FAIRCHILD

SEMICONDUCTOR

74VHC4316 **Quad Analog Switch with Level Translator**

General Description

These devices are digitally controlled analog switches implemented in advanced silicon-gate CMOS technology. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Three supply pins are provided on the 4316 to implement a level translator which enables this circuit to operate with 0V-6V logic levels and up to $\pm 6V$ analog switch levels. The 4316 also has a common enable input in addition to each switch's control which when HIGH will disable all switches to their off state. All analog inputs and outputs and digital April 1994 Revised April 1999

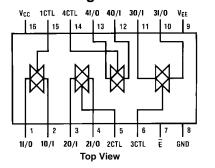
74VHC4316 Quad Analog Switch with Level Translator

inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

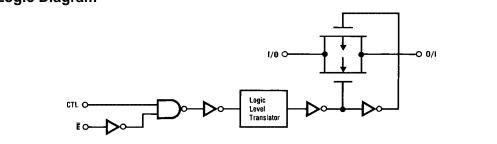
Features

- Typical switch enable time: 20 ns
- Wide analog input voltage range: ±6V
- Low "on" resistance: 50 typ. (V_{CC}-V_{EE} = 4.5V) 30 typ. ($V_{CC}-V_{EE} = 9V$)
- Low quiescent current: 80 µA maximum (74VHC)
- Matched switch characteristics
- Individual switch controls plus a common enable
- Pin functional compatible with 74HC4316

Ordering Code:


Order Number	Package Number	Package Description
74VHC4316M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74VHC4316WM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74VHC4316MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC4316N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Truth Table

Inj	outs	Switch			
E	CTL	I/O–O/I			
Н	Х	"OFF"			
L	L	"OFF"			
L	н	"ON"			

Connection Diagram

Logic Diagram

© 1999 Fairchild Semiconductor Corporation DS011678.prf

74VHC4316

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.5V	
Supply Voltage (V _{EE})	+0.5 to -7.5V	Supply
DC Control Input Voltage (VIN)	-1.5 to V _{CC} +1.5V	Supply
DC Switch I/O Voltage (VIO)	$V_{\text{EE}} – 0.5$ to $V_{\text{CC}} + 0.5 \text{V}$	DC Inp
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	(V _{IN}
DC Output Current, per pin (I _{OUT})	±25 mA	Operat
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA	Input F
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
Power Dissipation (P _D) (Note 3)	600 mW	
S.O. Package only	500 mW	
Lead Temperature (T _L)		
(Soldering 10 seconds)	260°C	Note 1: A age to the

		Min	Max	Units	
Supply Voltag	e (V _{CC})	2	6	V	
Supply Voltag	e (V _{EE})	0	-6	V	
DC Input or O	utput Voltage	0	V _{CC}	V	
(V _{IN} , V _{OUT})					
Operating Ten	nperature Range (T _A)	-40	+85	°C	
Input Rise or I					
(t _r , t _f)	$V_{CC} = 2.0V$		1000	ns	
	$V_{CC} = 4.5V$		500	ns	
	$V_{CC} = 6.0V$		400	ns	
	$V_{CC} = 12.0V$		250	ns	

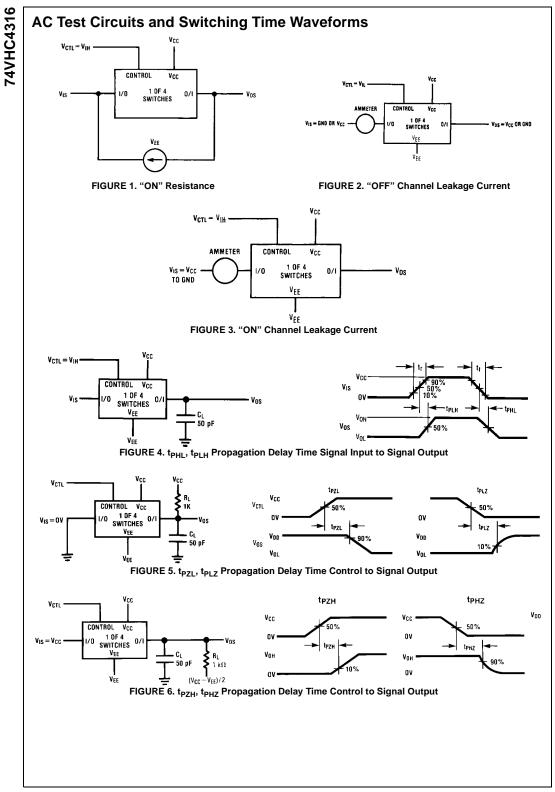
C Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

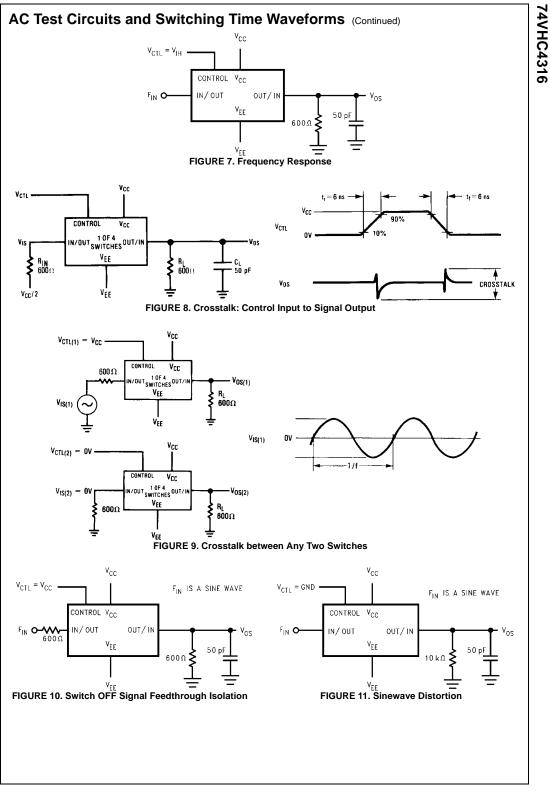
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

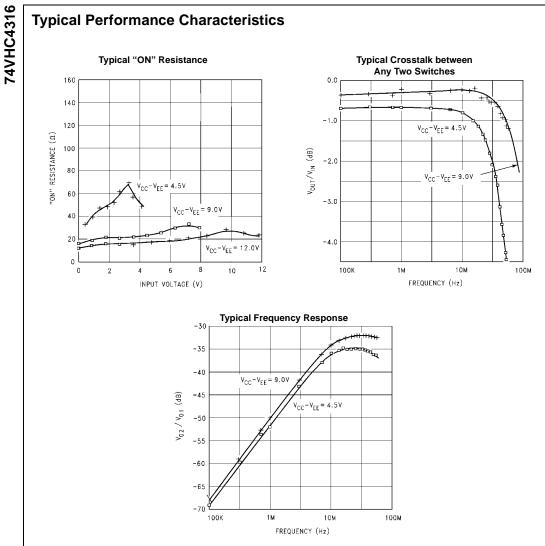
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	VEE	V _{CC}	$T_A = 25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units
			• = =		Тур	Gua	Guaranteed Limits	
V _{IH}	Minimum HIGH			2.0V		1.5	1.5	
	Level Input			4.5V		3.15	3.15	V
	Voltage			6.0V		4.2	4.2	
V _{IL}	Maximum LOW			2.0V		0.5	0.5	
	Level Input			4.5V		1.35	1.35	V
	Voltage			6.0V		1.8	1.8	
R _{ON}	Minimum "ON"	$V_{CTL} = V_{IH},$	GND	4.5V	100	170	200	Ω
	Resistance	I _S = 2.0 mA	-4.5V	4.5V	40	85	105	
	(Note 5)	$V_{IS} = V_{CC}$ to V_{EE} (<i>Figure 1</i>)	-6.0V	6.0V	30	70	85	
		$V_{CTL} = V_{IH},$	GND	2.0V	100	180	215	
		$I_{S} = 2.0 \text{ mA}$	GND	4.5V	40	80	100	
		$V_{IS} = V_{CC}$ or V_{EE}	-4.5V	4.5V	50	60	75	
		(Figure 1)	-6.0V	6.0V	20	40	60	
R _{ON}	Maximum "ON"	V _{CTL} = V _{IH}	GND	4.5V	10	15	20	
	Resistance	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	5	10	15	Ω
	Matching		-6.0V	6.0V	5	10	15	
I _{IN}	Maximum Control	$V_{IN} = V_{CC} \text{ or } GND$	GND	6.0V		±0.1	±1.0	μA
	Input Current							
I _{IZ}	Maximum Switch	$V_{OS} = V_{CC} \text{ or } V_{EE}$						
	"OFF" Leakage	$V_{IS} = V_{EE} \text{ or } V_{CC}$	GND	6.0V		±30	±300	nA
	Current	$V_{CTL} = V_{IL}$	-6.0V	6.0V		±50	±500	
		(Figure 2)						
I _{IZ}	Maximum Switch	$V_{IS} = V_{CC}$ to V_{EE}						
	"ON" Leakage	$V_{CTL} = V_{IH},$	GND	6.0V		±20	±75	nA
	Current	$V_{OS} = OPEN$	-6.0V	6.0V		±30	±150	
		(Figure 3)						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	GND	6.0V		1.0	10	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$	-6.0V	6.0V		4.0	40	

Note 4: For a power supply of 5V \pm 10% the worst case on resistances (R_{ON}) occurs for VHC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.

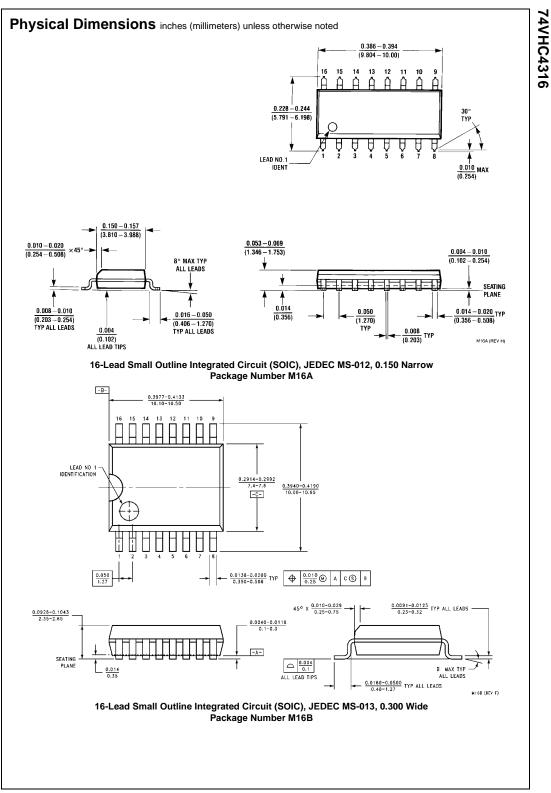

Note 5: At supply voltages (V_{CC}-V_{EE}) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

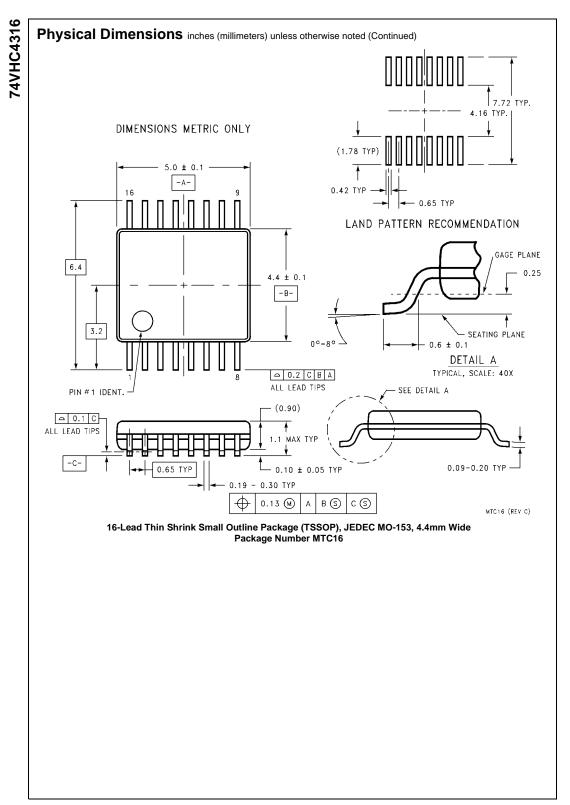

$V_{CC} = 2.0V - 6.0V, V_{EE} = 0V - 6V, C_L$			scilleu		T_=+	-25°C	T _A =-40°C to +85°C	
Symbol	Parameter	Conditions	VEE	V _{cc}	Тур		ranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation		GND	3.3V	15	30	37	
PHL, PLH	Delay Switch In to		GND	4.5V	5	10	13	ns
	Out		-4.5V	4.5V	4	8	12	
	out		-6.0V	6.0V	3	7	11	
t _{PZL} , t _{PZH}	Maximum Switch Turn	$R_{\rm L} = 1 \ \rm k\Omega$	GND	3.3V	25	97	120	
FZL, FZH	"ON" Delay		GND	4.5V	20	35	43	ns
	(Control)		-4.5V	4.5V	15	32	39	
	(0011101)		-6.0V	6.0V	14	30	37	
t _{PHZ} , t _{PLZ}	Maximum Switch Turn	$R_1 = 1 k\Omega$	GND	3.3V	35	145	180	
PHZ, PLZ	"OFF" Delay		GND	4.5V	25	50	63	ns
	(Control)		-4.5V	4.5V	20	44	55	
	(0011101)		-6.0V	6.0V	20	44	55	
t _{PZL} , t _{PZH}	Maximum Switch		GND	3.3V	20	120	150	
PZL [,] PZH	Turn "ON" Delay		GND	4.5V	20	41	52	ns
	(Enable)		-4.5V	4.5V	19	38	48	110
	(Enable)		-6.0V	6.0V	18	36	45	
t _{PLZ} , t _{PHZ}	Maximum Switch		GND	3.3V	42	155	190	
PLZ [,] PHZ	Turn "OFF" Delay		GND	4.5V	28	53	67	ns
	(Enable)		-4.5V	4.5V	23	47	59	110
	(Enable)		-4.0V	4.5V 6.0V	23	47	59	
	Minimum Frequency	$R_L = 600\Omega, V_{IS} = 2V_{PP}$	0.0 V	4.5	40	-11	00	
	Response (<i>Figure 7</i>)	at $(V_{CC} - V_{EE}/2)$	-4.5V	4.5V	100			MHz
	$20 \log (V_{OS}/V_{IS}) = -3 \text{ dB}$	(Note 6)(Note 7)	-4.5V	4.5 V	100			1011 12
	Control to Switch	$R_L = 600\Omega, f = 1 \text{ MHz}$	0V	4.5V	100			
	Feedthrough Noise	$C_{L} = 50 \text{ pF}$	-4.5V	4.5V	250			mV
	(Figure 8)	(Note 7)(Note 8)	4.01	4.0 V	200			
	Crosstalk Between	$R_1 = 600\Omega, f = 1 \text{ MHz}$	0V	4.5V	-52			
	any Two Switches	11 = 00022, 1 = 1 MI12	-4.5V	4.5V	-50			dB
	(Figure 9)		- 1 .5V	4.5 V	-50			uD
	Switch OFF Signal	$R_1 = 600\Omega$, f = 1 MHz						
	Feedthrough	$V_{CTL} = V_{IL}$	0V	4.5V	-42			dB
	Isolation	CIL-VIL	-4.5V	4.5V	-44			uD
	(Figure 10)	(Note 7)(Note 8)						
THD	Sinewave Harmonic	$R_L = 10 \text{ K}\Omega, C_L = 50 \text{ pF},$						
	Distortion	f = 1 KHz						%
	(Figure 11)	$V_{IS} = 4 V_{PP}$	0V	4.5V	0.013			70
	(1.90.0 11)	V _{IS} = 8 V _{PP}	-4.5V	4.5V	0.008			
C _{IN}	Maximum Control	15 0 1 PP			5			pF
-IN	Input Capacitance				Ũ			μ.
CIN	Maximum Switch				35			pF
- 111	Input Capacitance							P.
C _{IN}	Maximum Feedthrough	V _{CTL} = GND			0.5			pF
- 111	Capacitance	CIL CIL			0.0			P.
C _{PD}	Power Dissipation				15			pF
- FD	Capacitance				10			Ч

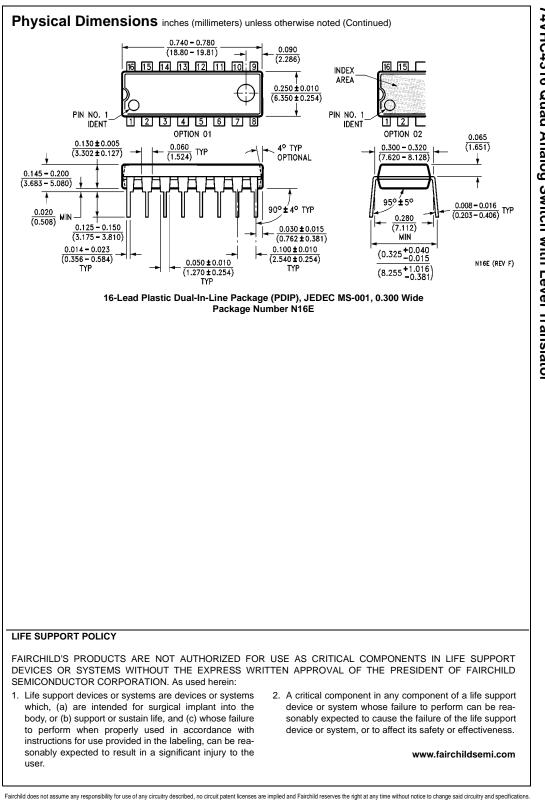

74VHC4316

Note 7: V_{IS} is centered at V_{CC} - V_{EE} /2.

Note 8: Adjust for 0 dBm.







Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6V (calculated from the ON resistance).

