A_M-1W & B_LM-1W Series

1W, FIXED INPUT, ISOLATED & UNREGULATED DUAL/SINGLE OUTPUT, SUPERMINIATURE SIP PACKAGE

PRODUCT PROGRAM

Input

Output

multi-country patent protection RoHS

FEATURES

Efficiency up to 80%
Miniature SIP Package Style
Temperature Range: -40°C to+85°C
Internal SMD Construction
Industry Standard Pinout
No Heat sink Required
No External Component Required
RoHS Compliance

APPLICATIONS

The A_M-1W & B_LM-1W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- Where isolation is necessary between input and output (isolation voltage ≤1000VDC);
- Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

D1				Efficience			
Part Number	Voltage (VDC)		Voltage	Current (mA)		Efficiency (%, Typ)	
ramber	Nominal	Range	(VDC)	Max	Min	(70, Typ)	
A0505M-1W	6-1	16 =	±5	±100	±10	70	
A0509M-1W	5	4.5-5.5	±9	±56	±6	75	
A0512M-1W			±12	±42	±5	78	
A0515M-1W			±15	±33	±4	79	
A1205M-1W		10.8-13.2	±5	±100	±10	72	
A1209M-1W	40		±9	±56	±6	75	
A1212M-1W	12		±12	±42	±5	77	
A1215M-1W			±15	±33	±4	79	
B0505LM-1W	5	4.5-5.5	5	200	20	70	
B0509LM-1W			9	111	12	75	
B0512LM-1W			12	83	9	79	
B0515LM-1W			15	67	7	80	
B1205LM-1W			5	200	20	72	
B1209LM-1W	12	10 0 12 2	9	111	12	75	
B1212LM-1W	12	10.8-13.2	12	83	9	77	
B1215LM-1W			15	67	7	79	
B2405LM-1W	1 3		5	200	20	70	
B2409LM-1W		21.6-26.4	9	111	12	73	
B2412LM-1W	24		12	83	9	75	
B2415LM-1W			15	67	7	78	
B2424LM-1W			24	42	5	77	

ISOLATION SPECIFICATIONS						
Item	Test conditions	Min	Тур	Max	Units	
Isolation voltage	Tested for 1 minute and 1mA max	1000			VDC	
Isolation resistance	Test at 500VDC	1000			МΩ	

OUTPUT SPECIF	ICATION					
Item	Test Conditions	Min	Тур	Max	Units	
Output power		0.1		1	W	
Line regulation	For Vin change of 1%			1.2	160	
	10% to 100% full load(5V output)		10	15		
	10% to 100% full load(9V output)	Total	8.3	10	%	
Load regulation	10% to 100% full load(12V output)	W	6.8	10		
	10% to 100% full load(15V output)		6.3	10		
	10% to 100% full load(24V output)		5	10	1	
Temperature drift	100% full load			0.03	%/°C	
Output voltage accuracy		See to	olerance e	envelope	graph	
Dinale 9 Naise*	20MHz Bandwidth(AXXXXM-1W)		50	75	.,	
Ripple & Noise*	20MHz Bandwidth(BXXXXLM-1W)		75	100	mVp-p	
Conitability of fragression and	100% load, nominal input(5V,12V)		100		171.1	
Switching frequency	100% load, nominal input(24V)		500		KHz	

*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.

MODEL SELECTION B0505LM-1W

Rated Power
Package Style
Output Voltage
Input Voltage
Product Series

MORNSUN Science Technology co., Ltd.
Address: 2th floor 6th building, Hangzhou
Industrial District, Guangzhou, China
Tel: 86-20-38601850
Fax: 86-20-38601272
http://www.mornsun-power.com

COMMON SPECIFICATION							
查询"A1212M-1	Test Conditions	Min	Тур	Max	Units		
Storage humidity	V 12/12/10			95	%		
Operating temperature		-40		85			
Storage temperature		-55		125	°c		
Lead temperature			15	25			
Temp. rise at full load	1.5mm from case for 10 seconds			300			
Cooling		F	ree air c	convecti	on		
Case material		Plastic(UL94-V0)					
Short circuit protection*				1	S		
MTBF		3500			K hours		
Weight			2.1		g		
*Supply voltage must be discontinued at the end of short circuit duration.							

Note:

- 1.All specifications measured at TA=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 2. See below recommended circuits for more details.

TYPICAL CHARACTERISTICS

OUTLINE DIMENSIONS & PIN CONNECTIONS

First Angle Projection 🕣 🕀

Note: Unit:mm(inch) Pin section:0.50*0.30mm(0.020*0.012inc Pin tolerances:±0.10mm(±0.004inch) General tolerances:±0.25mm(±0.010inch	,
---	---

RECOMMENDED FOOTPRINT Top view,grid:2.54*2.54mm(0.1*0.1inch), diameter:1.00mm(0.039inch) Single

L	Jua				1	1	1	_
Ī	_		_				_ `	Γ
-	μ () (-	\vdash	\rightarrow	\rightarrow	⊢ :	H
	I 1	2		4	5	6	:	
	!							Г
_	_			_		_		H
		l	l	1	l	l	l	I

OOTDDINT DETAIL O

FOOTPRINT DETAILS							
Pin	Single	Dual					
1	Vin	Vin					
2	GND	GND					
4	0V	-Vo					
5	NC	0V					
6	+Vo	+Vo					

APPLICATION NOTE

Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load is *not less than 10*% of the full load, and that *this product should never be operated under no load!* If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power (A_M –W2/B_LM-W2 series).

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor sees (Table 1).

EXTERNAL CAPACITOR TABLE (Table 1) Vin Cin Single Cout Dual Cout (VDC) (uF) Vout (uF) Vout (uF) (VDC) (VDC) 5 4 7 10 ±5 4.7 5 12 2.2 4.7 2.2 24 1 12 2.2 ±12 1 15 ±15 0.47

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

No parallel connection or plug and play.