temperature value register, most-significant byte    |
|          | Z2b_F_LSB                                   | 1Eh       | Zone 2b (MMBT3904) extended resolution filtered temperature value register, least-significant-byte   |
|          | Z2b_F_MSB                                   | 1Fh       | Zone 2b (MMBT3904) extended resolution filtered temperature value register, most-significant byte    |
|          | Z3_LSB                                      | 20h       | Zone 3 (Internal) extended resolution temperature value register, least-<br>significant byte         |
|          | Z3_MSB                                      | 21h       | Zone 3 (Internal) extended resolution temperature value register, least-<br>significant byte         |
|          | Z4_LSB                                      | 22h       | Zone 4 (External Digital) extended resolution temperature value register most-significant byte       |
|          | Z4_MSB                                      | 23h       | Zone 4 (External Digital) extended resolution temperature value register least-significant byte      |

| Loc<br>查询 | Register Name<br>"LM96194CISQ"供应商        | Address | Description                                                                                                                    |
|-----------|------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------|
|           |                                          |         |                                                                                                                                |
|           | Reserved                                 | 24h-30h |                                                                                                                                |
|           |                                          |         |                                                                                                                                |
| PI LC     | OOP AND FAN CONTROL SETUP REGI           |         |                                                                                                                                |
| Х         | Temperature Source Select                | 31h     | Selects the temperature source for some temperature zones.                                                                     |
| x         | PWM Filter Settings                      | 32h     | Sets the IIR filter coefficients for the PWM outputs for low resolution sources                                                |
| х         | PWM1 Filter Shutoff Threshold            | 33h     | PWM1 Filter Shutoff Threshold                                                                                                  |
| х         | PWM2 Filter Shutoff Threshold            | 34h     | PWM2 Filter Shutoff Threshold                                                                                                  |
| х         | PI/LUT Fan Control Bindings              | 35h     | PI/LUT fan control binding configuration                                                                                       |
| х         | PI Controller Minimum PWM and Hysteresis | 36h     | PI Controller Minimum PWM and Hysteresis settings                                                                              |
| х         | Zone 1 Tcontrol                          | 37h     | Zone 1 (CPU) PI Controller Target Temperature (Tcontrol)                                                                       |
| x         | Zone 2 Tcontrol                          | 38h     | Zone 2 (MMBT3904) PI Controller Target Temperature (Tcontrol)                                                                  |
| x         | Zone 1 Toff                              | 39h     | Zone 1 (CPU) PI Controller Off Temperature (Toff)                                                                              |
| х         | Zone 2 Toff                              | 3Ah     | Zone 2 (MMBT3904) PI Controller Off Temperature (Toff)                                                                         |
| x         | P Coefficient                            | 3Bh     | PI controller proportional coefficient                                                                                         |
| x         | I Coefficient                            | 3Ch     | PI controller integral coefficient                                                                                             |
| x         | PI Exponents                             | 3Dh     | PI controller coefficient exponents                                                                                            |
| DEVI      | CE IDENTIFICATION REGISTERS              | Į       |                                                                                                                                |
|           | Manufacturer ID                          | 3Eh     | Contains manufacturer ID code                                                                                                  |
|           | Version/Stepping                         | 3Fh     | Contains code for major and minor revisions                                                                                    |
| BMC       | ERROR STATUS REGISTERS                   | l       | ,                                                                                                                              |
|           | B Error Status 1                         | 40h     | BMC error status register 1                                                                                                    |
|           | B_Error Status 2                         | 41h     | BMC error register 2                                                                                                           |
|           | B_Error Status 3                         | 42h     | BMC error register 3                                                                                                           |
|           | B Error Status 4                         | 43h     | BMC error register 4                                                                                                           |
|           | B_PROCHOT Error Status                   | 44h     | BMC error register for PROCHOT                                                                                                 |
|           | Reserved                                 | 45h     |                                                                                                                                |
|           | B_GPI Error Status                       | 46h     | BMC error register for GPIs                                                                                                    |
|           | B Fan Error Status                       | 47h     | BMC error register for Fans                                                                                                    |
| HOS       | T ERROR STATUS REGISTERS                 |         |                                                                                                                                |
|           | H_Error Status 1                         | 48h     | HOST error status register 1                                                                                                   |
|           | H_Error Status 2                         | 49h     | HOST error register 2                                                                                                          |
|           | H_Error Status 3                         | 4Ah     | HOST error register 3                                                                                                          |
|           | H_Error Status 4                         | 4Bh     | HOST error register 4                                                                                                          |
|           | H_PROCHOT Error Status                   | 4Ch     | HOST error register for PROCHOT                                                                                                |
|           | Reserved                                 | 4Dh     |                                                                                                                                |
|           | H_GPI Error Status                       | 4Eh     | HOST error register for GPIs                                                                                                   |
|           | H_Fan Error Status                       | 4Fh     | HOST error register for Fans                                                                                                   |
|           | JE REGISTERS SECTION 2                   |         |                                                                                                                                |
|           | Zone 1a (CPU) Temp                       | 50h     | Measured value of remote thermal diode temperature channel 1a                                                                  |
|           | Zone 2a (MMBT3904) Temp                  | 51h     | Measured value of remote thermal diode temperature channel 7a<br>Measured value of remote thermal diode temperature channel 2a |
|           | Zone 3 (Internal) Temp                   | 52h     | Measured temperature from on-chip sensor                                                                                       |
|           | Zone 4 (External Digital) Temp           | 53h     | Measured temperature from external temperature sensor                                                                          |
|           | Zone 1a (CPU) Filtered Temp              | 53h     | Filtered value of remote thermal diode temperature channel 1a                                                                  |
|           | Zone 2a (MMBT3904) Filtered Temp         | 55h     | Filtered value of remote thermal diode temperature channel 1a<br>Filtered value of remote thermal diode temperature channel 2a |
|           | AD_IN1 Voltage                           | 56h     | Measured value of AD_IN1                                                                                                       |
|           |                                          | 1000    |                                                                                                                                |

| C                | Register Name<br>查询"LM96194CISQ"供应商 | Address | Description                                                                  |  |  |  |
|------------------|-------------------------------------|---------|------------------------------------------------------------------------------|--|--|--|
|                  | AD_IN3 Voltage                      | 58h     | Measured value of AD_IN3                                                     |  |  |  |
|                  | Reserved                            | 59h-5Bh |                                                                              |  |  |  |
|                  | AD_IN4 Voltage                      | 5Ch     | Measured value of AD_IN4                                                     |  |  |  |
|                  | Reserved                            | 5Dh     |                                                                              |  |  |  |
|                  | AD_IN5 Voltage                      | 5Eh     | Measured value of AD_IN5                                                     |  |  |  |
|                  | Reserved                            | 5Fh-61h | -                                                                            |  |  |  |
|                  | AD_IN6 Voltage                      | 62h     | Measured value of AD_IN6                                                     |  |  |  |
| AD_IN7 Voltage 6 |                                     | 63h     | Measured value of AD_IN7                                                     |  |  |  |
|                  | AD_IN8 Voltage                      | 64h     | Measured value of AD_IN8                                                     |  |  |  |
|                  | AD_IN9 Voltage                      | 65h     | Measured value of AD_IN9 (V <sub>DD</sub> 3.3V S/B)                          |  |  |  |
|                  | Reserved                            | 66h     |                                                                              |  |  |  |
|                  | Current PROCHOT                     | 67h     | Measured PPROCHOT throttle percentage                                        |  |  |  |
|                  | Average PROCHOT                     | 68h     | Average PPROCHOT throttle percentage                                         |  |  |  |
|                  | Reserved                            | 69h-6Ah |                                                                              |  |  |  |
|                  | GPI State                           | 6Bh     | Current GPIO state                                                           |  |  |  |
| _                | P1_VID                              | 6Ch     | Current Processor VID value                                                  |  |  |  |
| _                | Reserved                            | 6Dh     |                                                                              |  |  |  |
|                  | FAN Tach 1 LSB                      | 6Eh     | Measured FAN Tach 1 LSB                                                      |  |  |  |
|                  | FAN Tach 1 MSB                      | 6Fh     | Measured FAN Tach 1 MSB                                                      |  |  |  |
|                  | FAN Tach 2 LSB                      | 70h     | Measured FAN Tach 2 LSB                                                      |  |  |  |
|                  | FAN Tach 2 MSB                      | 71h     | Measured FAN Tach 2 MSB                                                      |  |  |  |
|                  | FAN Tach 3 LSB                      | 72h     | Measured FAN Tach 3 LSB                                                      |  |  |  |
|                  | FAN Tach 3 MSB                      | 73h     | Measured FAN Tach 3 MSB                                                      |  |  |  |
|                  | FAN Tach 4 LSB                      | 74h     | Measured FAN Tach 4 LSB                                                      |  |  |  |
|                  | FAN Tach 4 MSB                      | 75h     | Measured FAN Tach 4 MSB                                                      |  |  |  |
|                  | Reserved                            | 76h-77h |                                                                              |  |  |  |
| ЛF               | PERATURE LIMIT REGISTERS            |         |                                                                              |  |  |  |
|                  | Zone 1 (CPU) Low Temp               | 78h     | Low limit for external thermal diode temperature channel 1 (D1) measurement  |  |  |  |
|                  | Zone 1 (CP1) High Temp              | 79h     | High limit for external thermal diode temperature channel 1 (D1) measurement |  |  |  |
|                  | Zone 2 (MMBT3904) Low Temp          | 7Ah     | Low limit for external thermal diode temperature channel 2 (D2) measurement  |  |  |  |
|                  | Zone 2 (MMBT3904) High Temp         | 7Bh     | High limit for external thermal diode temperature channel 2 (D2) measurement |  |  |  |
|                  | Zone 3 (Internal) Low Temp          | 7Ch     | Low limit for local temperature measurement                                  |  |  |  |
| _                | Zone 3 (Internal) High Temp         | 7Dh     | High limit for local temperature measurement                                 |  |  |  |
|                  | Zone 4 (External Digital) Low Temp  | 7Eh     | Low limit for external digital temperature sensor                            |  |  |  |
|                  | Zone 4 (External Digital) High Temp | 7Fh     | High limit for external digital temperature sensor                           |  |  |  |
|                  | Fan Boost Temp Zone 1               | 80h     | Zone 1 (CPU) fan boost temperature                                           |  |  |  |
|                  | Fan Boost Temp Zone 2               | 81h     | Zone 2 (MMBT3904) fan boost temperature                                      |  |  |  |

| Loc<br>查询' | Register Name<br>"LM96194CISQ"供应商  | Address    | Description                                                     |
|------------|------------------------------------|------------|-----------------------------------------------------------------|
| x          | Fan Boost Temp Zone 3              | 82h        | Zone 3 (Internal) fan boost temperature                         |
| x          | Fan Boost Temp Zone 4              | 83h        | Zone 4 (External Digital) fan boost temperature                 |
|            | Zone1 and Zone 2 Hysteresis        | 84h        | Zone 1 and Zone 2 hysteresis for limit comparisons              |
|            | Zone 3 and Zone 4 Hysteresis       | 85h        | Zone 3 and Zone 4 hysteresis for limit comparisons              |
|            |                                    |            |                                                                 |
|            | Reserved                           | 86h-8Dh    |                                                                 |
|            |                                    |            |                                                                 |
| ZONE       | □<br>E 1b and 2b TEMPERATURE READI |            |                                                                 |
|            | Zone 1b Temp Adjust                | 8Eh        | Allows all Zone 1b temperature measurements to be adjusted by a |
|            |                                    |            | programmable offset.                                            |
|            | Zone 2b Temp Adjust                | 8Fh        | Allows all Zone 2b temperature measurements to be adjusted by a |
|            |                                    |            | programmable offset.                                            |
| отн        | ER LIMIT REGISTERS                 |            |                                                                 |
|            | AD_IN1 Low Limit                   | 90h        | Low limit for analog input 1 measurement                        |
|            | AD_IN1 High Limit                  | 91h        | High limit for analog input 1 measurement                       |
|            | AD_IN2 Low Limit                   | 92h        | Low limit for analog input 2 measurement                        |
|            | AD_IN2 High Limit                  | 93h        | High limit for analog input 2 measurement                       |
|            | AD_IN3 Low Limit                   | 94h        | Low limit for analog input 3 measurement                        |
|            | AD_IN3 High Limit                  | 95h        | High limit for analog input 3 measurement                       |
|            | Reserved                           | 96h-9Dh    |                                                                 |
|            | AD_IN4 Low Limit                   | 9Ch        | Low limit for analog input 4 measurement (Processor Vccp)       |
|            | AD_IN4 High Limit                  | 9Dh        | High limit for analog input 4 measurement (Processor Vccp)      |
|            | Reserved                           | 9Eh-9Fh    |                                                                 |
|            | AD_IN5 Low Limit                   | A0h        | Low limit for analog input 5 measurement                        |
|            | AD_IN5 High Limit                  | A1h        | High limit for analog input 5 measurement                       |
|            | Reserved                           | A2h-A7h    |                                                                 |
|            | AD_IN6 Low Limit                   | A8h        | Low limit for analog input 6 measurement                        |
|            | AD_IN6 High Limit                  | A9h        | High limit for analog input 6 measurement                       |
|            | AD_IN7 Low Limit                   | AAh        | Low limit for analog input 7 measurement                        |
|            | AD_IN7 High Limit                  | ABh        | High limit for analog input 7 measurement                       |
|            | AD_IN8 Low Limit                   | ACh        | Low limit for analog input 8 measurement                        |
|            | AD_IN8 High Limit                  | ADh        | High limit for analog input 8 measurement                       |
|            | AD_IN9 Low Limit                   | AEh        | Low limit for analog input 9 measurement                        |
|            | AD_IN9 High Limit                  | AFh        | High limit for analog input 9 measurement                       |
|            | //b                                |            |                                                                 |
|            | PROCHOT User Limit                 | B0h        | User settable limit for PROCHOT                                 |
|            | Reserved                           | B1h        |                                                                 |
|            |                                    |            |                                                                 |
|            | Vccp Limit Offsets                 | B2h        | VID offset values for window comparator for CPU Vccp (AD_IN4)   |
|            | Reserved                           | B3h        |                                                                 |
|            |                                    |            |                                                                 |
|            | FAN Tach 1 Limit LSB               | B4h        | FAN Tach 1 Limit LSB                                            |
|            | FAN Tach 1 Limit MSB               | B5h        | FAN Tach 1 Limit MSB                                            |
|            | FAN Tach 2 Limit LSB               | B6h        | FAN Tach 2 Limit LSB                                            |
|            | FAN Tach 2 Limit MSB               | B7h        | FAN Tach 2 Limit MSB                                            |
|            | FAN Tach 3 Limit LSB               | B8h        | FAN Tach 3 Limit LSB                                            |
|            | FAN Tach 3 Limit MSB               | B9h        | FAN Tach 3 Limit MSB                                            |
|            | FAN Tach 4 Limit LSB               | BAh        | FAN Tach 3 Limit MSB                                            |
|            | FAN Tach 4 Limit MSB               | BAn<br>BBh | FAN Tach 4 Limit MSB                                            |

| Loc<br>k      | Register Name<br>查询"LM96194CISQ"供应商 | Address | Description                                                                                                                   |
|---------------|-------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------|
| SETU          | JP REGISTERS                        |         |                                                                                                                               |
|               | Special Function Control 1          | BCh     | Controls the hysteresis for voltage limit comparisons. Also selects filtered                                                  |
|               |                                     |         | or unfiltered temperature usage for temperature limit comparisons and                                                         |
|               |                                     |         | fan control.                                                                                                                  |
|               | Special Function Control 2          | BDh     | Enables smart tach detection. Also selects 0.5°C or 1.0°C resolution for                                                      |
|               |                                     |         | fan control.                                                                                                                  |
| х             | GPI / VID Level Control             | BEh     | Control the input threshold levels for the VIDx, and GPIO_x inputs.                                                           |
| х             | PWM Ramp Control                    | BFh     | Controls the ramp rate of the PWM duty cycle when VRD_HOT is asserted, as well as the ramp rate when PROCHOT exceeds the user |
|               |                                     |         | threshold.                                                                                                                    |
| x             | Fan Boost Hysteresis (Zones 1/2)    | C0h     | Fan Boost Hysteresis for zones 1 and 2                                                                                        |
| x             | Fan Boost Hysteresis (Zones 3/4)    | C1h     | Fan Boost Hysteresis for zones 3 and 4                                                                                        |
| <u>x</u>      | Zones 1/2 Spike Smoothing Control   | C2h     | Configures Spike Smoothing for zones 1 and 2                                                                                  |
| <u>^</u><br>x | LUT 1/2 MinPWM and Hysteresis       | C3h     | Controls MinPWM and hysteresis setting for LUT 1 and 2 auto-fan control                                                       |
| <u>х</u>      | LUT 3/4 MinPWM and Hysteresis       | C4h     | Controls MinPWM and hysteresis setting for LUT 3 and 4 auto-fan control                                                       |
| ^             |                                     |         |                                                                                                                               |
|               | GPO                                 | C5h     | Controls the output state of the GPIO pins                                                                                    |
|               |                                     |         |                                                                                                                               |
|               | PROCHOT Control                     | C6h     | Controls assertion PROCHOT                                                                                                    |
|               | PROCHOT Time Interval               | C7h     | Configures the time window over which the PROCHOT inputs are                                                                  |
|               |                                     |         | measured                                                                                                                      |
| ,             | PWM1 Control 1                      | C8h     | Controls PWM control source bindings.                                                                                         |
| x<br>x        | PWM1 Control 2                      | C9h     | Controls PWM control source bindings.                                                                                         |
|               | PWM1 Control 3                      | CAh     | Controls PWM overhee and output polarity<br>Controls PWM spin-up duration and duty cycle                                      |
| x<br>x        | PWM1 Control 4                      | CAN     | Frequency control for PWM1.                                                                                                   |
| ^             |                                     |         |                                                                                                                               |
| x             | PWM2 Control 1                      | CCh     | Controls PWM control source bindings.                                                                                         |
| x             | PWM2 Control 2                      | CDh     | Controls PWM override and output polarity                                                                                     |
| x             | PWM2 Control 3                      | CEh     | Controls PWM spin-up duration and duty cycle                                                                                  |
| x             | PWM2 Control 4                      | CFh     | Frequency control for PWM2                                                                                                    |
|               |                                     |         |                                                                                                                               |
| x             | LUT 1 Base Temperature              | D0h     | Base temperature to which look-up table offset is applied for LUT 1                                                           |
| x             | LUT 2 Base Temperature              | D1h     | Base temperature to which look-up table offset is applied for LUT 2                                                           |
| х             | LUT 3 Base Temperature              | D2h     | Base temperature to which look-up table offset is applied for LUT 3                                                           |
| х             | LUT 4 Base Temperature              | D3h     | Base temperature to which look-up table offset is applied for LUT 4                                                           |
|               |                                     |         |                                                                                                                               |
| x             | Step 2 Temp Offset                  | D4h     | Step 2 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| х             | Step 3 Temp Offset                  | D5h     | Step 3 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| x             | Step 4 Temp Offset                  | D6h     | Step 4 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| x             | Step 5 Temp Offset                  | D7h     | Step 5 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| x             | Step 6 Temp Offset                  | D8h     | Step 6 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| x             | Step 7 Temp Offset                  | D9h     | Step 7 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| x             | Step 8 Temp Offset                  | DAh     | Step 8 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| x             | Step 9 Temp Offset                  | DBh     | Step 9 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                                |
| х             | Step 10 Temp Offset                 | DCh     | Step 10 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                               |
| х             | Step 11 Temp Offset                 | DDh     | Step 11 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                               |
| х             | Step 12 Temp Offset                 | DEh     | Step 12 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                               |
| x             | Step 13 Temp Offset                 | DFh     | Step 13 LUT 1/2 and LUT 3/4 Offset Temperatures                                                                               |

| 4 |
|---|
| σ |
| - |
| ശ |
| ດ |
| 5 |
|   |
|   |
|   |

| 1 VPJ | LM96194CISQ"供应商                    |         | Description                                                          |
|-------|------------------------------------|---------|----------------------------------------------------------------------|
|       | TACH to PWM Binding                | E0h     | Controls the tachometer input to PWM output binding                  |
| (     | Tach Boost Control                 | E1h     | Controls the fan boost function upon a tach error                    |
| (     | LM96194 Status/Control             | E2h     | Gives Master error status, ASF reset control and Max PWM control     |
| (     | LM96194 Configuration              | E3h     | Configures various outputs and provides START bit                    |
|       | P STATE CONTROL AND MASK REC       | GISTERS |                                                                      |
|       | Sleep State Control                | E4h     | Used to communicate the system sleep state to the LM96194            |
|       | S1 GPI Mask                        | E5h     | Sleep state S1 GPI error mask register                               |
| -     | S1 Fan Mask                        | E6h     | Sleep state S1 fan tach error mask register                          |
|       | S3 GPI Mask                        | E7h     | Sleep state S3 GPI error mask register                               |
|       | S3 Fan Mask                        | E8h     | Sleep state S3 fan tach error mask register                          |
|       | S3 Temperature/Voltage Mask        | E9h     | Sleep state S3 temperature or voltage error mask register            |
|       | S4/5 GPI Mask                      | EAh     | Sleep state S4/5 GPI error mask register                             |
|       | S4/5 Temperature/Voltage Mask      | EBh     | Sleep state S4/5 temperature or voltage error mask register          |
| THE   | ER MASK REGISTERS                  | [==::   |                                                                      |
|       | GPI Error Mask                     | ECh     | Error mask register for GPI faults                                   |
|       | Miscellaneous Error Mask           | EDh     | Error mask register for VRD_HOT, GPI, and dynamic Vccp limit checkir |
|       |                                    |         |                                                                      |
|       | <br>E 1a AND 2a TEMPERATURE READIN |         |                                                                      |
|       | Zone 1a Temp Adjust                | EEh     | Allows all Zone 1a temperature measurements to be adjusted by a      |
|       |                                    |         | programmable offset                                                  |
|       | Zone 2a Temp Adjust                | EFh     | Allows all Zone 2a temperature measurements to be adjusted by a      |
|       |                                    |         | programmable offset                                                  |
| BLOC  |                                    |         |                                                                      |
|       | Block Write Command                | F0h     | SMBus Block Write Command Code                                       |
|       | Block Read Command                 | F1h     | SMBus Block Write/Read Process call                                  |
|       | Fixed Block 0                      | F2h     | Fixed block code address 40h, size 8 bytes                           |
|       | Fixed Block 1                      | F3h     | Fixed block code address 48h, size 8 bytes                           |
|       | Fixed Block 2                      | F4h     | Fixed block code address 50h, size 6 bytes                           |
|       | Fixed Block 3                      | F5h     | Fixed block code address 56h, size 16 bytes                          |
|       | Fixed Block 4                      | F6h     | Fixed block code address 501, size 10 bytes                          |
|       | Fixed Block 5                      | F7h     | Fixed block code address 67h, size 4 bytes                           |
|       |                                    |         |                                                                      |
|       | Fixed Block 6                      | F8h     | Fixed block code address 78h, size 12 bytes                          |
|       | Fixed Block 7                      | F9h     | Fixed block code address 90h, size 32 bytes                          |
|       | Fixed Block 8                      | FAh     | Fixed block code address B4h, size 8 bytes                           |
|       | Fixed Block 9                      | FBh     | Fixed block code address C8h, size 8 bytes                           |
|       | Fixed Block 10                     | FCh     | Fixed block code address D0h, size 16 bytes                          |
|       | Fixed Block 11                     | FDh     | Fixed block code address E5h, size 9 bytes                           |
|       | Reserved                           | FEh-FFh | Reserved for future commands                                         |

Please contact your local sales office for complete LM96194 applications information.

-- --

#### 14.0 Absolute Maximum Ratings 查询"LM96194CISQ"供应商

(Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Positive Supply Voltage (V <sub>DD</sub> ) | 6.0V                               |
|--------------------------------------------|------------------------------------|
| Voltage on Any Digital Input or            | -0.3V to 6.0V                      |
| Output Pin                                 | (Except Analog                     |
|                                            | Inputs)                            |
| Voltage on +5V Input                       | -0.3V to +6.667V                   |
| Voltage at Positive Remote                 |                                    |
| Diode Inputs, AD_IN1, AD_IN2,              |                                    |
| AD_IN3, and AD_IN15 Inputs                 | –0.3V to (V <sub>DD</sub> + 0.05V) |
| Voltage at Other Analog Voltage            |                                    |
| Inputs                                     | -0.3V to +6.0V                     |
| Input Current at Thermal Diode             |                                    |
| Negative Inputs                            | ±1 mA                              |
| Input Current at any pin (Note 3)          | ±10mA                              |
| Package Input Current (Note 3)             | ±100 mA                            |
| Maximum Junction Temperature               |                                    |
| (Note 9)                                   |                                    |
| (T <sub>JMAX</sub> )                       | 150 °C                             |

| ESD Susceptibility (Note 4)                                    |                 |
|----------------------------------------------------------------|-----------------|
| Human Body Model                                               | 3 kV            |
| Machine Model                                                  | 300V            |
| Charged Device Model                                           | 750V            |
| Storage Temperature                                            | –65°C to +150°C |
| Soldering process must completemperature profile specification |                 |

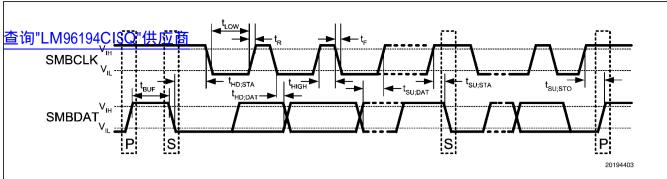
www.national.com/packaging/. (Note 5)

#### 15.0 Operating Ratings (Notes 1, 2)

|                                         | $I_{MIN} \le I_A \le I_{MAX}$                                         |
|-----------------------------------------|-----------------------------------------------------------------------|
| Operating Temperature Range             | $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$ |
| Nominal Supply Voltage                  | 3.3V                                                                  |
| Supply Voltage Range (V <sub>DD</sub> ) | +3.0V to +3.6V                                                        |
| VID0-VID5                               | -0.05V to +5.5V                                                       |
| Digital Input Voltage Range             | –0.05V to                                                             |
|                                         | (V <sub>DD</sub> + 0.05V)                                             |
| Package Thermal Resistance (Note 6)     | 79°C/W                                                                |

#### **DC Electrical Characteristics**

The following limits apply for +3.0 V<sub>DC</sub> to +3.6 V<sub>DC</sub>, unless otherwise noted. **Bold face limits apply for T<sub>A</sub> = T<sub>J</sub> over T<sub>MIN</sub> to T<sub>MAX</sub> of the operating range;** all other limits  $T_A = T_J = 25^{\circ}$ C unless otherwise noted.  $T_A$  is the ambient temperature of the LM96194;  $T_J$  is the junction temperature of the LM96194;  $T_D$  is the junction temperature of the thermal diode.


| Symbol   | Parameter                                                                                                                  | Conditions                                                                           | Typical<br>(Note 9) | Limits<br>(Note 10) | Units<br>(Limits) |
|----------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------|---------------------|-------------------|
| OWER SUP |                                                                                                                            |                                                                                      | (1000 0)            | (1010-10)           | (                 |
|          | Power Supply Current                                                                                                       | Converting, Interface and<br>Fans Inactive, Peak Current                             | 2                   | 2.75                | mA (max)          |
|          |                                                                                                                            | Converting, Interface and<br>Fans Inactive, Average<br>Current                       | 1.6                 |                     | mA                |
|          | Power-On Reset Threshold Voltage                                                                                           |                                                                                      | 2                   | 1.6                 | V (min)           |
|          |                                                                                                                            |                                                                                      | 2                   | 2.7                 | V (max)           |
| EMPERATU | IRE-TO-DIGITAL CONVERTER CHARACTERISTICS                                                                                   |                                                                                      |                     |                     |                   |
|          | Local Temperature Accuracy Over Full Range                                                                                 | -40°C ≤ T <sub>A</sub> < 0°C                                                         | ±2                  | ±4                  | °C (max)          |
|          |                                                                                                                            | $0^{\circ}C \le T_{A} \le 85^{\circ}C$                                               | ±2                  | ±3                  | °C (max)          |
|          |                                                                                                                            | T <sub>A</sub> = +55°C                                                               | ±1                  | ±2.5                | °C (max)          |
|          | Local Temperature Resolution                                                                                               |                                                                                      | 1                   |                     | °C                |
|          | Remote Thermal Diode Temperature Accuracy(Note                                                                             | 0°C ≤ T <sub>A</sub> ≤ 85°C                                                          |                     |                     |                   |
|          | 8)                                                                                                                         | and $0^{\circ}C \leq T_{D} \leq 100^{\circ}C$                                        |                     | ±3                  | °C (max)          |
|          |                                                                                                                            | $0^{\circ}C \le T_A \le 85^{\circ}C$<br>and $T_D = 70^{\circ}C$                      |                     | ±2.5                | °C (max)          |
|          | Remote Thermal Diode Temperature Accuracy<br>Extended to Down to -40 for MMBT3904 Only                                     | $-40^{\circ}C \leq T_{A} < 0^{\circ}C$<br>and $-40^{\circ}C \leq T_{D} < 0^{\circ}C$ |                     | ±4                  | °C (max)          |
|          | Remote Thermal Diode Temperature Accuracy;<br>targeted for a typical Pentium processor on 90nm or<br>65nm process (Note 8) | $0^{\circ}C \le T_A \le 85^{\circ}C$<br>and $25^{\circ}C \le T_D \le 70^{\circ}C$    | ±1                  |                     | °C                |
|          | Remote Temperature Resolution                                                                                              |                                                                                      | 1                   |                     | °C                |
|          | Thermal Diode Source Current                                                                                               | High Level                                                                           | 172                 | 230                 | µA (max)          |
|          |                                                                                                                            | Low Level                                                                            | 10.75               |                     | μA                |

| Symbol                       |                                                                                                                   | Conditions                    | Typical        | Limits                                     | Units              |
|------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|--------------------------------------------|--------------------|
| 室间"LIVIS                     | 96194CISQ"供应商                                                                                                     |                               | (Note 9)       | (Note 10)                                  | (Limits)           |
| _                            | Thermal Diode Current Ratio                                                                                       |                               | 16             |                                            |                    |
| T <sub>C</sub>               | Total Monitoring Cycle Time                                                                                       |                               |                | 100                                        | ms (max)           |
|                              |                                                                                                                   |                               |                | 1                                          |                    |
| TUE                          | Total Unadjusted Error (Note 12)                                                                                  |                               |                | ±2                                         | % of<br>FS (max)   |
| DNL                          | Differential Non-Linearity                                                                                        |                               | ±1             |                                            | LSB                |
| PSS                          | Power Supply (V <sub>DD</sub> ) Sensitivity                                                                       |                               | ±1             |                                            | %/V (of<br>FS)     |
| т <sub>с</sub>               | Total Monitoring Cycle Time                                                                                       |                               |                | 100                                        | ms (max)           |
|                              | Input Resistance for Inputs with Dividers                                                                         |                               | 200            | 140                                        | kΩ (min)           |
|                              | AD_IN1- AD_IN3 and AD_IN8 Analog Input Leakage<br>Current (No Dividers are present on these inputs.)<br>(Note 13) |                               |                | 60                                         | nA (max)           |
| DIGITAL O                    | UTPUTS: PWM1, PWM2                                                                                                |                               |                |                                            | •                  |
| I <sub>OL</sub>              | Maximum Current Sink                                                                                              |                               |                | 8                                          | mA (min)           |
| V <sub>OL</sub>              | Output Low Voltage                                                                                                | I <sub>OUT</sub> = 8.0 mA     |                | 0.4                                        | V (max)            |
| DIGITAL O                    | DUTPUTS: ALL                                                                                                      |                               |                | •                                          | •                  |
| V <sub>OL</sub>              | Output Low Voltage (Note excessive current flow                                                                   | I <sub>OUT</sub> = 4.0 mA     |                | 0.4                                        | V (min)            |
|                              | causes self-heating and degrades the internal temperature accuracy.)                                              | I <sub>OUT</sub> = 6 mA       |                | 0.55                                       | V (min)            |
| I <sub>ОН</sub>              | High Level Output Leakage Current                                                                                 | $V_{OUT} = V_{DD}$            | 0.1            | 10                                         | µA (max)           |
| I <sub>OTMAX</sub>           | Maximum Total Sink Current for all Digital Outputs<br>Combined                                                    |                               |                | 32                                         | mA (max)           |
| Co                           | Digital Output Capacitance                                                                                        |                               | 20             |                                            | pF                 |
| DIGITAL IN                   | NPUTS: ALL                                                                                                        | •                             |                |                                            |                    |
| V <sub>IH</sub>              | Input High Voltage Except Address Select                                                                          |                               |                | 2.1                                        | V (min)            |
| V <sub>IL</sub>              | Input Low Voltage Except Address Select                                                                           |                               |                | 0.8                                        | V (max)            |
| V <sub>IH</sub>              | Input High Voltage for Address Select                                                                             |                               |                | 90% V <sub>DD</sub>                        | V (min)            |
| V <sub>IM</sub>              | Input Mid Voltage for Address Select                                                                              |                               |                | 43% V <sub>DD</sub><br>57% V <sub>DD</sub> | V (min)<br>V (max) |
| V <sub>IL</sub>              | Input Low Voltage for Address Select                                                                              |                               |                | 10% V <sub>DD</sub>                        | V (max)            |
| V <sub>HYST</sub>            | DC Hysteresis                                                                                                     |                               | 0.3            |                                            | v                  |
| I <sub>IH</sub>              | Input High Current                                                                                                | $V_{IN} = V_{DD}$             |                | -10                                        | μA (min)           |
| <u>п.</u><br>I <sub>IL</sub> | Input Low Current                                                                                                 | $V_{IN} = 0V$                 |                | 10                                         | μA (max)           |
|                              | Digital Input Capacitance                                                                                         |                               | 20             |                                            | pF                 |
| DIGITAL IN                   | NPUTS: P1_VIDx, P2_VIDx, GPI_9, GPI_8, GPIO_7, GP                                                                 | 1<br>PIO_6, GPIO_5, GPIO_4 (\ | When respectiv | ve bit set in                              |                    |
| V <sub>IH</sub>              | Alternate Input High Voltage (AGTL+ Compatible)                                                                   |                               |                | 0.8                                        | V (min)            |
| V <sub>IL</sub>              | Alternate Input Low Voltage (AGTL+ Compatible)                                                                    | 1                             |                | 0.4                                        | V (max)            |

AC Electrical Characteristics The following limits apply for +3.0 V<sub>DC</sub> to +3.6 V<sub>DC</sub>, unless otherwise noted. Bold face limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$  of the operating range; all other limits  $T_A = T_J = 25^{\circ}$ C unless otherwise noted.

| Symbol               | Parameter                                                                                          | Conditions                | Typical<br>(Note 9) | Limits<br>(Note 10) | Units<br>(Limits) |
|----------------------|----------------------------------------------------------------------------------------------------|---------------------------|---------------------|---------------------|-------------------|
| FAN RPM-TO           | D-DIGITAL CHARACTERISTICS                                                                          |                           | (                   | (                   | ()                |
|                      | Counter Resolution                                                                                 |                           | 14                  |                     | bits              |
|                      | Number of fan tach pulses count is based                                                           |                           | 2                   |                     | pulses            |
|                      | on                                                                                                 |                           |                     |                     |                   |
|                      | Counter Frequency                                                                                  |                           | 22.5                |                     | kHz               |
|                      | Accuracy                                                                                           |                           |                     | ±6                  | % (max)           |
|                      | UT CHARACTERISTICS                                                                                 |                           |                     |                     |                   |
|                      | Frequency Tolerances                                                                               |                           |                     | ±6                  | % (max)           |
|                      | Duty-Cycle Tolerance                                                                               |                           | ±2                  | ±6                  | % (max)           |
| RESET INPL           | JT/OUTPUT CHARACTERISTICS                                                                          |                           |                     |                     |                   |
|                      | Output Pulse Width                                                                                 |                           |                     | 250                 | ms (min)          |
|                      | Upon Power Up                                                                                      |                           |                     | 330                 | ms (max)          |
|                      | Minimum Input Pulse Width                                                                          |                           |                     | 10                  | µs (min)          |
|                      | Reset Output Fall Time                                                                             | 1.6V to 0.4V Logic Levels |                     | 1                   | µs (max)          |
| SMBus TIMI           | NG CHARACTERISTICS                                                                                 |                           |                     |                     | <u> </u>          |
| f <sub>SMBCLK</sub>  | SMBCLK (Clock) Clock Frequency                                                                     |                           |                     | 10                  | kHz (min)         |
| OINDOLIY             |                                                                                                    |                           |                     | 100                 | kHz (max          |
| t <sub>BUF</sub>     | SMBus Free Time between Stop and Start Conditions                                                  |                           |                     | 4.7                 | μs (min)          |
| t <sub>hd;sta</sub>  | Hold time after (Repeated) Start<br>Condition. After this period, the first clock<br>is generated. |                           |                     | 4.0                 | µs (min)          |
| t <sub>SU;STA</sub>  | Repeated Start Condition Setup Time                                                                |                           |                     | 4.7                 | µs (min)          |
| t <sub>su;sto</sub>  | Stop Condition Setup Time                                                                          |                           |                     | 4.0                 | µs (min)          |
| t <sub>SU;DAT</sub>  | Data Input Setup Time to SMBCLK High                                                               |                           |                     | 250                 | ns (min)          |
| t <sub>HD;DAT</sub>  | Data Output Hold Time after SMBCLK                                                                 |                           |                     | 300                 | ns (min)          |
| HD,DAT               | Low                                                                                                |                           |                     | 1075                | ns (max)          |
| t <sub>LOW</sub>     | SMBCLK Low Period                                                                                  |                           |                     | 4.7                 | µs (min)          |
| 2011                 |                                                                                                    |                           |                     | 50                  | µs (max)          |
| t <sub>HIGH</sub>    | SMBCLK High Period                                                                                 |                           |                     | 4.0                 | µs (min)          |
|                      |                                                                                                    |                           |                     | 50                  | µs (max)          |
| t <sub>R</sub>       | Rise Time                                                                                          |                           |                     | 1                   | µs (max)          |
| t <sub>F</sub>       | Fall Time                                                                                          |                           |                     | 300                 | ns (max)          |
| t <sub>TIMEOUT</sub> | Timeout                                                                                            |                           | 31                  |                     | ms                |
|                      | SMBDAT or SMBCLK low                                                                               |                           |                     | 25                  | ms (min)          |
|                      | time required to                                                                                   |                           |                     | 35                  | ms (max)          |
|                      | reset the Serial Bus                                                                               |                           |                     |                     |                   |
|                      | Interface to the Idle State                                                                        |                           |                     |                     |                   |
| t <sub>POR</sub>     | Time in which a device must be operational after power-on reset                                    | V <sub>DD</sub> > +2.8V   |                     | 500                 | ms (max)          |
| CL                   | Capacitance Load on SMBCLK and SMBDAT                                                              |                           |                     | 400                 | pF (max)          |





Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to GND, unless otherwise noted.

**Note 3:** When the input voltage  $(V_{IN})$  at any pin exceeds the power supplies  $(V_{IN} < (GND \text{ or } AGND) \text{ or } V_{IN} > V_{DD}$ , except for analog voltage inputs), the current at that pin should be limited to 10 mA. The 100 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to ten. Parasitic components and/or ESD protection circuitry are shown below for the LM96194's pins. Care should be taken not to forward bias the parasitic diode, D1, present on pins D+ and D– as shown in circuits C and D. Doing so by more than 50 mV may corrupt temperature measurements. D1 and the ESD Clamp are connected between V+ (V<sub>DD</sub>, AD\_IN16) and GND as shown in circuit B. SNP stands for snap-back device.

| Symbol            | Pin # | Circuit        | All Input Circuits                  |
|-------------------|-------|----------------|-------------------------------------|
| PROCHOT           | 1     | A              |                                     |
| GND               | 2     | A              |                                     |
| GND               | 3     | A              |                                     |
| GND               | 4     | A              | ┆┖┯┙╴Ҭ                              |
| GND               | 5     | A              | •                                   |
| GND               | 6     | A              | GND                                 |
| GPIO_0/TACH1      | 7     | A              | Circuit A                           |
| GPIO_1/TACH2      | 8     | A              |                                     |
| GPIO_2/TACH3      | 9     | A              |                                     |
| GPIO_3/TACH4      | 10    | A              |                                     |
| GPIO_4 /THERMTRIP | 11    | A              | <b>□</b> ∨+                         |
| GPIO_5            | 12    | A              |                                     |
| GPIO_6            | 13    | A              |                                     |
| GPIO_7            | 14    | A              |                                     |
| VRD_HOT           | 15    | A              | ESD D1                              |
| GND               | 16    | Α              |                                     |
| SCSI_TERM1        | 17    | A              |                                     |
|                   |       |                | GND                                 |
| SMBDAT            | 18    | A              | Circuit B                           |
| SMBCLK            | 19    | A              |                                     |
| ALERT/XtestOut    | 20    | A              | □ V+                                |
| RESET             | 21    | A              | ليا<br>•••••••••••••                |
| AGND              | 22    | B (Internally  |                                     |
|                   |       | shorted to GND |                                     |
|                   |       | pin.)          |                                     |
| REMOTE1-          | 23    | С              | $\mathbf{T}$ D1 6.53 <b>T</b> CLAMP |
| REMOTE1+          | 24    | D              |                                     |
| REMOTE2-          | 25    | С              | GND                                 |
| REMOTE+           | 26    | D              | Circuit C                           |
| AD_IN1            | 27    | D              | Girdan G                            |
| AD_IN2            | 28    | D              |                                     |
| AD_IN3            | 29    | D              |                                     |

| Symbol                      | Pin #               | Circuit           | All Input Circuits |
|-----------------------------|---------------------|-------------------|--------------------|
| AD_IN4 查询"LM96194CI         | SQ"供应商 <sup>。</sup> | E                 | ••••••             |
|                             |                     |                   | 50Ω                |
| AD_IN5                      | 31                  | E                 |                    |
| GND                         | 32                  | E                 |                    |
| GND                         | 33                  | E                 |                    |
| GND                         | 34                  | E                 |                    |
| AD_IN6                      | 35                  | E                 | GND                |
| AD_IN7                      | 36                  | E                 | Circuit D          |
| AD_IN8                      | 37                  | D                 |                    |
| ADDR_SEL                    | 38                  | A                 |                    |
| AD_IN9/V <sub>DD</sub> (V+) | 39                  | В                 |                    |
| GND                         | 40                  | B (Internally     |                    |
|                             |                     | shorted to AGND.) |                    |
| PWM1                        | 41                  | A                 |                    |
| PWM2                        | 42                  | A                 |                    |
| P1_VID0                     | 43                  | A                 | ¦└┯┙╷╷╴╴┥          |
| P1_VID1                     | 44                  | A                 | i                  |
| P1_VID2                     | 45                  | A                 | GND                |
| P1_VID3                     | 46                  | A                 | Circuit E          |
| P1_VID4                     | 47                  | A                 |                    |
| P1 VID5                     | 48                  | A                 |                    |

Note 4: Human body model, 100 pF discharged through a 1.5 kΩ resistor. Machine model, 200 pF discharged directly into each pin. Charged device model (CDM) simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged. Note 5: Reflow temperature profiles are different for lead-free and non lead-free packages.

**Note 6:** The maximum power dissipation must be de-rated at elevated temperatures and is dictated by  $T_{JMAX}$ ,  $\theta_{JA}$  and the ambient temperature,  $T_A$ . The maximum allowable power dissipation at any temperature is  $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ . The  $\theta_{JA}$  for the LM96194 when mounted to 1 oz. copper foil PCB the  $\theta_{JA}$  with different air flow is listed in the following table.

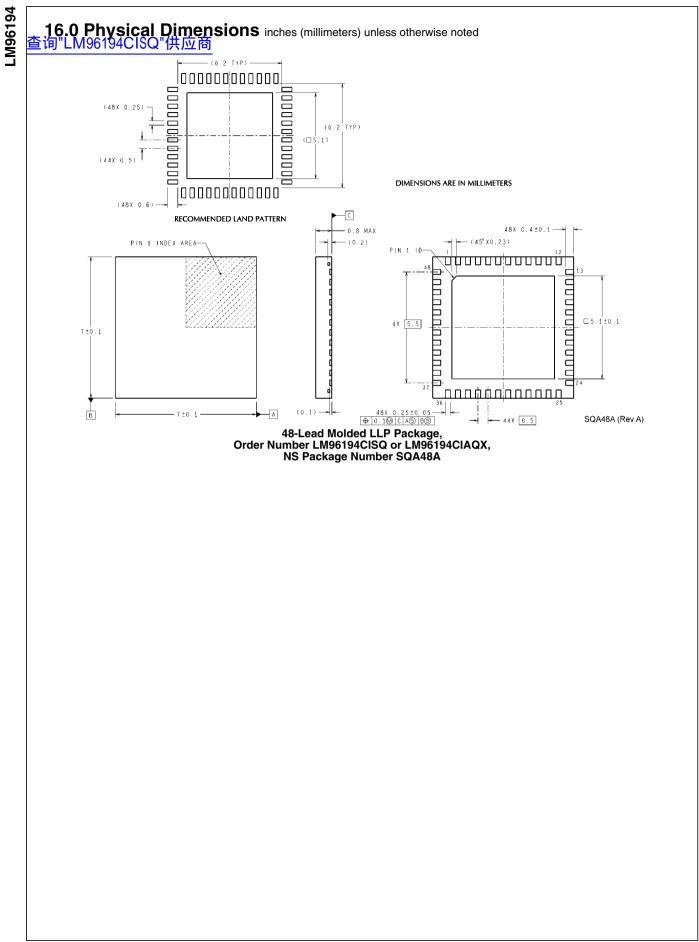
| Air Flow            | Junction to Ambient Thermal Resistance, $\theta_{JA}$ |
|---------------------|-------------------------------------------------------|
| 0 m/s               | 28 °C/W                                               |
| 1.14 m/s (225 LFPM) | 25 °C/W                                               |
| 2.54 m/s (500 LFPM) | 22 °C/W                                               |

Note 7: See the URL "http://www.national.com/packaging/" for other recommendations and methods of soldering surface mount devices.

Note 8: At the time of first publication of this specification (Jan 2006), this specification applies to either Pentium or Xeon Processors on 90nm or 65nm process when TruTherm is selected. When TruTherm is deselected this specification applies to an MMBT3904. This specification does include the error caused by the variability of the diode ideality and series resistance parameters.

Note 9: Typical parameters are at  $T_J = T_A = 25$  °C and represent most likely parametric norm.

Note 10: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).


Note 11: TUE (Total Unadjusted Error) includes Offset, Gain and Linearity errors of the ADC.

Note 12: Total Monitoring Cycle Time includes all temperature and voltage conversions.

Note 13: Leakage current approximately doubles every 20 °C.

Note 14: A total digital I/O current of 40 mA can cause 6 mV of offset in Vref.

Note 15: Timing specifications are tested at the TTL logic levels,  $V_{IL} = 0.4V$  for a falling edge and  $V_{IH} = 2.4V$  for a rising edge. TRI-STATE output voltage is forced to 1.4V.



查询"LM96194CISQ"供应商

# Notes

查询"LM96194CISQ"供应商

## Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560