

MOC3081M MOC3082M MOC3083M

DESCRIPTION

The MOC3081M, MOC3082M and MOC3083M devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver.

They are designed for use with a discrete power triac in the interface of logic systems to equipment powered from 240 VAC lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances, etc.

FEATURES

- Underwriters Laboratories (UL) recognized file #E90700, Volume 2
- VDE recognized file #102497 add option V (e.g., MOC3083VM)
- Simplifies logic control of 240 VAC power
- Zero voltage crossing
- dv/dt of 1500 V/µs typical, 600 V/µs guaranteed
- Compatible with Fairchild's FKPF12N80 discrete power triac

APPLICATIONS

- Solenoid/valve controls
- Lighting controls
- Static power switches
- AC motor drives
- Temperature controls
- E.M. contactors
- AC motor starters
- Solid state relays

Parameters	Symbol	Value	Units
TOTAL DEVICE			
Storage Temperature	T _{STG}	-40 to +150	°C
Operating Temperature	T _{OPR}	-40 to +85	°C
Lead Solder Temperature	T _{SOL}	260 for 10 sec	°C
Junction Temperature Range	T _J	-40 to +100	°C
Isolation Surge Voltage ⁽⁴⁾ (peak AC voltage, 60Hz, 1 sec duration)	V _{ISO}	7500	Vac(pk)
Total Device Power Dissipation @ 25°C	В	250	mW
Derate above 25°C	P _D	2.94	mW/°C
EMITTER			
Continuous Forward Current	I _F	60	mA
Reverse Voltage	V _R	6	V
Total Power Dissipation 25°C Ambient	В	120	mW
Derate above 25°C	P _D	1.41	mW/°C
DETECTOR			
Off-State Output Terminal Voltage	V _{DRM}	800	V
Peak Repetitive Surge Current (PW = 100 μs, 120 pps)	I _{TSM}	1	Α
Total Power Dissipation @ 25°C Ambient	Ь	150	mW
Derate above 25°C	P _D	1.76	mW/°C

MOC3081M MOC3082M MOC3083M

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS						
Parameters	Test Conditions	Symbol	Min	Тур*	Max	Units
EMITTER						
Input Forward Voltage	$I_F = 30 \text{ mA}$	V _F		1.3	1.5	V
Reverse Leakage Current	V _R = 6 V	I _R		0.005	100	μA
DETECTOR						
Peak Blocking Current, Either Direction	$V_{DRM} = 800V, I_F = 0 \text{ (note 1)}$	I _{DRM1}		10	500	nA
Critical Rate of Rise of Off-State Voltage	I _F = 0 (figure 9, note 3)	dv/dt	600	1500		V/µs

TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
DC Characteristics	Test Conditions	Symbol	Device	Min	Тур*	Max	Units
	M : T : 1		MOC3081M			15	
LED Trigger Current	Main Terminal Voltage = 3V (note 2)	I _{FT}	MOC3082M			10	mA
	voltage = 01 (11010 L)		MOC3083M			5	
Peak On-State Voltage, Either Direction	$I_{TM} = 100 \text{ mA peak},$ $I_F = \text{rated } I_{FT}$	V _{TM}	All		1.8	3	V
Holding Current, Either Direction		I _H	All		500		μΑ

ZERO CROSSING CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
DC Characteristics	Test Conditions Symbol Device Min Typ* Max I				Units		
Inhibit Voltage (MT1-MT2 voltage above which device will not trigger)	I _F = Rated I _{FT}	V _{INH}	All		12	20	V
Leakage in Inhibited State	I_F = Rated I_{FT} , V_{DRM} = 800V, off state	I _{DRM2}	All		200	500	μA

ISOLATION CHARACTERISTICS						
Characteristics	Test Conditions	Symbol	Min	Тур*	Max	Units
Input-Output Isolation Voltage	f = 60 Hz, t = 1 sec (note 4)	V _{ISO}	7500			Vac(pk)

^{*}Typical values at $T_A = 25$ °C

Note

- 1. Test voltage must be applied within dv/dt rating.
- 2. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3081M, 10 mA for MOC3082M, 5 mA for MOC3083M) and absolute max I_F (60 mA).
- 3. This is static dv/dt. See Figure 9 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.
- 4. Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

Figure 1. LED Forward Voltage vs. Forward Current

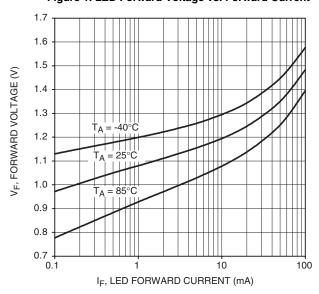


Figure 2. Trigger Current Vs. Temperature

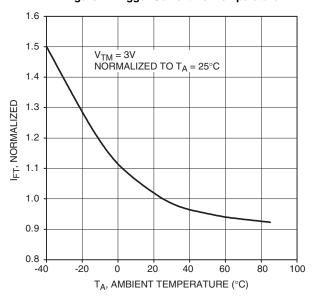


Figure 3. LED Current Required to Trigger vs. LED Pulse Width

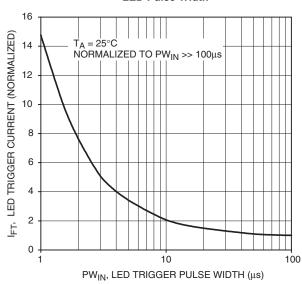


Figure 4. Leakage Current, IDRM vs. Temperature

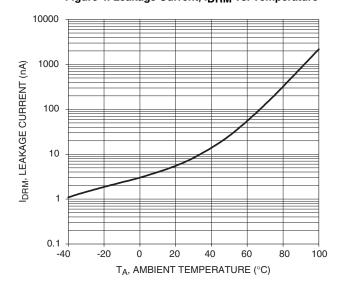


Figure 5. I_{DRM2}, Leakage in Inhibit State vs. Temperature

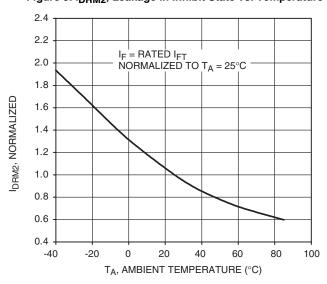


Figure 6. On-State Characteristics

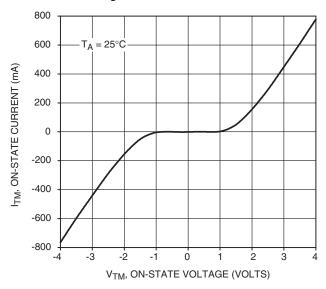


Figure 7. I_H, Holding Current vs. Temperature

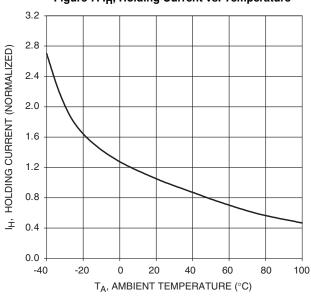
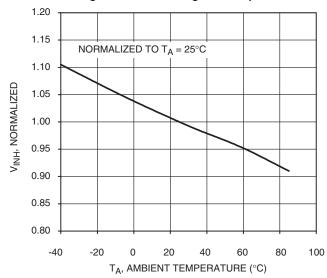



Figure 8. Inhibit Voltage vs. Temperature

MOC3081M MOC3082M MOC3083M

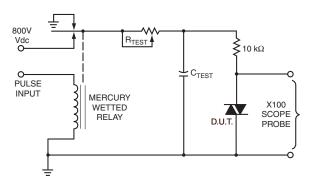


Figure 9. Static dv/dt Test Circuit

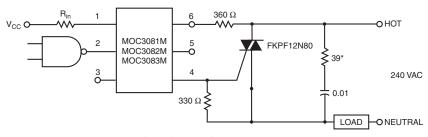

- The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
- 100x scope probes are used, to allow high speeds and voltages.
- 3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded.

Figure 10. Static dv/dt Test Waveform

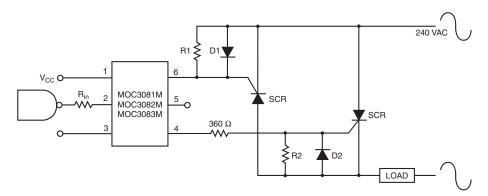
Typical circuit for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

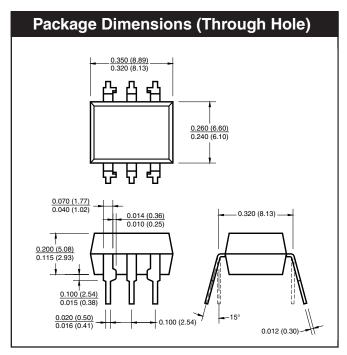
 R_{in} is calculated so that I_F is equal to the rated I_{FT} of the part, 15 mA for the MOC3081M, 10 mA for the MOC3082M, and 5 mA for the MOC3083M. The 39 ohm resistor and 0.01 μ F capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load use.

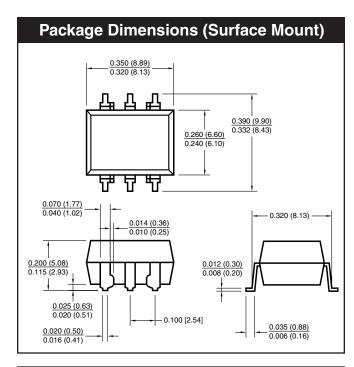
 $^{^{\}star}$ For highly inductive loads (power factor < 0.5), change this value to 360 ohms.

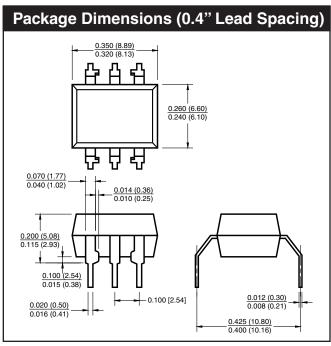
Figure 11. Hot-Line Switching Application Circuit

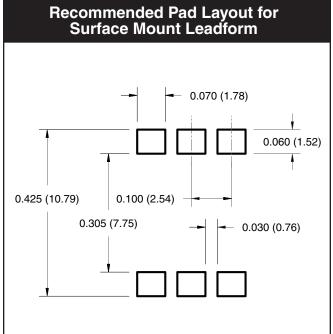
MOC3081M MOC3082M MOC3083M




Figure 12. Inverse-Parallel SCR Driver Circuit


Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330 ohm.

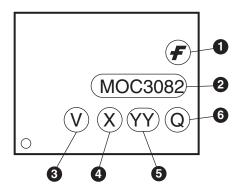

Note: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.



MOC3081M MOC3082M MOC3083M

NOTE

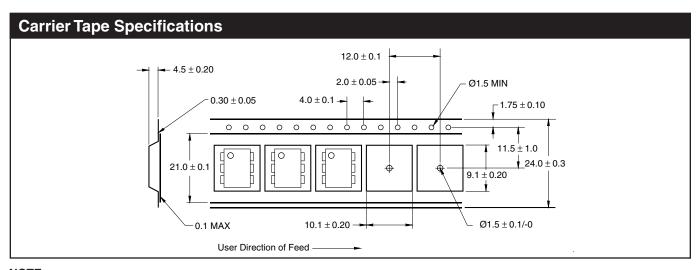
All dimensions are in inches (millimeters)

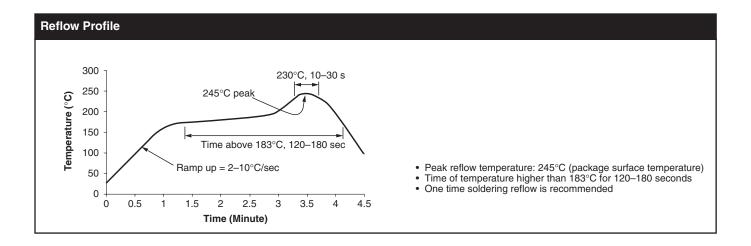


MOC3081M MOC3082M MOC3083M

ORDERING INFORMATION

Order Entry Identifier	Description
S	Surface Mount Lead Bend
SR2	Surface Mount; Tape and reel
Т	0.4" Lead Spacing
V	VDE 0884
TV	VDE 0884, 0.4" Lead Spacing
SV	VDE 0884, Surface Mount
SR2V	VDE 0884, Surface Mount, Tape & Reel


MARKING INFORMATION


Definiti	ons
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)
4	One digit year code, e.g., '3'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code

^{*}Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format.

NOTEAll dimensions are in inches (millimeters)

MOC3081M MOC3082M MOC3083M

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.