LTR								F	REVISIO	ONS										
					0	DESCR	IPTION	4					DA	TE (YF	ԴМО- Б	DA)		APPR	OVED	
Α	Made	e chang ges thro	jes to 3 bughou	8.3, 4.2 It.	, 4.3.1,	and 4.	3.2. M	ade ch	anges	to table	I. Edi	torial		90-0	3-08			M. A.	FRYE	
В	Add o	device (ges thr	type 07 oughou	'. Add rt.	vendor	rs CAG	Es 1ES	366 and	54186	6. Edito	orial		93-01-22			M. A. FRYE				
С	Upda	ite boile	erplate	and ma	ake edi	itorial c	hanges	s throug	phout.	- ro				98-0	7-06			R. MC	NIN	
THE ORIGINAI REV SHEET				THIS D	RAWI		SBEE		ACED	- -										
REV	C	l C	l c	3												1				
		Ŭ.	_ <u> </u>	<u> </u>								· · · · · ·								
SHEET	15	16	17																	
				REV	/		С	С	С	c	С	c	с	с	С	c	c	c	C	
SHEET REV STATUS OF SHEETS				REV			C 1	C 2	С 3	C 4	C 5	C 6	C 7	C 8	C 9	C 10	C 11	C 12	C 13	
REV STATUS OF SHEETS PMIC N/A		16		SHE PRE MAR	ET PAREI ICIA B	KELLI	1				5	6	7 SE S	8 UPPL	9 .Y CE	10	11 R COL	12 .UMB	13	
REV STATUS OF SHEETS PMIC N/A STA MICRO	NDAF			SHE PRE MAR CHE CHE	ET PAREI CIA B. CKED ARLES	BY BY BREUS	1 EHER				5	6	7 SE S	8 UPPL	9 .Y CE	10	11 R COL	12 .UMB	13	
REV STATUS OF SHEETS PMIC N/A STA MICRO DR/ THIS DRAWII FOR U DEPA	NDAF DCIRO AWIN NG IS A ISE BY RTMEN	16 RD CUIT G VAILA ALL ITS	17 BLE	SHE PRE MAR CHE CH	ET PAREI CIA B. CKED ARLES	BY BY REUS	1 EHER SING			4 MIC	5 DI	6 EFEN	7 SE SI COL	8 UPPL UMBI	9 Y CE JS, 0 S, 12	10 INTER	11 R COL 43210	UMB	13	1
REV STATUS OF SHEETS PMIC N/A STA MICR(DR/ THIS DRAWII FOR U	NDAF DCIRO AWIN ISE BY RTMEN NCIES	TIG RD CUIT G ALL ITS OF TH	BLE E	SHE PRE MAR CHE CH	ET PAREI ICIA B. CKED ARLES PROVE	BY BY REUS D BY A. FR	1 EHER SING	2		4 MIC DIC	5 DI CROC GITA	6 EFEN CIRCI	7 SE SI COL		9 .Y CE JS, 0 S, 12 G C(10 INTER HIO	11 R COL 43210	UMB	13 US	1
REV STATUS OF SHEETS PMIC N/A STA MICRO DR/ THIS DRAWII FOR U DEPA AND AGEI DEPARTME	NDAF DCIRO AWIN ISE BY RTMEN NCIES	TIG TIG TIG TIG TITS OF THI DEFEN	BLE E	SHE PRE MAR CHE CH CHE CH	ET PAREI CIA B CKED ARLES PROVE CHAEL	KELLI BY S REUS D BY A. FR' APPR(88-0	1 EHER SING YE OVAL [D1-28	2		4 MIC DIC MO	5 DI CROC GITA	6 EFEN CIRCI L TO ITHIC	7 SE SI COL		9 .Y CE JS, 0 S, 12 G C(10 INTER HIO 2-BIT DNVE	11 R COL 43210	UMB TIP		G
REV STATUS OF SHEETS PMIC N/A STA MICRO DR/ THIS DRAWII FOR U DEPA AND AGEI DEPARTME	NDAF DCIRC AWIN NG IS A ISE BY RTMEN NCIES NT OF	TIG TIG TIG TIG TITS OF THI DEFEN	BLE E	SHE PRE MAR CHE CH CHE CH	ET PAREI CIA B CKED ARLES PROVE CHAEL	KELLI BY S REUS D BY A. FR' APPR(88-0	1 EHER SING YE OVAL I D1-28	2		4 MIC DIC MO	5 DI ROC AITA NOL ZE A	6 EFEN CIRCI L TO ITHIC	7 SE SI COL UIT, () AN/ C SIL GE CC 67268		9 .Y CE JS, 0 S, 12 G C(10 INTER HIO 2-BIT DNVE	11 43210 MUI ERTE	UMB TIP		1


9004708 0037150 053 🔳

.

1. SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

9004708 0037151 T9T 🛲

1.4 Recommended operating conditions.

Operating ambient temperature range (T_A) -55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-973	-	Configuration Management.
MIL-STD-1835	-	Interface Standard For Microcircuit Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87702
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 3
DSCC FORM 2234			

APR 97

9004708 0037152 926

3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 Mode selection. The mode selection shall be as specified on figure 2.

3.2.4 Logic diagram(s). The logic diagram(s) shall be as specified on figure 3.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103 (see 6.6 herein). For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DSCC-VA shall be required in accordance with MIL-PRF-38535, appendix A.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Bum-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

c. Optional subgroup 12 is used for grading and part selection at +25°C. It is not included in PDA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87702
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 4
DSCC FORM 2234			

APR 97

🛚 9004708 0037153 862 🎟

Test	Symbol	Conditions $1/$ -55°C \leq T _A \leq +125°C unless otherwise specified	Group A subgroups	Device type	Lir	nits	Unit
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	Max	
Resolution	RES	$V_{DD} = +5 V$	1,2,3	All	12		Bits
		V _{DD} = +15 V			12		-
Relative accuracy	RA	V _{DD} = +5 V	1,2,3	01,07		±2	LSB
			1	02		±2	
			2,3	-		±1	1
		V _{DD} = +5 V <u>2</u> /	12	02		±1	4
		T _A = +25°C					
		$V_{DD} = +5 V$	1	03,04		±2	
				05,06		±0.5	
			2,3	03,04,		±0.5	1
		V _{DD} = +5 V <u>2</u> /	12	05,06 03,04,		±0.5	
		$T_A = +25^{\circ}C$		05,04,		1 10.5	
		V _{DD} = +15 V	1,2,3	01,07		±2	
			1	02		±2	1
			2,3	-		±1	
		$V_{DD} = +15 V 2/$ T _A = +25°C	12	02		±1	1
		V _{DD} = +15 V	1	03,04		±2	1
				05,06		±0.5	-
		V _{DD} = +15 V <u>2</u> /	2,3	03,04, 05,06		±0.5	1
			12	-		±0.5	1
See footnotes at end of tal	JIO.						
MICROCIR		WING	IZE A			590	62-8770
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			RE	VISION LEV	EL	SHEE	т 5

Test	Symbol	Conditions $1/$ -55°C $\leq T_A \leq +125°C$ unless otherwise specified	Group A subgroups	Device type	Lir	nits	Unit
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	Мах	1
Differential nonlinearity	DNL	V _{DD} = +5 V, 10-bit monotonic	1,2,3	01,07		±4	LSB
		V _{DD} = +5 V, 12-bit monotonic	1	02,03, 04		<u>+</u> 4	
				05,06		±1	
		$V_{DD} = +5 V, \underline{2}/$ 12-bit monotonic	2,3	02,03, 04,05,		±1	
			12	06		±1]
		V _{DD} = +15 V, 10-bit monotonic	1,2,3	01,07		±4	1
		V _{DD} = +15 V, 12-bit monotonic	1	02,03, 04		±4	
				05,06		±1	
		$V_{DD} = +15 \text{ V}, 2/$ 12-bit monotonic	2,3	02,03, 04,05,		±1]
			12	06		±1]
Power supply rejection	PSRR	$V_{DD} = +5 V,$ $\Delta V_{DD} = \pm 5 \%$	1	01,02, 03,04,		.015	±%/%
			2,3	07		.03	1
			1	05,06		.002	
			2,3			.004	
		$V_{DD} = \pm 15 \text{ V},$ $\Delta V_{DD} = \pm 5 \%$	1	01,02, 03,04,		.01	
			2,3	07		.02	
			1	05,06		.002	
			2,3			.004	
ee footnotes at end of table.	NDARD		ZE			EOS	
MICROCIRC	UIT DRAV		A			596	2-87702
DEFENSE SUPPLY	CENTER CO DHIO 43216-		REV	ISION LEVE C	L	SHEET	6

Test	Symbol	Conditions <u>1</u> / -55°C \leq T _A \leq +125°C unless otherwise specified	Group A	Device	Lir	nits	Unit
		uniess otherwise specified	subgroups	type	Min	Max	_
Gain error <u>3</u> /	AE	V _{DD} = +5 V,	1,2,3	01,07		Max ±20	LSB
		DAC register loaded with 1111 1111 1111	1	02		±20	
			2,3	1 [±10	1
		$V_{DD} = +5 V, 2/$	12	02		±10	1
		$T_A = +25^{\circ}C$, DAC register loaded with					
		1111 1111 1111					4
		V _{DD} = +5 V, DAC register loaded with 1111 1111 1111	1	03		±20	
				05		±3	
			2,3	03		±6	1
				05		±4	1
		V _{DD} = +5 V, <u>2</u> /	12	03		±5	-
		$T_A = +25^{\circ}C$, DAC register loaded with		05		±3	4
		$\frac{1111\ 1111\ 1111}{V_{DD} = +5\ V,}$	1	04			4
						±20	4
		DAC register loaded with 1111 1111 1111		06		±1]
			2,3	04,06		±2	
		$V_{DD} = +5 V, 2/$ $T_A = +25^{\circ}C,$ DAC register loaded with 1111 1111 1111	12	04,06		±1	
		$V_{DD} = +15 \text{ V},$	1,2,3	01,07		±25	-
		DAC register loaded with	1	02		±25	-
			2,3			±15	-
ee footnotes at end of ta	ible. ΓANDARD		IZE				
	RCUIT DRAV	WING	A	(18)011 57			62-8770
	IS, OHIO 43216		RE	ISION LEVE/	=L	SHEE	T 7

Test	Symbol	Conditions $1/$ -55°C \leq T _A \leq +125°C unless otherwise specified	Group A subgroups	Device type	Lir	nits	Unit
			3	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	Max	1
Gain error <u>3</u> /	AE	$V_{DD} = +15 \text{ V}, 2/$ $T_A = +25^{\circ}\text{C},$ DAC register loaded with 1111 1111 1111	12	02		±15	LSB
		V _{DD} = +15 V	1	03		±25	1
		DAC register loaded with 1111 1111 1111		05		±3	1
			2,3	03		±10]
				05		±4	1
		$V_{DD} = +15 V, 2/$ T _A = +25°C,	12	03		±10	
		DAC register loaded with 1111 1111 1111		05		±3	
		V _{DD} = +15 V,	1	04		±25	
		DAC register loaded with 1111 1111 1111		06		±1]
			2,3	04		±7	
				06		±2	
		$V_{DD} = +15 V, 2/$ T _A = +25°C,	12	04		±6	1
		DAC register loaded with 1111 1111 1111		06		±1	
Output leakage current Pin 1	IOUT1	V _{DD} = +5 V, DB0 to DB11 = 0 V,	1	All		±10	nA
		WR, CS = 0 V	2,3	1		±200	1
		$V_{DD} = +15 V,$ DB0 to DB11 = 0 V,	1	All		±10	
		WR, CS = 0 V	2,3]		±200	1
e footnotes at end of table							
STA	NDARD	1	ZE			E06	2-87702
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			A REV	ISION LEVE	L	SHEET	

Test	Sumbol	Conditions <u>1</u> / -55°C ≤ T _A ≤ +125°C	Group A	Device		Limits	
Test	Symbol	unless otherwise specified	subgroups	type			Unit
Referenced input resistance, pin 19 to ground	RIN	V _{DD} = +5 V	1,2,3	01,02, 03,04, 07	Min 7	<u>Max</u> 25	kΩ
				05,06	7	15	1
		V _{DD} = +15 V	1,2,3	01,02, 03,04, 07	7	25	-
				05,06	7	15	1
Digital input high voltage	ViH	V _{DD} = +5 V	1,2,3	All	2.4		V
		V _{DD} = +15 V	1		13.5		1
Digital input low voltage	VIL	V _{DD} = +5 V	1,2,3	All		0.8	v
		V _{DD} = +15 V	Í			1.5	
Digital input leakage current	liN	V _{DD} = +5 V	1	All		±1	μA
			2,3	-		±10	1
		V _{DD} = +15 V	1			±1	
			2,3			±10	1
Supply current from VDD	lop	V_{DD} = +5 V, all digital inputs V _{IL} or V _{IH} V_{DD} = +15 V, all digital inputs V _{IL} or V _{IH}	1,2,3	Ali		2 2	mA
		$V_{DD} = +5 V$, all digital inputs = 0 or V_{DD}	1	01,02, 03,04,		100	μΑ
			2,3	07		500	
			1,2,3	05,06		100	1
		$V_{DD} = +15 \text{ V}$, all digital inputs = 0 or V_{DD}	1	01,02,		100	1
			2,3	03,04,		500	-
			1,2,3	05,06		100	-
See footnotes at end of table		c	IZE	•			- L
MICROCIRC	STANDARD MICROCIRCUIT DRAWING		A	·····		59	62-8770
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			RE	VISION LEV	EL	SHEE	T 9

9004708 0037158 344 🔳

Test	Symbol	Conditions $1/$ -55°C \leq T _A \leq +125°C unless otherwise specified	Group A subgroups	Device type	Lir	nits	Unit
					Min	Max	
Gain temperature coefficient	TCAE	$V_{DD} = +5 \vee \underline{4}/$	1,2,3	All		±5	ppm/º(
		V _{DD} = +15 V <u>4</u> /		01,02, 03,04, 07		±10	
				05,06		±5	1
Feedthrough error	FT	$V_{DD} = +5 V, 4/5/$ $V_{REF} = \pm 10 V,$ 10 kHz sinewave	4,5,6	All		10	mV₽₽
		V _{DD} = +15 V, <u>4/ 5</u> / V _{REF} = ±10 V, 10 kHz sinewave				10	
Digital input capacitance	Cin	$V_{DD} = +5 V, \underline{6}/V_{IN} = 0 V, T_A = +25^{\circ}C,$ DB0 to DB11	4	01,02, 03,04,		5	pF
				07			4
				05,06		8	
		$V_{DD} = +5 V, T_A = +25^{\circ}C,$ $\overline{WR}, \overline{CS}$		All		20	
		$V_{DD} = +15 \text{ V}, \underline{6}/$ $V_{IN} = 0 \text{ V}, \text{ T}_{A} = +25^{\circ}\text{C},$ DB0 to DB11		01,02, 03,04, 07		5	
				05,06		8	
	1	V _{DD} = +15 V, <u>6</u> /		All		20	1
		$T_A = +25^{\circ}C, \overline{WR}, \overline{CS}$					
e footnotes at end of table.							
STAI MICROCIRC	NDARD		ZE A			596	2-87702
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			REV	ISION LEVE C	L	SHEET	

Test	Symbol	Conditions $\underline{1}/$ -55°C $\leq T_A \leq +125°C$	Group A	Device	Lir	nits	Unit
		unless otherwise specified	subgroups	type			4
Dutput capacitance	Court1	$V_{DD} = +5 V, 4/$	4	Ali	Min	Max 70	-
		DB0 to DB11 = 0 V,	-	~		70	pF
		\overline{WR} , $\overline{CS} = 0 V$,					
		$T_A = +25^{\circ}C$					
		$V_{DD} = +15 \text{ V}, \frac{4}{2}$	1			70	-
		DB0 to DB11 = 0 V,					
		\overline{WR} , $\overline{CS} = 0 V$,					
		T _A = +25°C					
Dutput capacitance	Cout2	$V_{DD} = +5 V, 4/$	4	All		200	pF
		DB0 to DB11 = V _{DD} ,					
		\overline{WR} , $\overline{CS} = 0 V$,		-		1	
		$T_A = +25^{\circ}C$	_				1
		$V_{DD} = +15 \text{ V}, \ \underline{4}'$ DB0 to DB11 = V _{DD} ,				200	
		\overline{WR} , $\overline{CS} = 0 V$,					
		$T_{A} = +25^{\circ}C$					
Chip select to write setup time	tcs	$V_{DD} = +5 \text{ V } \underline{7}/$	9,10,11	01,02, 03,04	170		ns
				05,06,	280		
		V _{DD} = +15 V <u>7</u> /		01,02, 03,04	95		1
				05,06, 07	180]
Chip select to write hold time	tсн	V _{DD} = +5 V <u>7</u> /	9,10,11	All	0		ns
		V _{DD} = +15 V <u>7</u> /					
e footnotes at end of table.							
MICROCIRC		WING	SIZE A			59	62-877(
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		RE	VISION LEV	EL	SHEE	т	

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Write pulse width Write pulse width Write pulse width Min Max $V_{0D} = +5$ V, $Z/$ 9,10,11 01,02, 170 170 ns $V_{0D} = +15$ V, $Z/$ 0 05,06, 250 07 01,02, 95 03,04 01,02, 95 03,04 01,02, 95 03,04 01,02, 95 03,04 01,02, 95 03,04 05,06, 160 07 01,02, 80 03,04 05,06, 100 07 01,02, 80 03,04 05,06, 100 07 01,02, 80 03,04 05,06, 100 07 01,02, 5 03,04 05,06, 100 07 01,02, 5 03,04 05,06, 100 07 01,02, 5 03,04 05,06, 100 07 01,02, 5 03,04 05,06, 100 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5	Test	Symbol	$\begin{array}{c} Conditions \ \underline{1}/\\ -55^{\circ}C \ \leq \ T_A \ \leq \ +125^{\circ}C\\ unless \ otherwise \ specified \end{array}$	Group A subgroups	Device type	Lir	Limits	
$\frac{1}{1000} = \frac{1}{1000} = 1$					<u> </u>		Max	1
$\frac{1}{1} \text{ tcs} \ge \text{twrs, tch} \ge 0$ $\frac{1}{1} \text{ tcs} \ge \text{trs} = 1 \text{ tcs} \ge 1$ $\frac{1}{1} \text{ tcs} \ge 1 \text{ tcs} \ge 1$ $\frac{1}{1} \text{ tcs} = 1$ 1	Nrite pulse width	twR	$V_{DD} = +5 V, T/$	9,10,11	1 2 2 2 1	170		ns
$t_{CS} \ge t_{WR}, t_{CH} \ge 0$ $03,04$ $03,04$ $05,06,$ 160 Data setup time t_{DS} $V_{DD} = +5 \lor Z/$ $9,10,11$ All 150 ns $V_{DD} = +15 \lor Z/$ $9,10,11$ All 150 ns Data hold time t_{DH} $V_{DD} = +5 \lor Z/$ $9,10,11$ $01,02,$ 80 $03,04$ $03,04$ $05,06,$ 100 $03,04$ $03,04$ $03,04$ $05,06,$ 100 $03,04$ $03,04$ $03,04$ $05,06,$ 100 $03,04$ $03,04$ $05,06,$ 100 $03,04$ $03,04$ $03,04$ $03,04$ $03,04$ $05,06,$ 100 $03,04$ $03,04$ $05,06,$ 100 $05,06,$ 100 $03,04$ $03,04$ $05,06,$ 100 $03,04$ $03,04$ $03,04$ $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$ 100 $05,06,$			tcs ≥ twn, tcн ≥ 0		05,06,	250		1
Data setup time tos $V_{DD} = +5 \vee \frac{7}{2}$ 9,10,11 All 150 ns Data setup time $V_{DD} = +15 \vee \frac{7}{2}$ 9,10,11 All 150 ns Data hold time t_{DH} $V_{DD} = +5 \vee \frac{7}{2}$ 9,10,11 $01,02, 03,04$ $05,06, 100$ $03,04$ Data hold time t_{DH} $V_{DD} = +5 \vee \frac{7}{2}$ 9,10,11 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $01,02, 5$ <td< td=""><td></td><td></td><td>$V_{DD} = +15 V, \underline{7}/$</td><td></td><td></td><td>95</td><td></td><td>1</td></td<>			$V_{DD} = +15 V, \underline{7}/$			95		1
Data hold time $V_{DD} = +15 V \underline{7}'$ $01,02, 80$ Data hold time $V_{DD} = +15 V \underline{7}'$ $9,10,11$ $01,02, 5$ $03,04$ Data hold time $V_{DD} = +5 V \underline{7}'$ $9,10,11$ $01,02, 5$ $03,04$ V_{DD} = +15 V \underline{7}' $9,10,11$ $01,02, 5$ $03,04$ $05,06, 10$ V_{DD} = +15 V \underline{7}' $01,02, 5$ $03,04$ $05,06, 10$ 07 V_{DD} = +15 V \underline{7}' $01,02, 5$ $03,04$ $05,06, 10$ 07 V_{DD} = +15 V \underline{7}' $01,02, 5$ $03,04$ $05,06, 10$ 07 V_{VDT1} = 0 V, V_{REF} = +10 V, AGND = DGND, unless otherwise specified. 4 See 4.3.1c. 4 // Measured using internal feedback resistor and includes effect of 5 ppm maximum gain T _c . 4 These parameters may be guaranteed, if not tested, to the limits specified in table 1 herein. 4 // Feedthrough error can be reduced by connecting the metal lid to ground. 4 5 5 // Subgroup 4 (C _{IN} measurement) shall be measured only for the initial test and after process or design changes which 100						160		1
Data hold time t_DH V_DD = +5 V Z/ 9,10,11 01,02, 5 ns $03,04$ 03,04 01,02, 5 03,04 03,04 03,04 03,04 $02,05,06, 100$ 01,02, 5 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 5 03,04 05,06, 10 07 01,02, 05 03,04 05,06, 10 07 01,02, 05 03,04 05,06, 10 07 01,02, 05 03,04 05,06, 10 07 01,02, 05 03,04 05,06, 10 07 01,02, 05 03,04 05,06, 10 07 01,02, 05 03,04 05,06, 10 07 01,02, 05 01,02, 05 01,02, 05 01,02, 05 01,02, 05 01,02, 05 01,02, 05 01,02, 05 01,02, 05 01,02, 05	Data setup time	tos	V _{DD} = +5 V <u>7</u> /	9,10,11	All	150		ns
Data hold time t_DH V_DD = +5 V Z/ 9,10,11 01,02, 5 ns $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ $01,02, 5$ $03,04$ $05,06, 10$ $01,02, 5$ $03,04$ $05,06, 10$ $01,02, 5$ $03,04$ $05,06, 10$ $05,06, 10$ $05,06, 10$ $05,06, 10$ $05,06, 10$ $05,06, 10$ $05,06, 10$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ $03,04$ $05,06, 10$ 07 $01,02, 5$ 02 02 $03,04$ 01 02 02 $03,04$ $05,06, 10$ 07 $01,02, 5$ 03 04 01 02 02 02 02 02 02 02 02 02 02 02 02			V _{DD} = +15 V <u>7</u> /			80		1
$\frac{03,04}{05,06, 10}$ $\frac{03,04}{05,06, 10}$ $\frac{03,04}{05,06, 10}$ $\frac{01,02, 5}{03,04}$ $\frac{03,04}{05,06, 10}$ $\frac{01,02, 5}{03,04}$ $\frac{05,06, 10}{07}$ $\frac{05,06, 10}{0$						100		1
$V_{DD} = +15 \text{ V } \underline{7}$	Data hold time	t _{DH}	V _{DD} = +5 V <u>7</u> /	9,10,11		5		ns
$\begin{array}{ c c c c c c } \hline 03,04 & 03,04 & 05,06, & 10 & 07 & 07 & 07 & 0 & 07 & 0 & 07 & 0 & 0$						10		
 Vour1 = 0 V, V_{REF} = +10 V, AGND = DGND, unless otherwise specified. See 4.3.1c. Measured using internal feedback resistor and includes effect of 5 ppm maximum gain T_c. These parameters may be guaranteed, if not tested, to the limits specified in table I herein. Feedthrough error can be reduced by connecting the metal lid to ground. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which 			V _{DD} = +15 V <u>7</u> /		03,04]
5/ Feedthrough error can be reduced by connecting the metal lid to ground. 6/ Subgroup 4 (C _{IN} measurement) shall be measured only for the initial test and after process or design changes which						10]
 4/ These parameters may be guaranteed, if not tested, to the limits specified in table I herein. 5/ Feedthrough error can be reduced by connecting the metal lid to ground. 6/ Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which 	2∕ See 4.3.1c.	·						
 4/ These parameters may be guaranteed, if not tested, to the limits specified in table I herein. 5/ Feedthrough error can be reduced by connecting the metal lid to ground. 6/ Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect capacitance. 				•				
5/ Subgroup 4 (C _{IN} measurement) shall be measured only for the initial test and after process or design changes which	I/ These parameters may	be guaranteed	i, if not tested, to the limits spe-	cified in table I	herein.			
	Feedthrough error can	be reduced by	connecting the metal lid to grov	und.				
			e measured only for the initial	test and after p	process or (design ch	langes wh	nich

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87702
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 12
DSCC FORM 2234 APR 97			

9004708 0037161 939 📟

Device types	All
Case outlines	R and 2
Terminal number	Terminal symbol
1	OUT1
2	AGND
3	DGND
4	DB11(MSB)
5	DB10
6	DB9
7	DB8
8	DB7
9	DB6
10	DB5
11	DB4
12	DB3
13	DB2
14	DB1
15	DB0 (LSB)
16	<u>CS</u>
17	WR
18	VDD
19	VREF
20	RFB

FIGURE 1. Terminal connections.

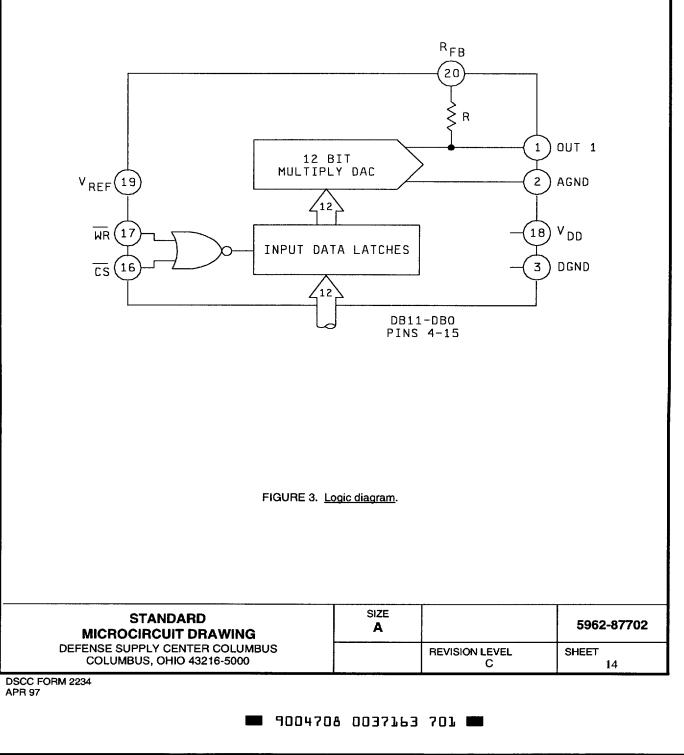
STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		5962-87702
	REVISION LEVEL	SHEET
		1 13 1

.

DSCC FORM 2234 APR 97

9004708 0037162 875 🛲


Write mode:

 $\overline{\text{CS}}$ and $\overline{\text{WR}}$ low DAC responds to data bus (DB0 to DB11) inputs.

Hold mode:

Either \overline{CS} or \overline{WR} high, data bus (DB0 to DB11) is locked out; DAC holds last data present when \overline{CS} or \overline{WR} assumed high state.

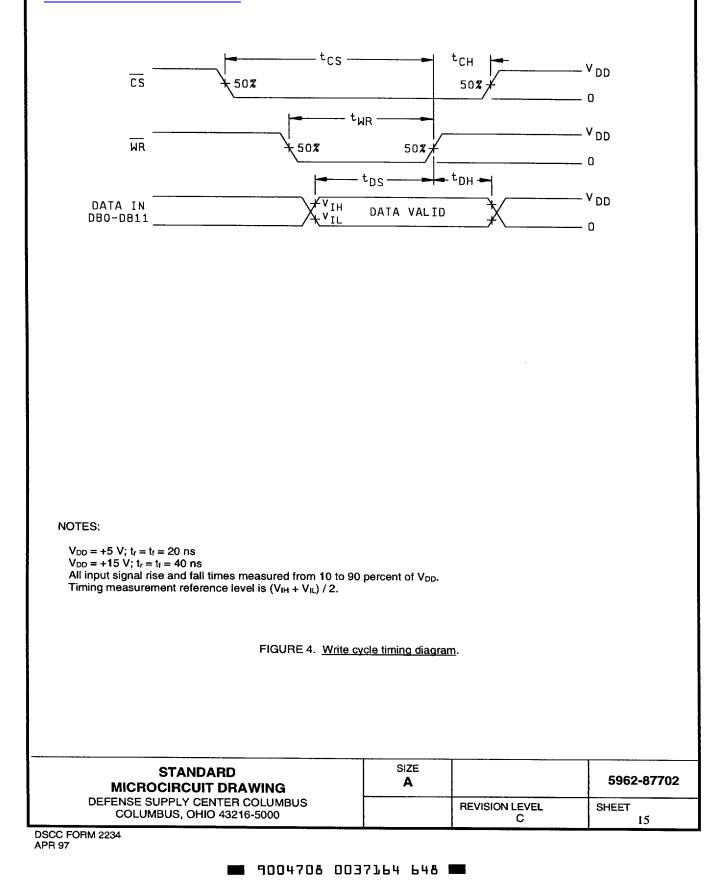


TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1*, 2, 3,12
Group A test requirements (method 5005)	1,2,3,4,5,6,9**,10***,11***,12
Groups C and D end-point electrical parameters (method 5005)	1

- * PDA applies to subgroup 1.
- ** Subgroup 9, if not tested, shall be guaranteed to the specified limits in table I for device type 07.
- *** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 7 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Optional subgroup 12 is used for grading and part selection at +25°C.
- 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87702
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		C	16

APR 97

		9004708	0037165	584
--	--	---------	---------	-----

查询"5962-87702022C"供应商 5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-87702
		REVISION LEVEL C	SHEET 17

APR 97

9004708 0037166 410

查询"5962-87702022C"供应商 TANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 98-07-06

Approved sources of supply for SMD 5962-87702 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8770201RA	24355	AD7545SQ/883B
	1ES66	MX7545SQ/883B
5962-87702012A	<u>3</u> /	AD7545SE/883B
5962-87702012C	1ES66	MX7545SE/883B
5962-8770202RA	24355	AD7545TQ/883B
	1ES66	MX7545TQ/883B
5962-87702022A	<u>3</u> /	AD7545TE/883B
5962-87702022C	1ES66	MX7545TE/883B
5962-8770203RA	24355	AD7545UQ/883B
	1ES66	MX7545UQ/883B
5962-87702032A	<u>3</u> /	AD7545UE/883B
5962-87702032C	1ES66	MX7545UE/883B
5962-8770204RA	24355	AD7545AUQ/883B
	1ES66	MX7545AUQ/883
5962-87702042A	24355	AD7545AUE/883B
5962-8770205RA	<u>3</u> /	PM7545BR/883
5962-87702052A	<u>3</u> /	PM7545BRC/883

1 of 2

9004708 0037167 357 🛲

查询"5962-87702022C"供应商 MICROCIRCUIT DRAWING BULLETIN - CONTINUED

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8770206RA	<u>3</u> /	PM7545AR/883
5962-87702062A	<u>3</u> /	PM7545ARC/883
5962-8770207RA	<u>3</u> /	MP7545SD/883

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

Vendor CAGE <u>number</u>

Vendor name and address

1ES66

24355

Maxim Integrated Products 120 San Gabriel Drive Sunnyvale, CA 94086

Analog Devices Route 1 Industrail Park P.O. Box 9106 Norwood, MA 02062 Point of contact: Bay F-1 Raheen IND. Estate Limerick, Ireland

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

2 of 2

9004708 0037168 293 🖿