

MILITARY DATA SHEET

Original Creation Date: 03/13/96 Last Update Date: 07/30/96 Last Major Revision Date: 03/13/96

MN54F132-X REV 1A0

QUAD 2-INPUT NAND SCHMITT TRIGGER

General Description

The F132 contains four 2-Input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 2-Input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Industry Part Number

NS Part Numbers

54F132

54F132DMQB 54F132FMQB 54F132LMQB

Prime Die

M132

Processing

 ${\tt MIL-STD-883,\ Method\ 5004}$

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1	Static tests at	+25	
2	Static tests at	+125	
3	Static tests at	-55	
4	Dynamic tests at	+25	
5	Dynamic tests at	+125	
6	Dynamic tests at	-55	
7	Functional tests at	+25	
A8	Functional tests at	+125	
8B	Functional tests at	-55	
9	Switching tests at	+25	
10	Switching tests at	+125	
11	Switching tests at	-55	

MN54F132-X REV 1A0

Features

Guaranteed 4000V minimum ESD protection

MN54F132-X REV 1A0

(Absolute Maximum Ratings)

(Note 1)

Storage Temperature -65 C to +150 C Ambient Temperature under Bias -55 C to +125 C Junction Temperature under Bias -55 C to +175 C Vcc Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0mA Voltage Applied to Output in HIGH State (with Vcc=0V) -0.5V to Vcc Standard Output TRI-STATE Output -0.5V to +5.5VCurrent Applied to Output in LOW State (Max) twice the rated Iol(mA) ESD Last Passing Voltage (Min) 4000V Note 1: Absolute Maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial
Military

Supply Voltage
Military
Commercial

O C to +70 C
-55 C to +125 C

+4.5V to +5.5V
+4.5V to +5.5V

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

MN54F132-X REV 1A0

Electrical Characteristics

DC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, Temp range: -55C to 125C

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
IIH	Input High Current	VCC=5.5V, VM=2.7V, VINH=5.5V, VINL=0.0V	1, 3	INPUTS		20	uA	1, 2,
IBVI	Input High Current	VCC=5.5V, VM=7.0V, VINH=5.5V, VINL=0.0V	1, 3	INPUTS		100	uA	1, 2,
IIL	Input LOW Current	VCC=5.5V, VM=0.5V, VINH=5.5V	1, 3	INPUTS		-0.6	mA	1, 2,
VOL	Output LOW Voltage	VCC=4.5V, VIH=2.0V, IOL=20mA, VINH=5.5V	1, 3	OUTPUTS		0.5	V	1, 2,
VOH	Output HIGH Voltage	VCC=4.5V, VIL=0.7V, IOH=-1.0mA, VINH=5.5V	1, 3	OUTPUTS	2.5		V	1, 2,
IOS	Short Circuit Current	VCC=5.5V, VINL=0.0V, VM=0.0V, VINH=5.5V	1, 3	OUTPUTS	-60	-150	mA	1, 2,
VCD	Input Clamp Diode Voltage	VCC=4.5V, IM=-18mA, VINH=5.5V	1, 3	INPUTS		-1.2	V	1, 2,
ICCH	Supply Current	VCC=5.5V, VINL=0.0V	1, 3	VCC		17.0	mA	1, 2,
ICCL	Supply Current	VCC=5.5V, VINH=5.5V	1, 3	VCC		18.0	mA	1, 2,
VT+	Positive Going Threshold	VCC=5.0V	1, 3	INPUTS	1.45	2.0	V	1, 2,
VT-	Negative Going Threshold	VCC=5.0V	1, 3	INPUTS	0.7	1.05	V	1, 2,
ICEX	Output HIGH Leakage Current	VCC=5.0V, VINL=0.0V, VM=5.5V, VINH=5.5V	1, 3	OUTPUTS		250	uA	1, 2,

AC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns SEE AC FIGS

tpLH	Propagation Delay	VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C	2, 4	An/Bn to Ōn	4.0	11.0	ns	9
			2, 4	An/Bn to On	2.0	13.0	ns	10, 11
tpHL	Propagation Delay	VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C	2, 4	An/Bn to On	4.5	12.5	ns	9
			2, 4	An/Bn to On	4.5	16.0	ns	10, 11

Screen tested 100% on each device at +25C, +125C & -55C temperature, subgroups A1, 2, Note 1:

3, 7 & 8.

Screen tested 100% on each device at +25C temperature only, subgroup A9. Note 2:

Note 3:

Sample tested (Method 5005, Table 1) on each MFG. lot at +25C, +125C & -55C temperature, subgroups A1, 2, 3, 7 & 8.

Sample tested (Method 5005, Table 1) on each MFG. lot at +25C subgroup A9, and periodically at +125C & -55C temperature, subgroups 10 & 11. Note 4: