FAIRCHILD

SEMICONDUCTOR

74F112 Dual JK Negative Edge-Triggered Flip-Flop

General Description

The 74F112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on \overline{S}_D or \overline{C}_D prevents clocking and forces Q or \overline{Q} HIGH, respectively. Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

April 1988

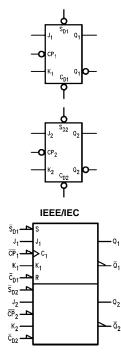
Revised September 2000

Asynchronous Inputs:

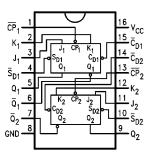
LOW input to \overline{S}_{D} sets Q to HIGH level

LOW input to \overline{C}_{D} sets Q to LOW level

Clear and Set are independent of clock


Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Ordering Code:


Order Number	Package Number	Package Description
74F112SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F112SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F112PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

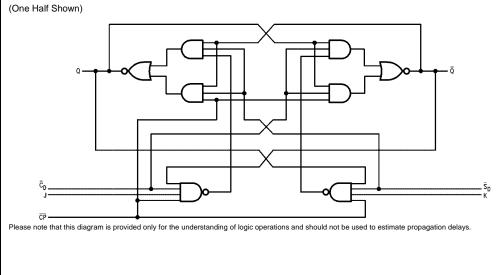
© 2000 Fairchild Semiconductor Corporation DS009472

74F112

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs (Active Falling Edge)	1.0/4.0	20 µA/–2.4 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/5.0	20 µA/–3.0 mA	
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/5.0	20 µA/–3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	-1 mA/20 mA	

Truth Table


	Inputs				Outputs		
SD	CD	СР	J	к	Q	Q	
L	Н	Х	Х	Х	Н	L	
н	L	Х	Х	Х	L	н	
L	L	Х	Х	Х	Н	н	
н	Н	~	h	h	\overline{Q}_0	Q_0	
н	Н	~	Ι	h	L	н	
н	Н	~	h	Ι	Н	L	
н	н	~	Ι	I	Q ₀	\overline{Q}_0	

H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial

 $\begin{array}{l} \sim \quad = \text{HIGH-to-LOW Clock Transition} \\ Q_0(\overline{Q}_0) = \text{Before HIGH-to-LOW Transition of Clock} \end{array}$

Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

-65°C to +150°C -55°C to +125°C $-55^{\circ}C$ to $+150^{\circ}C$ -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

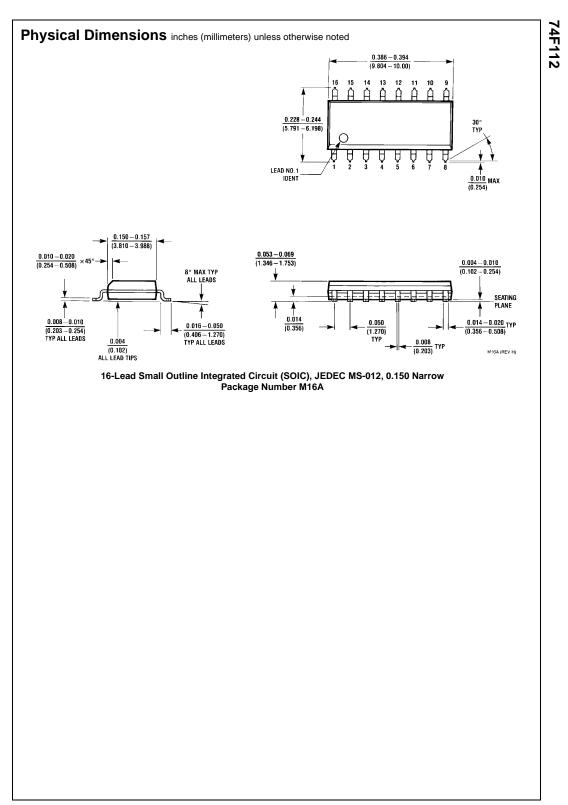
Recommended Operating Conditions

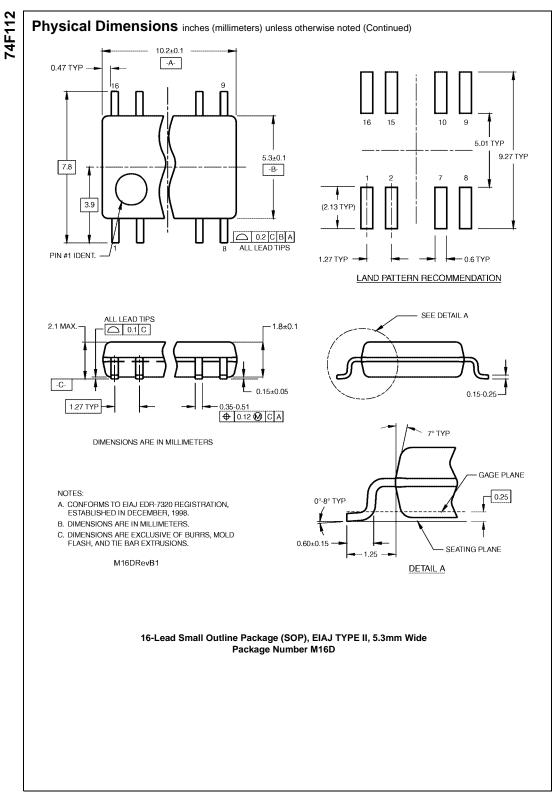
Free Air Ambient Temperature Supply Voltage

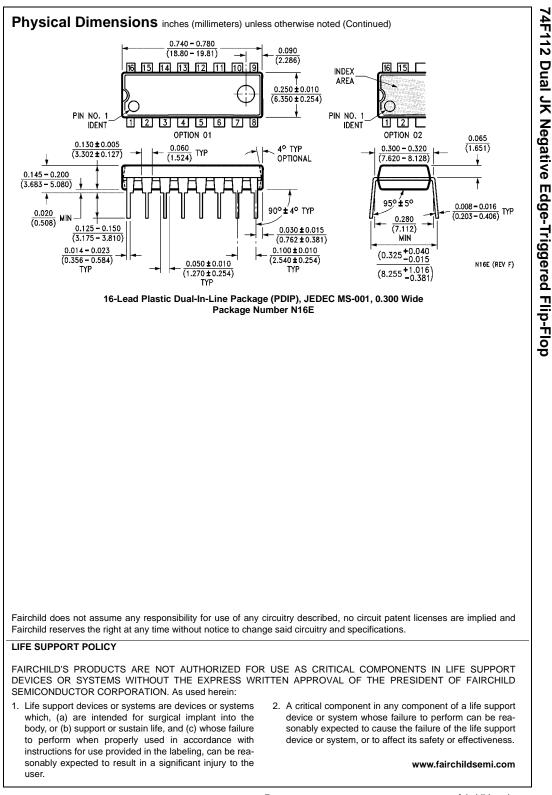
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V 74F112

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol Parameter Min V_{cc} Conditions Тур Max Units Input HIGH Voltage 2.0 V Recognized as a HIGH Signal VIH Input LOW Voltage 0.8 ٧ Recognized as a LOW Signal V_{IL} V_{CD} Input Clamp Diode Voltage -1.2 V Min $I_{IN} = -18 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ Output HIGH 10% V_{CC} 25 VOH V Min 5% V_{CC} Voltage 2.7 $I_{OH} = -1 \text{ mA}$ Output LOW 10% V_{CC} V_{OL} V 0.5 Min $I_{OL} = 20 \text{ mA}$ Voltage Ι_Η Input HIGH 5.0 μΑ Max $V_{IN} = 2.7V$ Current Input HIGH Current I_{BVI} 7.0 μA Max $V_{IN} = 7.0V$ Breakdown Test ICEX Output HIGH 50 μΑ Max $V_{OUT} = V_{CC}$ Leakage Current Input Leakage V_{ID} $I_{ID}=1.9\;\mu A$ 4.75 V 0.0 Test All other pins grounded Output Leakage $V_{IOD} = 150 \text{ mV}$ IOD 3.75 μΑ 0.0 Circuit Current All other pins grounded I_{IL} Input LOW Current -0.6 $V_{IN} = 0.5V (J_n, K_n)$ $V_{IN} = 0.5V \ (\overline{CP}_n)$ -2.4 mΑ Max $V_{IN} = 0.5V \ (\overline{C}_{Dn}, \ \overline{S}_{Dn})$ -3.0 Output Short-Circuit Current -60 -150 mΑ Max $V_{OUT} = 0V$ los $V_0 = HIGH$ Power Supply Current 12 19 mΑ Max I_{CCH} Power Supply Current $V_0 = LOW$ I_{CCL} 12 19 mΑ Max


Symbol			T _A = +25°C V _{CC} = +5.0V			$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$	
	Parameter		C _L = 50 pF		C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	85	105		80		MHz
t _{PLH}	Propagation Delay	2.0	5.0	6.5	2.0	7.5	ns
t _{PHL}	\overline{CP}_n to Q_n or \overline{Q}_n	2.0	5.0	6.5	2.0	7.5	
	Brown and the a Dialance	2.0	4.5	6.5	2.0	7.5	
t _{PLH}	Propagation Delay	2.0	4.0	0.0	2.0	1.0	ns

AC Operating Requirements

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^\circ C$ to +70°C $V_{CC} = +5.0V$		
		Min	Max	Min	Max	1	
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0			
t _S (L)	J _n or K _n to CP _n	3.0		3.5		ns	
t _H (H)	Hold Time, HIGH or LOW	0		0			
t _H (L)	J_n or K_n to \overline{CP}_n	0		0			
t _W (H)	CP Pulse Width	4.5		5.0			
t _W (L)	HIGH or LOW	4.5		5.0		ns	
t _W (L)	Pulse Width, LOW \overline{C}_{Dn} or \overline{S}_{Dn}	4.5		5.0		ns	
t _{REC}	Recovery Time $\overline{S}_{Dn}, \overline{C}_{Dn}$ to \overline{CP}	4.0		5.0		ns	

