	-								REVIS	IONS										
L 查 询"5	962-9	96791	01 Q Y	′C"供	应商	DESCR	RIPTIO	N					0		(R-MO-D)A)		APP	ROVE	2
																				•
REV	Τ																			
SHEET	55	56	57	58	59	60	61	62	63	64										
REV																				
SHEET	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
REV																				
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATUS				REV	/															
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					PARE															
				Tho	omas M	I. Hess						DEFE				NTER 110 4		MBU	5	
STA				CHE	CKED	BY									, = •		_			
MICRO			Т		omas M															
DR/	WIN	١G			001/27					MIC	800	IRCUI	יים ד		214			F18.4⊂7	ע אור	
THIS DRAWI			BLE		ROVEI nica L.		ng					SOR,								
FOR U DEPA	SE BY																			
AND AGE	NCIES	OF TH		DRA	WING		DVAL [16-10	DATE												
UEFARIME		UEFEN	IJE							SIZE	_					59	962	-967	791	
AMSC	N/A			REV	ISION	LEVEL					1	6	726	8	L					
										SHE	ET	1		OF	6	А				
				1								1			0	4				
DSCC FORM 22																				

M 9004708 0031680 951 MM

....

DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release distribution is unlimited.

5962-E186-97

....

Powered by ICminer.com Electronic-Library Service CopyRight 2003

1. SCOPE 查 这些56627967042016 beutensativo product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. 1.2 PIN. The PIN is as shown in the following example: 5962 96791 01 M X Х Federal RHA Device Device Case Lead stock class designator class type outline finish designator (see 1.2.1) (see 1.2.2) designator (see 1.2.4) (see 1.2.5) (see 1.2.3) V Drawing number 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: Device type Generic number **Circuit function** 01 320C80-50 Multimedia video processor 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows: **Device class** Device requirements documentation М Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A Q or V Certification and gualification to MIL-PRF-38535 1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: **Outline** letter Descriptive designator **Terminals** Package style P-CK х 305 Pin grid array Y (See figure 1) 320 1/ Ceramic quad flatpack with nonconductive tie bar 1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. 1/ This case outline contains capacitor pads located on top of the package. The terminals are referenced clockwise starting at the index corner. See Figure 2 for terminal values. SIZE STANDARD 5962-96791 Α **MICROCIRCUIT DRAWING** DEFENSE SUPPLY CENTER COLUMBUS **REVISION LEVEL** SHEET COLUMBUS, OHIO 43216 2 DSCC FORM 2234 **APR** 97

9004708 0031681 898 🛲

COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 3
STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS	SIZE A		5962-96791
2/ Values will be added when they become available.			1
1/ Stresses above the absolute maximum rating may cause maximum levels may degrade performance and affect re		age to the device. Extende	ed operation at the
(Unless otherwise indicated, copies of the specification, Standardization Document Order Desk, 700 Robbins Avenue,			able from the
MIL-HDBK-103 - List of Standard Microcircuit Dra MIL-HDBK-780 - Standard Microcircuit Drawings.	wings (SMD's).		
MILITARY			
HANDBOOKS			• .
MIL-STD-883 - Test Methods and Procedures for MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines.	r Microelectronics.		
MILITARY			
STANDARDS			
MIL-PRF-38535 - Integrated Circuits, Manufactur	ring, General Spec	cification for.	
MILITARY			
SPECIFICATION			
2.1 <u>Government specification, standards, and handbooks</u> . The of this drawing to the extent specified herein. Unless otherwis issue of the Department of Defense Index of Specifications an solitation.	e specified, the is	sues of these documents a	re those listed in the
2. APPLICABLE DOCUMENTS	_		
Fault coverage measurement of manufacturing logic tests (MIL-STD-883, test method 5012)	XX percent 2/		
Low level output current (I _{OL})	2 mA		
Case operating temperature range (T _C)	-400 μ Α	°C	
1.4 <u>Recommended operating conditions</u> . Supply voltage range (V _{DD}) Supply voltage range (V _{SS})	0 V dc to 0 V d	ic .	
Maximum power dissipation (P _D) Junction temperature (T _J)			
Case X	2°C/W		
Storage temperature range (T _{STG}) Thermal resistance, junction-to-case (θ _{IC})	55°C to +150	°C	
Supply voltage range (V _{DD}). 查询"56版记·级超40组码4 O _U 从应商 Output voltage range (V _{OUT})	-0.3 V dc to +	4.0 V dc 4.0 V dc	
1.3 <u>Absolute maximum ratings</u> . <u>1</u> / Supply voltage range (V _{DD})	-0.3 V do to +	4.0 V dc	

۰.

DSCC FORM 2234 APR 97

🔳 9004708 0031682 724 🖿

2.2 <u>Non-Government publications</u>. The following documents form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those listed in the issue of the DODISS cited in the Solicitation. Unless otherwise specified, the issues of documents not listed in the DODISS are the issues of the documents cited in the solicitation (see 6.2).

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Standard 1149.1 - IEEE Standard Test Access Port and Boundary Scan Architecture.

(Applications for copies should be addressed to the Institute of Electrical and Electrons Engineers, 445 Hoes Lane, Piscataway, NJ 08854-4150.)

(Non-Government standards and other publications are normally available from the organizations which prepare or distribute the documents. These documents also may be available in or through libraries or other informational services.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 Block diagram. The block diagram shall be as specified on figure 3.

3.2.4 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be as specified when available.

3.2.5 Boundary scan instruction code. For device 01 the boundary scan instruction codes shall be as specified on figure 5.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 4

DSCC FORM 2234 APR 97

9004708 0031683 660 🔳

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 105 (see MIL-PRF-38535, appendix A).

3.11 IEEE 1149.1 compliance. Device type 01 shall be compliant with IEEE 1149.1.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 5

DSCC FORM 2234 APR 97

90047080031684 ST7 🎟

本治115000-00704040		TABLE I. <u>Electrical perforr</u>	nance characte	eristics.			
─ <u>查询"5962=9679101C</u> 	们 C 1共加 Symbol		Group A	Device	L	imits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	subgroups	type	Min	Max	
High level input voltage	V _{IH}		1,2,3	All	2	V _{DD} +0.3	V
Low level input voltage	∨ _{IL}		1,2,3	All	-0.3	0.8	V
High level output voltage	V _{OH}	V _{DD} = min, I _{OH} = max	1,2,3	All	1.85		V
Low level output voltage	V _{OL}	V _{DD} = max, I _{OL} = max	1,2,3	All		0.9	V
Output current, leakage (high-impedance)	I _O	V _{DD} = max, V _O = 2.8 V	1,2,3	All		20	μΑ
(except EMU0, & EMU1)		V _{DD} = max, V _O = 0.6 V				-20	
Input current (except TCK, TDI, & TMS, TRST)	lı	V _I = V _{SS to} V _{DD}	1,2,3	Ali		±20	μA
Supply current <u>1</u> /	IDD	V _{DD} = max, 50 MHz	1,2,3	All		2.5	A
Input capacitance	C _I	See 4.4.1c	4	All		15	pF
Output capacitance	co	See 4.4.1c	4	All		15	pF
Functional test		See 4.4.1b	7,8	All			-
Period of CLKIN (t _H)	1	(t _{C(CKI)}	9,10,11	All	-10		ns
Pulse duration of CLKIN high	2		9,10,11	All	4.2		ns
Pulse duration of CLKIN low	3		9,10,11	All	4.2		ns
Transition time of CLKIN <u>2</u> /	4		9,10,11	All		1.5	ns
Period of CLKOUT	5		9,10,11	All	2t _{c(CKI)} <u>3</u> /		ns
Pulse duration of CLKOUT high	6		9,10,11	All	t _H -4.5		ns
Pulse duration of CLKOUT low	7		9,10,11	All	t _H -4.5		ns
Transition time of CLKOUT	8		9,10,11	All		2.5 <u>2</u> /	ns
Duration of RESET low	9	Initial reset during power-up	9,10,11	All	6t _H		ns
		Reset during active operation			6t _H		
See footnotes at end of tak	ole.		-				
MICROCI	STANDARD MICROCIRCUIT DRAWING		SIZE A			5962-	96791
DEFENSE SUPPL COLUMB	Y CENTER US, OHIO 4			REVISION	LEVEL	SHEET	6

9004708 0031685 433 📟

<u>查询"5962-9679101</u> Test	Symbol	Conditions <u>1</u> /	Group A	Device	- i	.imits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	subgroups	type	Min	Max	
Setup time of HREQ low to RESET high to configure self- bootstrap mode	10		9,10,11	Ail	4t _H		ns
Hold time FREQ low to RESET high to configure self- bootstrap mode	11		9,10,11	All	0		ns
Setup time of UTTME low to RESET high to configure big endian operation	12		9,10,11	Ali	^{4t} H		ns
Hold time UTTME low after RESET high to configure big endian operation	13		9,10,11	All	0		ns
Setup time, AS, BS, CT, PS, and UTTME valid to CLKOUT no longer low	14		9,10,11	All	8		ns
Hold time, AS, BS. CT, PS, and UTTME valid to CLKOUT high	15		9,10,11	All	2		ns
Access time, AS, BS, CT, PS, and UTTME valid after memory identification (A, STATUS) valid	16		9,10,11	All		3t _H -10	ns
Access time, RETRY, READY, FAULT valid after memory inden- tification (A, STATUS) valid	17		9,10,11	All		nt _H -8	ns
Setup time, RETRY, READY, FAOLT valid to CLKOUT no longer high	18		9,10,11	All	7.5		ns
Hold time, RETRY, READY, FAULT valid to CLKOUT low	19		9,10,11	All	1.2		ns
Access time RETRY, READY, valid from RAS low	20		9,10,11	Ali		nt _H -7.5	ns
Access time RETRY, READY, valid from RC low	21		9,10,11	All		nt _H -7.5	ns
ee footnotes at end of ta	ıble.						
	TANDARD	WING	SIZE A			5962	-96791
DEFENSE SUPP	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216	COLUMBUS		REVISION		SHEET	

🔳 9004708 0031686 37T 🔳

一查询"5962-9679101C Test	Symbol	Conditions <u>1</u> /	Group A	Device	Li	mits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	subgroups		Min	Max	
Access time, READY	22	2cyc/col accesses	9,10,11	All		t _H -12	ns
valid from CAS low		3cyc/col accesses				2t _H -8	
Hold time, CLKOUT high	23	D(63:0)	9,10,11	All	nt _H -5.6		ns
after output valid		A(31:0), STATUS(5:0), CAS/DQM(7:0), <u>4</u> /			nt _H -5.0		
		DBEN, DDTN DSF, RAS TRG/CAS ,W,RL			nt _H -4.3		
Hold time, CLKOUT low	24	D(63:0)	9,10,11	All	nt _H -5.6		ns
after output valid		A(31:0), STATUS(5:0), CAS/DQM(7:0), <u>4</u> /			nt _H -5.0		
		DBEN, DDTN DSF, RAS TRG/CAS ,W, RT			nt _H -4.3		
Hold time, output valid after CLKOUT low	25		9,10,11	All	nt _H -5.5		ns
Hold time, output valid after CLKOUT high	26		9,10,11	All	nt _H -5.0		ns
Hold time, output valid after output valid	27	D(63:0)	9,10,11	All	nt _H -6.5		ns
		A(31:0), STATUS(5:0), CAS/DQM(7:0), <u>4</u> /	9,10,11		nt _H -6.0		
		DBEN, DDTN DSF, RAS TRG/CAS ,W, RL	9,10,11		nt _H -5.0		
Delay time, CLKOUT no	28	D(63:0)	9,10,11	All		nt _H +6.5	ns
longer low to output valid		A(31:0), STATUS(5:0), CAS/DQM(7:0), <u>4</u> /				nt _H +5.5]
		DBEN, DDTN DSF, RAS TRG/CAS ,W, RL				nt _H +5	
Delay time, CLKOUT no	29	D(63:0)	9,10,11	All		nt _H +6.5	.ns
longer high to output valid		A(31:0), STATUS(5:0), CAS/DQM(7:0), RT <u>4</u> /]			nt _H +5.5]
		DBEN, DDTN DSF, RAS TRG/CAS ,W, RL]			nt _H +5	
See footnotes at end of tab	ble.						
		WING	SIZE A		- <i></i>	5962-	96791
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		COLUMBUS		REVISION L	EVEL	SHEET	

APR 97

9004708 0031687 206 🔳

查询"5062_06701010		LE I. <u>Electrical performa</u> 商	nce ch	aracteristics	- Continued.			
Test	Symbol	Conditions <u>1</u> /		Group A		L	imits	Unit
		-55°C ≤ T _C ≤ +125° unless otherwise speci	fied	subgroups	s type	Min	Max	1
Delay time, output no longer valid to CLKOUT high	30			9,10,11	All		nt _H +5.0	ns
Delay time, output no longer valid to CLKOUT low	31			9,10,11	All		nt _H +5.5	ns
Delay time, output no longer valid to output valid	32	D(63:0)		9,10,11	All		nt _H +6.5	ns
		A(31:0), STATUS(5:0), CAS/DQM(7:0), <u>4</u> /					nt _H +6.0	
		DBEN, DDTN DSF, 1 TRG/CAS, W, RL	RAS				nt _H +5	
Pulse width, output	33	D(63:0)		9,10,11	All	nt _H -6.5		ns
valid		A(31:0), STATUS(5:0), CAS/DQM(7:0), <u>4</u> /				nt _H -6.0		
		DBEN, DDTN DSF, 1 TRG/CAS ,W, RL	RAS			nt _H -5.0		
Access time, CLKOUT high to D(63:0) valid	34			9,10,11	All		nt _H -5.3	ns
Access time, CLKOUT low to D(63:0) valid	35			9,10,11	All		nt _H -6.5	ns
Setup time, D(63:0) valid to CLKOUT no longer low	36			9,10,11	All	6.1		ns
Setup time, D(63:0) valid to CLKOUT no longer high	37		-	9,10,11	All	6.1		ns
Hold time, D(63:0) valid to CLKOUT no longer low	38			9,10,11	All	2		ns
Hold time, D(63:0) valid to CLKOUT no longer high	39			9,10,11	All	2		ns
Access time, output valid to D(63:0) inputs valid	40	A(31:0), STATUS(5:0), CAS/DQM(7:0) <u>4</u> /, RL		9,10,11	All		nt _H -7	ns
		DBEN, DDTN DSF, F TRG/CAS ,W	RAS				nt _H -6.5	
Hold time, D(63:0) valid after output valid	41 <u>5</u> /	RAS, CAS/DQM(7:0)		9,10,11	All	3		ns
		A(31:0)				3		
See footnotes at end of ta	ble.							
MICROCI	STANDARD MICROCIRCUIT DRAWING			SIZE A			5962-	96791
	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216				REVISION L	.EVEL	SHEET	9

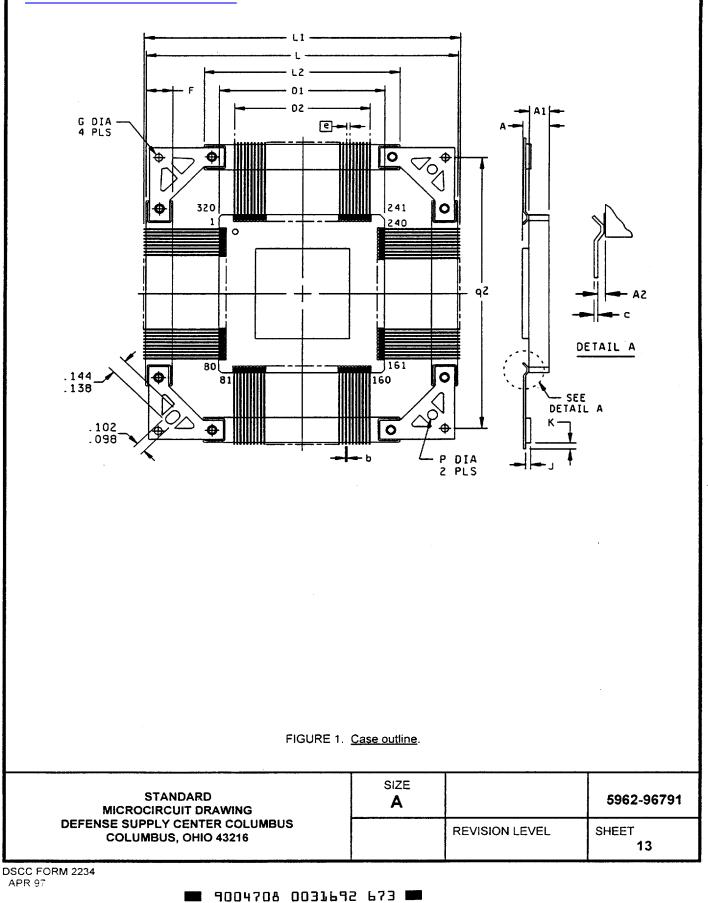
· -- - · ----

...

M 9004708 0031688 142 페

		LE I. Electrical performanc	e characteristics	- Continued.			
查询"5962-9679101C Test	ừ ℃"供应 │ Symbol	Conditions 1/	Group A		Li	imits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specifie	ed subgroup	s type	Min	Max	1
Pulse duration, CAS/DQM high	42		9,10,11	All	t _H -2		ns
Pulse duration, CAS/DQM low	43		9,10,11	All	3t _H -9.5		ns
Hold time, CAS/DQM high after output	44	D(63:0)	9,10,11	Ali	nt _H -4.5		ns
valid		A(31:0), STATUS(5:0), CAS/DQM(7:0),			nt _H -4.0		
		DBEN, DDTN DSF, RA TRG/CAS, W, RL	45		nt _H -3.0		
Hold time, output valid CAS/DQM low	45		9,10,11	All	nt _H -9.5		ns
Access time, data valid from CAS/DQM low	46		9,10,11	All		3t _H -12	ns
Hold time, data valid after CAS/DQM high	47		9,10,11	All	2		ns
Pulse duration, EINTx low <u>7</u> /	48	<u>6</u> /	9,10,11	All	6		ns
Setup time, EINTx high before CLKOUT no longer low <u>8</u> /	49	<u>6</u> /	9,10,11	All	9.5		ns .
Pulse duration, EINTx high <u>7</u> /	50	<u>6</u> /	9,10,11	All	6		ns
Setup time, <u>LTNTx</u> low before CLKOUT no longer high <u>8</u> /	51	<u>6</u> /	9,10,11	All	9.5		ns
Pulse duration, XPTx valid <u>9</u> /	52		9,10,11	All	12t _H		ns
Setup time, XPT (2:0) valid before CLKOUT no longer low <u>10</u> /	53		9,10,11	All	12		ns
Hold time, XPT(2:0) valid after CLKOUT high	54		9,10,11	All	5		ns
Hold time, XPT (2:0) valid after RL low <u>11</u> /	55		9,10,11	All		6t _H	ns
Setup time REQ1 - REQ0 valid to CLKOUT no longer low	56		9,10,11	All	t _H -7		ns
Hold time, REQ(1:0) valid after CLKOUT high	57		9,10,11	All	t _H -7		ns
Hold time, HACK high after HREQ low <u>9</u> /	58		9,10,11	All	4t _H -12		ns
See footnotes at end of tal	ble.						
_	ANDARD	WING	SIZE A			5962-	96791
	MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216			REVISION L	.EVEL	SHEET	0

9004708 0031689 089 🖿


	TAE	BLE I. Electrical performance of	haracteristics -	Continued.			
查询"5962-9679101C	コ Y Cymbol	亿日 Conditions 1/	Group A	Device	Li	mits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	subgroups	type	Min	Max	
Delay time, HACK low to output hi-z 7/	59	All signals except D(63:0)	9,10,11	All		1	ns
		D(63:0)				1	
Delay time, HREQ high to HACK no longer low	60		9,10,11	All		10	ns
Delay time, HACK high to outputs driven <u>9</u> /	61		9,10,11	All	6t _H		ns
Setup time, HREQ low to CLKOUT no longer low	62		9,10,11	All	8.5		ns
SCLK period	63		9,10,11	All	13		ns
Pulse width, SCLK high	64		9,10,11	All	5		ns
Pulse width, SCLK low	65		9,10,11	All	5		ns
Transition time, SCLK (rise and fall) <u>2</u> /	66		9,10,11	All		2	ns
FCLK period	67		9,10,11	Ali	25		ns
Pulse width, FCLK high	68		9,10,11	All	8		ns
Pulse width, FCLK low	69		9,10,11	All	8		ns
Transition time, FCLK (rise and fall) <u>2</u> /	70		9,10,11	All		2	ns
Hold time, HSYNC, VSYNC, CSYNC/HBLNK CBLNK/VBLNK or CAREA high after FCLK low	71		9,10,11	All	0		ns
Hold time, HSYNC, VSYNC, CSYNC/HBLNK CBLNK/VBLNK or CAREA low after FCLK low	72		9,10,11	All	0		ns
Delay time, FCLK low to HSYNC, VSYNC, CSYNC/HELNK CELNK/VELNK or CAREA low	73		9,10,11	All		20	ns
Delay time, FCLK low to HSYNC, VSYNC, CSYNC/HBLNK CBLNK/VBLNK or CAREA high	74		9,10,11	All		20	ns
See footnotes at end of ta	ble.			-			
	STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		SIZE A			5962	96791
DEFENSE SUPP				REVISION	EVEL	SHEET	11

■ 9004708 0031690 8TO ■

ETB: 19/9962/96/79101CHYC 18/miles Conditions 1/ subgroups Group A subgroups Device Processor Limits Unit Setue time, FEYNEC VEYNEC or CSYNC by a FCLK no longer (on 12/2) 75 9,10,11 All 5 ns Hold time, FEYNEC VEYNEC or CSYNC by a FCLK no longer (on 12/2) 76 9,10,11 All 7 ns Setue time, FEYNEC VEYNEC or CSYNC by a fCLK no longer (on 12/2) 76 9,10,11 All 7 ns Setue time, FEYNEC VEYNEC or CSYNC by after FCLK high 12/2 77 9,10,11 All 7 ns Setue time, HEYNEC VEYNEC or CSYNC by after FCLK high 15/2 78 9,10,11 All 7 ns JTAG JTAG JTAG		TABLE I.	Electrical performance cha	aracteristics - C	ontinued.			
Setue time. HSYNC VSNNC or CSYNC bio by FCLK notaget tow 12 75 9.10.11 All 5 ne Heid time. HSYNC VSNNC or CSYNC bio after FCLK high 12 76 9.10.11 All 7 ne Heid time. HSYNC VSNNC or CSYNC bio after FCLK high 12 76 9.10.11 All 7 ne VSNNC or CSYNC bio to FCLK hologet low 13 77 9.10.11 All 7 ne VSNNC or CSYNC bio to FCLK hologet low 14 9.10.11 All 7 ne Hold time. HSYNC WSNC or CSYNC bio to FCLK high 12 78 9.10.11 All 7 ne Hold time. HSYNC WSNC or CSYNC bio to FCLK high 12 JACG 9.10.11 All 20 ns TMS/TDI beld from TCK high to FCLK high 12 JACG 9.10.11 All 30 ns 1/ Unless otherwise specified. at lesting to be performed using worst-case test conditions. Lip is one half of the output period. or equal to the input clock (parameter 1). C _{CCK} is equal to parameter 1. AC timing waveforms are as specified in figure 4. Standard file 1/ Unless otherwise specified an standard by the output period. or SAS, CASTOM(70) and A(31:0) transitions that cocur on CLKOUT edge coincident with input data standard by logic and is not	查询"5962-9679101QYC Test	供应商 Symbol	Conditions 1/	Group A		L	imits	Unit
VSYNC or CSYNC low be FCLK notoger tow 12 Image: Comparison of the compari			unless otherwise specifie	d	s type	Min	Max	1
VSYNC or CSYNC ing and the second	VSYNC. or CSYNC low	75		9,10,11	All	5		ns
VSYNC, or CSYNC high 78 9,10,11 All 7 ns JTAG TMS/TDI setup to TCK high 1/2 9,10,11 All 7 ns JTAG TMS/TDI setup to TCK high 1/2 9,10,11 All 20 ns TMS/TDI setup to TCK high 1/2 9,10,11 All 1/2 ns TMS/TDI setup to TCK high 1/2 9,10,11 All 1/2 ns TCK low to TDO valid 1/2 9,10,11 All 1/2 30 ns 1/2 Unless otherwise specified, all testing to be performed using worst-case test conditions. 1/4 1/2 is one half of the output period or equal to the input clock (parameter 1/2, tock(parameter 1/2, tock(parametar 1/2, tock(parameter 1/2, tock(parametar 1/2, tock(pa	VSYNC, or CSYNC high	76		9,10,11	All	7		ns
JTAG JTAG TMS/TDI setup to TCK high t_gu 9.10,11 All 20 ns TMS/TDI setup to TCK high t_gu 9.10,11 All 20 ns TMS/TDI hold from TCK high t_gu 9.10,11 All 30 ns TCK low to TDO valid t_gu 9.10,11 All 30 ns JUless otherwise specified, all testing to be performed using worst-case test conditions. t_g is one half of the output period, or equal to the input clock (parameter) t. t_c(CK) is equal to parameter 1. AC timing wareforms are as specified in figure 4. This parameter is serified by computer simulation and is not tested. This parameter is guaranteed by characterization and is not tested. This parameter must only be met to ensure that interrupt is recognized on the indicated cycle. This parameter must only be met to ensure that input is recognized as low at PCLK edge D. This parameter must only be met to ensure that input is recognized as low at PCLK edge D. This parameter must only be met to ensure the input is recognized as low at PCLK edge D. This parameter must only be met to ensure the input is recognized as low at PCLK edge D. This paramete	VSYNC, or CSYNC high	77		9,10,11	All	5		ns
TMS/TDI setup to TCK high tsu 9, 10, 11 All 20 ns TMS/TDI hold from TCK high th 9, 10, 11 All 15 ns TCK low to TDO valid th 9, 10, 11 All 15 ns 1 Unless otherwise specified all testing to be performed using worst-case lest conditions. It is one half of the output period, or equal to the input clock (parameter 1). to(CKI) is equal to parameter 1. AC timing waveforms are as specified as 2th. 2 This parameter is verified by computer simulation and is not tested. 14 15 16 2 Applies to RAS, CASDOM(7:0) aduing nonuser-timed 2 cycle/column accesses. 2th. 2th. 2th. 2 Applies to RAS, CASDOM(7:0) aduing nonuser-timed 2 cycle/column accesses. 2th. 2th. 2th. 3 Applies to RAS, CASDOM(7:0) aduing nonuser-timed 2 cycle/column accesses. 2th. 2th. 4 Probles to RAS, CASDOM(7:0) aduing nonuser-timed to inducted by the interrupt service routine. 10 11 11 12 4 This parameter must only be met to ensure that the interrupt is recognized on the indicated cycle. 11 11 12 11 12 10 This parameter must only be met to ensure the input is recognized as low at FCLK edge A. 12 12 12 12 12 <td>Hold time, HSYNC, VSYNC, or CSYNC low after FCLK high <u>15</u>/</td> <td>78</td> <td></td> <td>9,10,11</td> <td>All</td> <td>7</td> <td></td> <td>ns</td>	Hold time, HSYNC, VSYNC, or CSYNC low after FCLK high <u>15</u> /	78		9,10,11	All	7		ns
TMS/TDI hold from TCK high th 9, 10, 11 All 15 ns TCK low to TDO valid th 9, 10, 11 All 15 ns 1/ Unless otherwise specified, all testing to be performed using worst-case test conditions. tu is one half of the output period, or equal to the input clock (parameter 1). t _{Cl(CN)} is equal to parameter 1. AC timing waveforms as specified in figure 4. 2/ This is a functional minimum and is not tested. 9, 10, 11 All 30 ns 2/ This is a functional minimum and is not tested. 9, 10, 11 All 30 ns 2/ This is a functional minimum and is not tested. 9, 10, 11 All 30 ns 3/ This parameter is guaranteed by characterization and is not tested. 9 10, 11 All 30 ns 3/ This parameter must only be met to ensure that the interrupt is recognized on the indicated cycle. 17 10 11 11 11 10 10 3/ This parameter must only be met to ensure that the XPT input is recognized on the indicated cycle. 17 17 16 16 16 16 3/ This parameter must only be met to ensure that the XPT input is recognized as tow at FCLK edge A. 17 17 18 18 16 18 3/ This parameter must only be met to ensure the input is recognized as low at FCLK edge A. 14 14 1			JTAG					
TCK low to TDO valid 1/2 9, 10, 11 All 30 ns 1 ¹ Unless otherwise specified, all testing to be performed using worst-case test conditions. 1, is one half of the output period, or equal to the upt clock (parameter 1). t _{C(CK)}) is equal to parameter 1. AC timing waveforms are as specified in giner 4. 2 ¹ This parameter is verified by computer simulation and is not tested. 30 ns 3 ¹ This parameter is verified by computer simulation and is not tested. 31 32 ns 3 ¹ Applies to RAS, CAS/DOM(7:0) during nonuser-timed 2 cycle/column accesses. Applies to RAS, CAS/DOM(7:0) and A(31:0) transitions that occur on CLKOUT edge coincident with input data sampling. 31 3 ¹ Applies to RAS, CAS/DOM(7:0) and A(31:0) transitions that occur on CLKOUT edge coincident with input data sampling. 31 3 ¹ This parameter rust only be met to ensure that the interrupt is recognized on the indicated cycle. 31 3 ¹ This parameter must only be met to ensure that a coron XPT request does not occur. This parameter is a functional minimum guaranteed by logic and is not tested. 31 3 ¹ This parameter must only be met to ensure that a coronorized as low at FCLK edge A. 31 3 ¹ This parameter must only be met to ensure that input is recognized as low at FCLK edge D. 31 3 ¹ This parameter must only be met to ensure the input is recognized as low at FCLK edge D. 31 3 ¹ This parameter must only be met to ensure the input is recognized as low at FCLK edge C. 31 <t< td=""><td>TMS/TDI setup to TCK high</td><td>t_{su}</td><td></td><td>9, 10, 11</td><td>All</td><td>20</td><td></td><td>ns</td></t<>	TMS/TDI setup to TCK high	t _{su}		9, 10, 11	All	20		ns
1 Unless otherwise specified, all testing to be performed using worst-case test conditions. t _u is one half of the output period, or equal to the put clock (parameter 1), t _{C(CK)}) is equal to parameter 1. AC timing waveforms are as specified in given 4. 2 This is a functional minimum and is not tested. 3 This is a functional minimum and is not tested. 4 Except for (AS/DOM(7:0) during nonuser-timed 2 cycle/column accesses. 3 Applies to RAS, CAS/DOM(7:0) and A(31:0) transitions that occur on CLKOUT edge coincident with input data sampling. 6 In order to guarantee recognition. LINT4 must remain low until cleared by the interrupt service routine. 7 This parameter rust only be met to ensure that the interrupt is recognized on the indicated cycle. 9 This parameter must only be met to ensure that the XPT input is recognized on the indicated cycle. 10 This parameter must only be met to ensure that a second XPT request does not occur. This parameter is a functional maximum guaranteed by logic and is not tested. 11 This parameter must only be met to ensure the input is recognized as low at FCLK edge A. 12 This parameter must only be met to ensure the input is recognized as low at FCLK edge A. 13 This parameter must only be met to ensure the input is recognized as low at FCLK edge D. 14 This parameter must only be met to ensure the input is recognized as low at FCLK edge C.	TMS/TDI hold from TCK high	t _h		9, 10, 11	All	15		ns
Output period, or equal to the input clock (parameter 1). t _{C(CKI)} is equal to parameter 1. AC timing waveforms are as specified in giver 4. 27 This parameter is verified by computer simulation and is not tested. 37 This is a functional minimum and is not tested. 38 Applies to RAS, CAS/DOM(7:0) during nonuser-timed 2 cycle/column accesses. 39 Applies to RAS, CAS/DOM(7:0) during nonuser-timed 2 cycle/column accesses. 39 In order to guarantee recognition, LINT4 must remain low until cleared by the interrupt service routine. 30 This parameter rus to roly be met to ensure that the interrupt is recognized on the indicated cycle. 30 This parameter must only be met to ensure that the interrupt is recognized on the indicated cycle. 30 This parameter must only be met to ensure that the XPT input is recognized on the indicated cycle. 31 This parameter must only be met to ensure the input is recognized as low at FCLK edge 8. 32 This parameter must only be met to ensure the input is recognized as low at FCLK edge 0. 32 This parameter must only be met to ensure the input is recognized as low at FCLK edge 0. 33 This parameter must only be met to ensure the input is recognized as low at FCLK edge 0. 34 This parameter must only be met to ensure the input is recognized as low at FCLK edge 0. 35 This parameter must only be met to ensure the input is recognized as low at FCLK edge 0. 36 This parameter must only be met to ensure the input is recognized as low at FCLK edge 0.	TCK low to TDO valid	t _a		9, 10, 11	All		30	ns
STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216A5962-96791REVISION LEVEL 12SHEET 12	 6/ In order to guarantee recogn 7/ This parameter is guarantee 8/ This parameter must only be 9/ This parameter must only be 10/ This parameter must only be 11/ This parameter must be me maximum guaranteed by log 12/ This parameter must only b 13/ This parameter must only b 14/ This parameter must only b 	ed by charace e met to ensure al minimum e met to ensure ic and is no e met to en e met to en e met to en	cterization and is not tested sure that the interrupt is rec guaranteed by logic and is sure that the XPT input is r that a second XPT request t tested. sure the input is recognized sure the input is recognized sure the input is recognized	ognized on the not tested. ecognized on th does not occur d as low at FCL d as low at FCL d as low at FCL	indicated cy ne indicated r. This parar K edge B. K edge A. K edge D.	cle. cycle.		21
	MICROCIRCUI	T DRAWIN	G	Α				
NETTER (1917) A		OHIO 4321	6				SHEE	

9004708 0031691 737 🔜

· · ·····

查询"5962-9679101	പ്പെന്ന	र्फ्स Millin	neters	Inc	hes
111 3302-3073 01		Min	Max	Min	Max
	А		4.55		0.179
	A1		4.00		0.157
	A2	0.05	0.35	0.002	0.013
	b	0.18	0.25	0.007	0.010
	с	0.10	0.20	0.004	0.008
	D1	43.56	44.44	1.714	1.749
	D2	39.50	BSC	1.555	BSC
	е	0.50	BSC	0.019	BSC
	F	4.50	5.50	0.177	0.216
	G	1.45	1.55	0.057	0.061
	J	0.75	1.05	0.029	0.041
	к		0.50		0.019
	L	74.60	75.40	2.937	2.968
	L1	74.85	76.40	2.946	3.007
	Р	2.50	2.60	0.098	0.102
	q2	70.00	BSC	2.755	BSC

FIGURE 1. Case outline - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 14

DSCC FORM 2234 APR 97

🔳 9004708 0031693 50T 📟

Device type 查询"59	01 6 <u>2-9679101QYC</u>	Device	01	Device type	01	Device type	01
Case outline	×	Case outline	x	Case outline	×	Case outline	×
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
A5	CT1	C3	V _{SS}	D32	V _{DD}	F26	v _{ss}
A7	V _{DD}	C5	STATUS3	D34	VSYNCO	F28	V _{DD}
A9	HACK	C7	AS2	E1	AS1	F32	v _{ss}
A11	v _{ss}	C9	v _{ss}	E3	FAULT	F34	V _{DD}
A13	CAS7	C11	СТО	E5	V _{SS}	G1	V _{DD}
A15	CAS5	C13	PS2	E7	STATUS2	G3	A2
A17	V _{DD}	C15	V _{DD}	E9	READY	G5	A1
A19	V _{SS}	C17	CLKIN	E11	BS0	G31	EINT2
A21	RAS	C19	CAS2	E13	V _{SS}	G33	CBLNK1/VBLNK1
A23	DSF	C21	V _{DD}	E15	HREQ	G35	V _{DD}
A25	V _{SS}	C23	Ŵ	E17	CAS4	H2	STATUS0
A27	SCLK1	C25	DBEN	E19	RL	H4	A3
A29	V _{DD}	C27	V _{SS}	E21	STATUS5	H32	CSYNC1/HBLNK1
A31	EINT1	C29	CAREA0	E23	V _{SS}	H34	TD1
B2	NC	C31	CBLNKO/VBLNKO	E25	CLKOUT	_ J1	STATUS1
B4	BS1	D2	RETRY	E27	LINT4	J3	V _{SS}
B6	V _{DD}	D4	V _{DD}	E29	EINT3	J5	V _{DD}
B8	PS1	D6	V _{SS}	E31	V _{SS}	J31	V _{DD}
B10	REQ1	D8	AS0	E33	HSYNCO	J33	V _{SS}
B12	V _{DD}	D10	UTIME	E35	тск	J35	EMU1
B14	CASE	D12	V _{SS}	F2	V _{DD}	K2	STATUS4
B16	CAS3	D14	RESET	F4	V _{SS}	К4	· A6
B18	V. _{DD}	D16	REQ0	F10	V _{DD}	K32	VSYNC1
B20	CAS1	D18	V _{SS}	F12	V _{SS}	K34	HSYNC1
B22	TRG	D20	CASO	F14	PS0	L1	AO
B24	V _{DD}	D22	FCLK1	F16	V _{SS}	L3	A7
B26	DDIN	D24	V _{SS}	F18	CT2	L5	V _{SS}
B28	FCLK0	D26	CAREA1	F20	V _{DD}	L31	V _{SS}
B30	V _{DD}	D28	SCLK0	F22	V _{SS}	L33	TRST
B32	CSYNC0/HBLNK0	D30	v _{ss}	F24	V _{DD}	L35	XPT1
			FIGURE 2. Term	ninal connect	ions.	- 4	
	STAND MICROCIRCUI		G	SIZE A			5962-9679
DE	FENSE SUPPLY CE COLUMBUS, (REVISION	LEVEL	SHEET 15

.

DSCC FORM 223 APR 97

■ 9004708 0031694 446 **■**

Device type 查词"59(01 2-9679101QY ×	Device type C ^{III} /小业商 Case outline	01	Device type	01	Device type	01
Case outline	×	Case outline	X	Case outline	X	Case outline	X
Terminal number	Terminal symbol	Terminał number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
M2	V _{DD}	V2	V _{DD}	AD2	V _{DD}	AK2	V _{DD}
M4	V _{SS}	V4	v _{ss}	AD4	v _{ss}	AK4	v _{ss}
M32	V _{SS}	V32	v _{ss}	AD32	V _{SS}	AK8	V _{DD}
M34	V _{DD}	V34	V _{DD}	AD34	V _{DD}	AK10	V _{SS}
N1	V _{DD}	W 1	A11	AE1	A15	AK12	V _{DD}
N3	A8	W3	A18	AE3	A26	AK14	V _{SS}
N5	v _{ss}	W5	V _{SS}	AE5	v _{ss}	AK16	V _{DD}
N31	v _{ss}	W 31	V _{SS}	AE31	v _{ss}	AK18	NC
N33	TMS	W33	D59	AE33	D51	AK20	v _{ss}
N35	V _{DD}	W35	D63	AE35	D58	AK22	D27
P2	A4	Y2	A12	AF2	A17	AK24	V _{DD}
P4	A9	¥4	A19	AF4	A28	AK26	v _{ss}
P32	TDO	Y32	XPT2	AF32	D46	AK28	V _{DD}
P34	סוינוג	Y34	D56	AF34	D49	AK32	V _{SS}
R1	∨ _{ss}	AA1	V _{SS}	AG1	A16	AK34	V _{DD}
R3	V _{DD}	AA3	V _{DD}	AG3	V _{SS}	AL1	A23
R5	V _{DD}	AA5	V _{DD}	AG5	V _{DD}	AL3	A25
R31	V _{DD}	AA31	V _{DD}	AG31	V _{DD}	AL5	V _{SS}
R33	V _{DD}	AA33	V _{DD}	AG33	V _{SS}	AL7	D3
R35	v _{ss}	AA35	v _{ss}	AG35	D57	AL9	D4
T2	A5	AB2	A14	AH2	A20	AL11	D10
T4	A13	AB4	A21	AH4	A30	AL13	. V _{SS}
T32	D62	AB32	D55	AH32	D44	AL15	D16
T34	EMU0	AB34	D60	AH34	D54	AL17	D20
U1	V _{DD}	AC1	V _{DD}	AJ1	V _{DD}	AL19	D21
U3	A10	AC3	A22	AJ3	A31	AL21	D24
U5	P53	AC5	V _{SS}	AJ5	v _{ss}	AL23	v _{ss}
U31	NC	AC31	V _{SS}	AJ31	V _{SS}	AL25	D29
U33	D61	AC33	D52	AJ33	D42	AL27	D32
U35	V _{DD}	AC35	V _{DD}	AJ35	V _{DD}	AL29	D38
		FIC	SURE 2. <u>Termin</u>	al connection -	Continued.		
		IDARD JIT DRAWING)	SIZE A			5962-9679
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216					REVISION	I LEVEL	SHEET 16

9004708 0031695 382 📖

查询"5962-9		01 C"供应商	Device type	01	Device type	01	
	Case outline	X	Case outline	x	Case outline	х	
	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	
	AL31	v _{ss}	AN25	D37	AR25	V _{SS}	
	AL33	D48	AN27	V _{SS}	AR27	D40	
	AL35	D53	AN29	D35	AR29	V _{DD}	
	AM2	A24	AN31	D45	AR31	D43	
	AM4	V _{DD}	AN33	V _{DD}			
	AM6	v _{ss}	AP4	A27	Top Side	Capacitor Pads	
	AM8	D2	AP6	V _{DD}	CP1	$v_{\rm SSD} v_{\rm DDD}$	
	AM10	D6	AP8	D5	CP2	V _{SSI} V _{DDI}	
	AM12	V _{DD}	AP10	D8	CP3	V _{DDD} V _{SSD}	
	AM14	D14	AP12	V _{DD}	CP4	V _{DDC} V _{SSC}	
	AM16	D19	AP14	D13	CP5	V _{DDD} V _{SSD}	
	AM18	V _{SS}	AP16	D17	CP6	V _{DDI} V _{SSI}	
	AM20	D23	AP18	V _{DD}	CP7	$v_{SSD} v_{DDD}$	
	AM22	D25	AP20	D26	CP8	V _{SSI} V _{DDI}	
	AM24	V _{SS}	AP22	D34			· ·
	AM26	D31	AP24	V _{DD}			
	AM28	D33	AP26	D39			
	AM30	V _{SS}	AP28	D41			
	AM32	V _{DD}	AP30	V _{DD}			
	AM34	D50	AP32	D47			
	AN5	A29	AR5	D0			
	AN7	D1	AR7	V _{DD}			
	AN9	V _{SS}	AR9	D7		· · · · · · · · · · · · · · · · · · ·	
	AN11	D9	AR11	v _{ss}			
	AN13	D12	AR13	D11			
	AN15	V _{DD}	AR15	D15			
	AN17	D18	AR17	v _{ss}			
	AN19	D22	AR19	V _{DD}			
	AN21	V _{DD}	AR21	D30			_
	AN23	D28	AR23	D36			
	·····	FIGU	RE 2. <u>Termin</u> :	al connection - Co	ontinued.		
N	STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216						5962-96791
					REVISIO	N LEVEL	SHEET 17
DSCC FORM 2234							

.

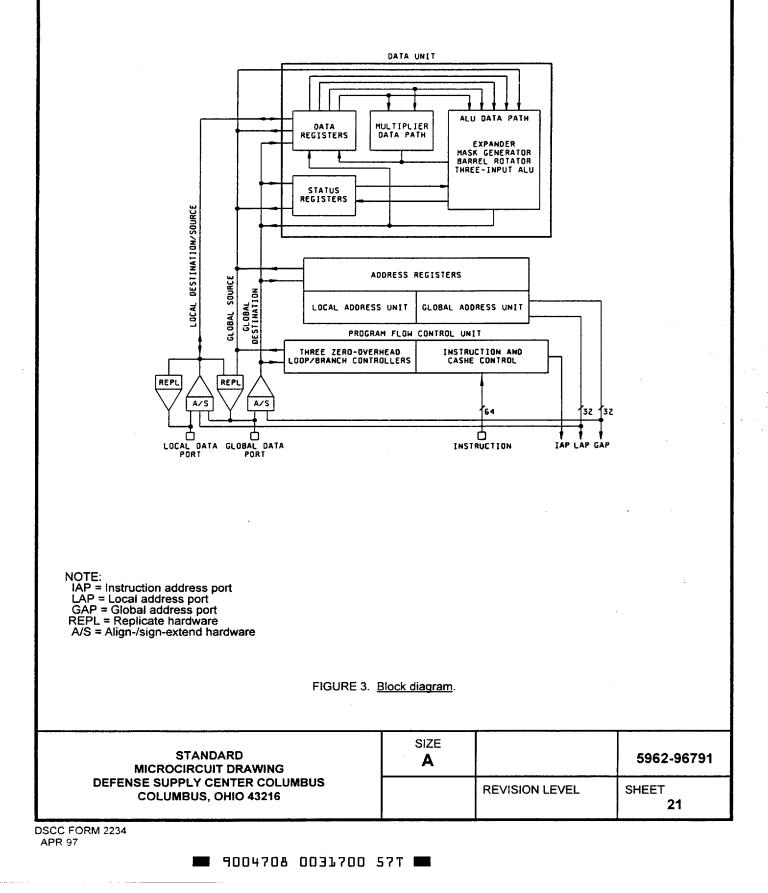
DSCC FORM 2234 APR 97

· 🔜 9004708 0031696 219 🔜

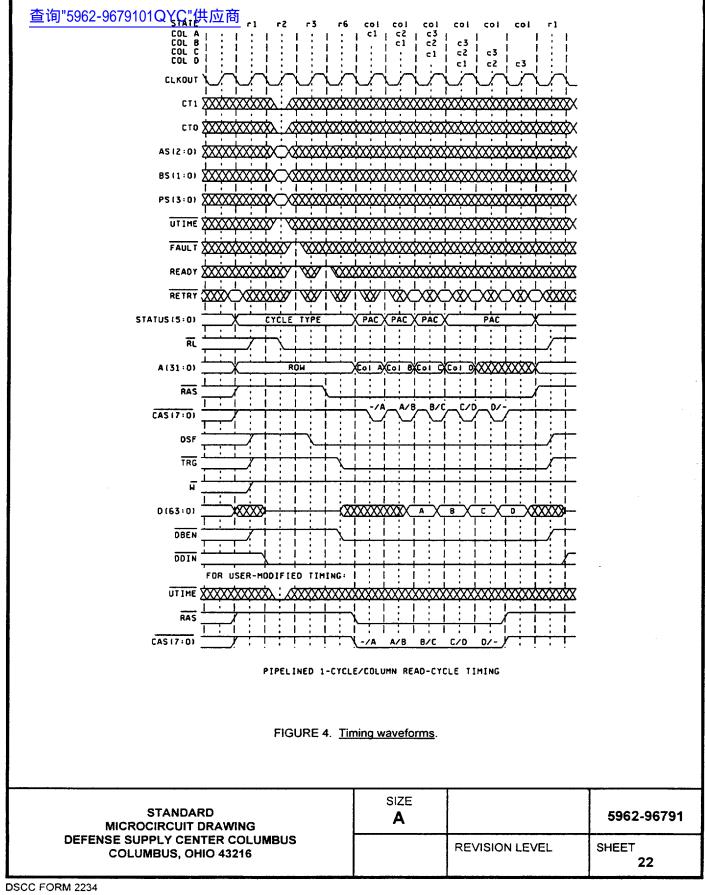
Device	01 6 <u>2-9679101QYC</u>	Device type 供放容	01	Device type		01	Device type	01
Case outline	Ý	Case outline	Y	Case outline		Y	Case outline	Y
Terminal number	Terminal symbol	Terminal number	Termina l symbol	Terminal number		erminal symbol	Terminal number	Terminal symbol
1	STATUS(3)	31	V _{DD}	61		V _{DD}	91	V _{DD}
2	v _{ss}	32	V _{SS}	62		V _{DD}	92	CSYNCO/HBLNKO
3	STATUS(2)	33	V _{DD}	63		w	93	VSYNCT
4	STATUS(1)	34	V _{SS}	64	ST	ATUS(5)	94	VSYNCO
5	V _{DD}	35	V _{SS}	65		V _{DD}	95	v _{ss}
6	STATUS(0)	36	UCLK	66		DSF1	96	V _{SS}
7	AS(2)	37	V _{SS}	67		v _{ss}	97	HSYNCT
8	AS(1)	38	CAS (7)	68		DBEN	98	V _{DD}
9	AS(0)	39	V _{DD}	69	†	V _{DD}	99	V _{DD}
10	FAULT	40	V _{DD}	70		DDIN	100	V _{DD}
11	READY	41	CAS (6)	71	с	LKOUT	101	HSYNCO
12	RETRY	42	V _{SS}	72	С	AREA1	102	TRST
13	UTIME	43	CAS (5)	73		V _{SS}	103	тск
14	BS(1)	44	V _{DD}	74		SCLK1	104	TMS
15	BS(0)	45	CAS(4)	75		V _{DD}	. 105	TDI
16	CT(1)	46	CAS(3)	76	FCLK0		106	TDO
17	CT(0)	47	CT(2)	77	<u> </u>	v _{ss}	107	EMU1
18	PS(2)	48	CAS(2)	78	SCLK0		108	XPTO
19	PS(1)	49	V _{SS}	79		V _{DD}	109	XPT1
20	PS(0)	50	CAS(1)	80	с	AREA0	110	V _{SS}
21	V _{DD}	51	V _{DD}	81	1	L'INT4	111	V _{SS}
22	RESET	52	CAS(0)	82	1	EINT3	112	EMU0
23	V _{SS}	53	RC	83	ד	EINT2	113	V _{DD}
24	FIREQ	54	RAS	84	1	EINTT	114	D(63)
25	HACK	55	V _{SS}	85	CBLN	K1/VBLNKT	115	D(62)
26	V _{SS}	56	V _{SS}	86	CBEN	KO/VBLNKO	116	V _{SS}
27	V _{SS}	57	V _{SS}	87		V _{SS}	117	D(61)
28	REQ(1)	58	TRG	88	1	V _{SS}	118	V _{SS}
29	REQ(0)	59	V _{DD}	89	CSYN	CT/HBLNKT	119	D(60)
30	V _{DD}	60	FCLK1	90		V _{DD}	120	V _{DD}
_	J	L	FIGURE 2. Terr	ninal conne	ctions.		 _	
	STAND/ MICROCIRCUIT		i	SIZE A				5962-9679
DEI	FENSE SUPPLY CE COLUMBUS, C	NTER COL				REVISION L	EVEL	SHEET 18

···· —

MM 9004708 0031697 155 MM

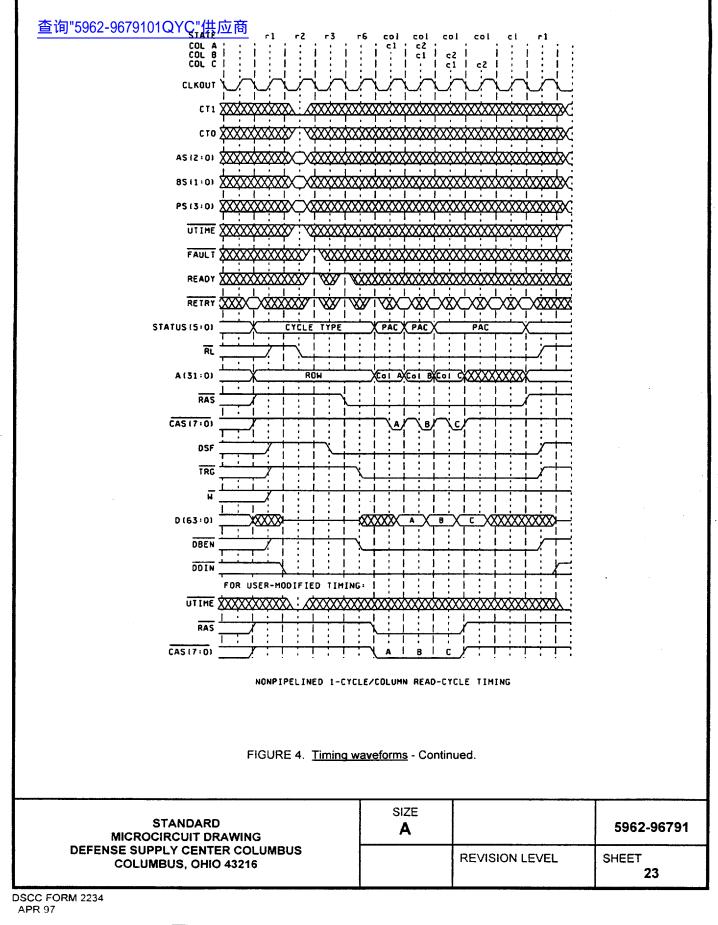

Device	01 <u>2-9679101Q</u> Y(Device type "供以容	01	Device type	01	Device type	01
Case outline	Y	Case outline	Y	Case outline	Y	Case outline	Y
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
121	V _{DD}	151	D(46)	181	D(30)	211	D(16)
122	D(59)	152	D(45)	182	D(29)	212	V _{DD}
123	v _{ss}	153	V _{SS}	183	V _{SS}	213	D(15)
124	D(58)	154	V _{SS}	184	V _{SS}	214	D(14)
125	V _{DD}	155	D(44)	185	V _{SS}	215	D(13)
126	D(57)	156	V _{DD}	186	D(28)	216	v _{ss}
127	XPT2	157	V _{DD}	187	V _{DD}	217	V _{DD}
128	V _{SS}	158	V _{DD}	188	V _{DD}	218	D(12)
129	D(56)	159	D(43)	189	D(27)	219	V _{DD}
130	V _{DD}	160	D(42)	190	D(26)	220	V _{DD}
131	V _{DD}	161	D(41)	191	D(25)	221	V _{DD}
132	D(55)	162	V _{SS}	192	v _{ss}	222	D(11)
133	V _{SS}	163	V _{SS}	193	D(24)	223	D(10)
134	D(54)	164	D(40)	194	V _{DD}	224	D(9)
135	V _{DD}	165	V _{DD}	195	V _{DD}	. 225	v _{ss}
136	D(53)	166	D(39)	196	D(23)	226	D(8)
137	v _{ss}	167	D(38)	197	D(22)	227	V _{DD}
138	v _{ss}	168	D(37)	198	V _{SS}	228	V _{DD}
139	D(52)	169	V _{SS}	199	D(21)	229	D(7)
140	V _{DD}	170	D(35)	200	v _{ss}	230	D(6)
141	D(51)	171	V _{SS}	201	D(20)	231	D(5)
142	D(50)	172	V _{DD}	202	V _{DD}	232	v _{ss}
143	D(49)	173	D(35)	203	V _{DD}	233	V _{SS}
144	V _{SS}	174	D(34)	204	D(19)	234	D(4)
145	v _{ss}	175	D(33)	205	V _{DD}	235	V _{DD}
146	D(48)	176	V _{SS}	206	D(18)	236	D(3)
147	V _{DD}	177	D(32)	207	v _{ss}	237	D(2)
148	V _{DD}	178	V _{DD}	208	D(17)	238	V _{SS}
149	V _{DD}	179	V _{DD}	209	V _{SS}	239	D(1)
150	D(47)	180	D(31)	210	V _{SS}	240	V _{SS}
			GURE 2. <u>Termina</u>	al connection -		JL	
DEF		CENTER COL	UMBUS	A	REVISION	ILEVEL	5962-9679 SHEET
	COLUMBUS	, UHIU 43216					19

DSCC FORM APR 97


■ 9004708 0031698 091 **■**

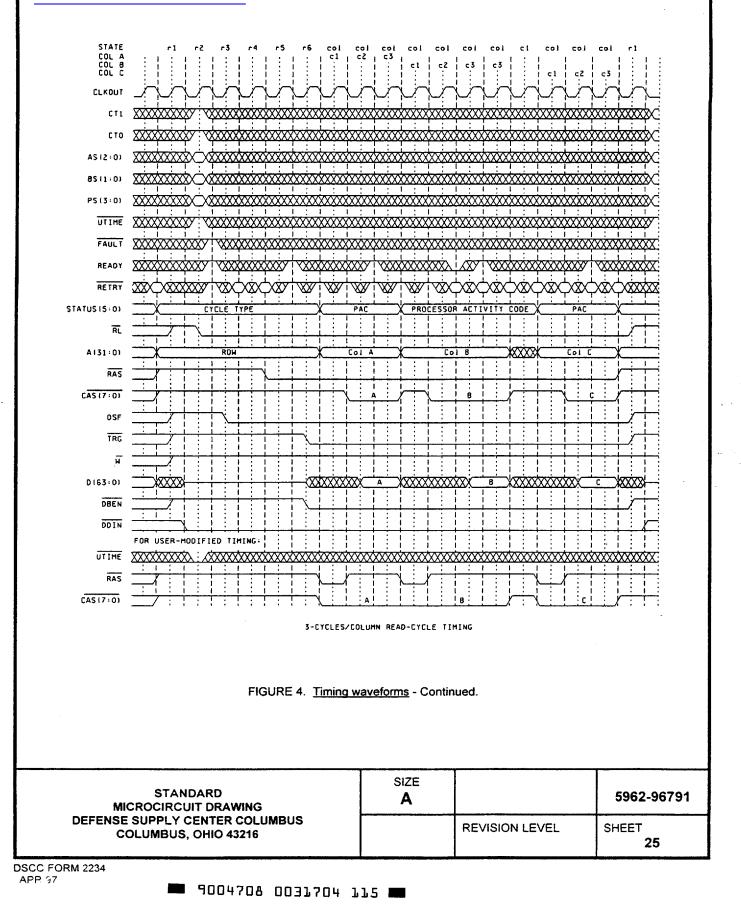
······				·····			
	Device type	01	Device type	01	Device type	01	7
查询"5962-9	679101QY outline	C"供应商	Case outline	Ŷ	Case outline	Y	
	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	
	241	D(0)	271	V _{DD}	301	V _{DD}	
	242	V _{DD}	272	V _{DD}	302	A(7)	
	243	V _{DD}	273	A(19)	303	A(6)	
	244	A(31)	274	V _{SS}	304	V _{SS}	
	245	V _{SS}	275	A(18)	305	V _{SS}	
	246	A(30)	276	A(17)	306	A(5)	
	247	A(29)	277	V _{SS}	307	V _{SS}	
	248	V _{SS}	278	V _{SS}	308	A(4)	1
	248	v _{ss}	279	V _{SS}	309	V _{DD}	-
	250	A(28)	280	A(16)	310	V _{DD}	7
	251	V _{DD}	281	V _{DD}	311	V _{DD}	
	252	V _{DD}	282	V _{DD}	312	A(3)	7
	253	V _{DD}	283	V _{DD}	313	V _{DD}	
	254	A(27)	284	A(15)	314	A(2)	
	255	A(26)	285	PS(3)	315	V _{SS}	-
	256	A(25)	286	A(14)	316	A(1)	-
	257	v _{ss}	287	V _{SS}	317	A(0)	
	258	v _{ss}	288	V _{DD}	318	V _{DD}	
	259	v _{ss}	289	A(13)	319	STATUS(4)	
	260	A(24)	290	V _{SS}	320	V _{SS}	
	261	V _{DD}	291	V _{SS}		·····	
	262	V _{DD}	292	A(12)			_
	263	V _{DD}	293	V _{DD}			
	264	A(23)	294	A(11)			
	265	A(22)	295	V _{SS}			
	266	V _{DD}	296	A(10)		··· · · · · ·	-
	267	A(21)	297	V _{DD}			1
	268	v _{ss}	298	A(9)	1 1	······································	7
	269	V _{SS}	299	V _{SS}		·····	
	270	A(20)	300	A(8)			
1		FIGU	IRE 2. <u>Termina</u>	l connection - C	Continued.		 _
STANDARD MICROCIRCUIT DRAWING				SIZE A			5962-96791
		CENTER COLU , OHIO 43216	MBUS		REVISION	LEVEL	SHEET 20
C FORM 2234	<u> </u>						L

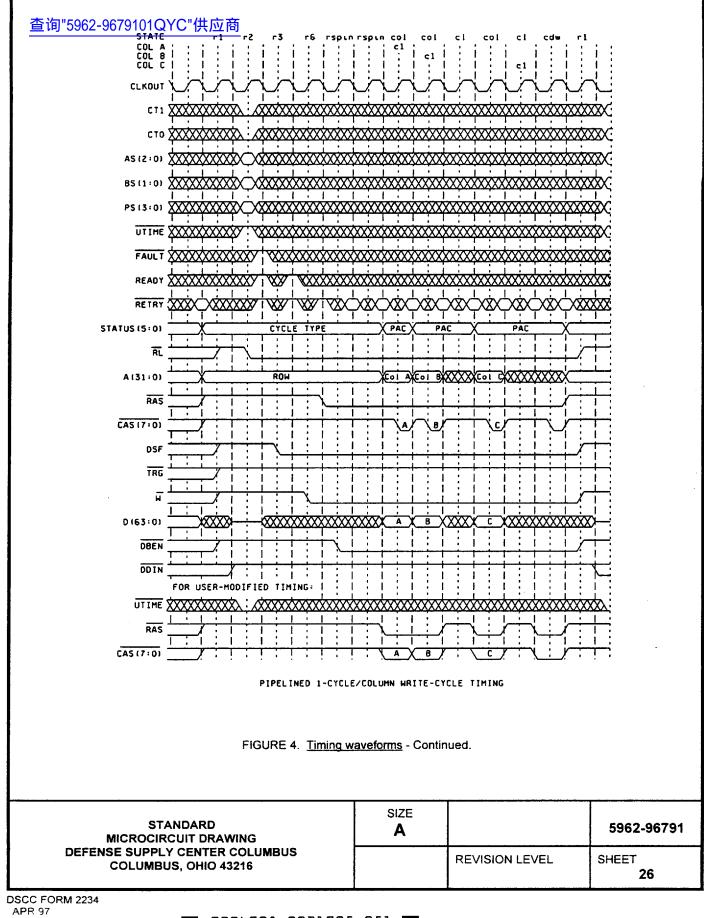
🔳 9004708 0031699 T28 🔳


Powered by ICminer.com Electronic-Library Service CopyRight 2003

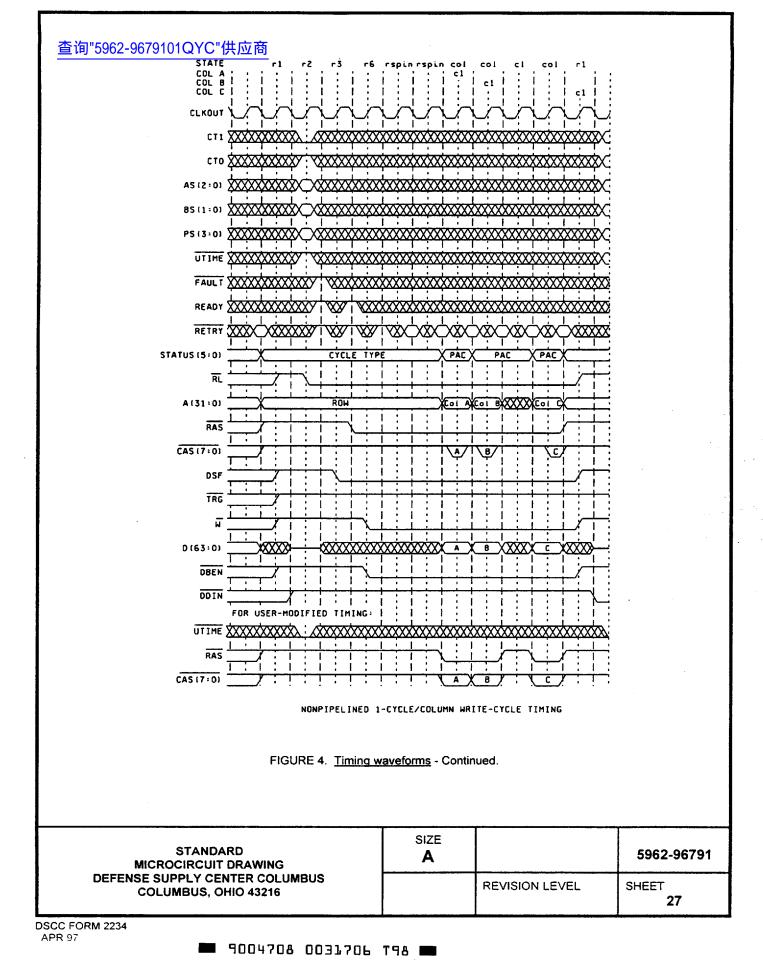

APR 97

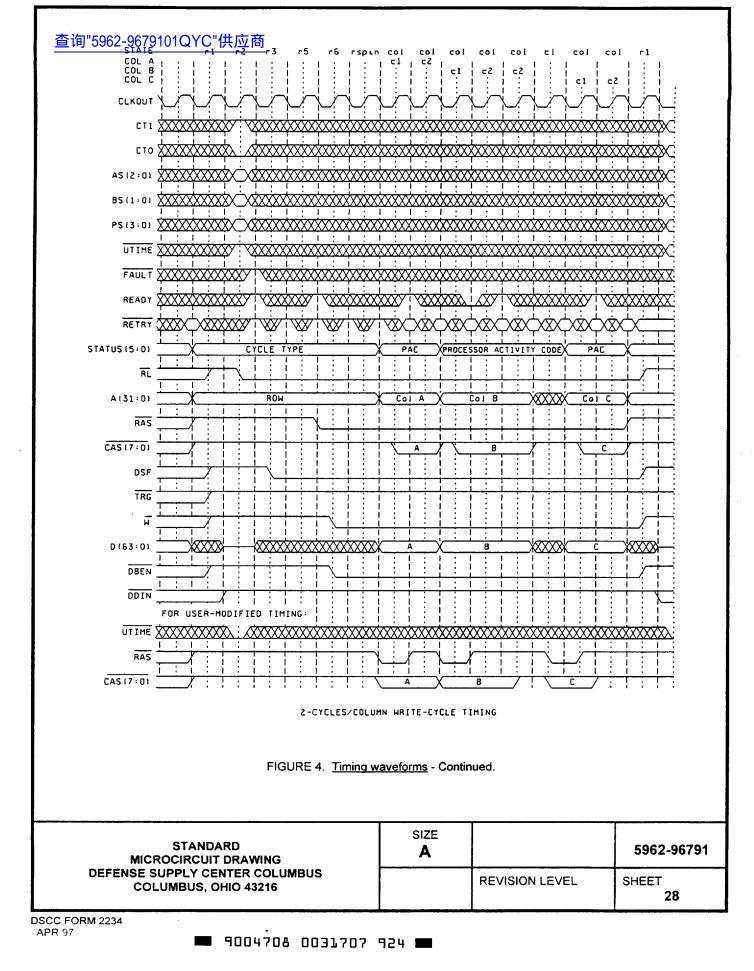
MR 9004708 0031701 406 🖿

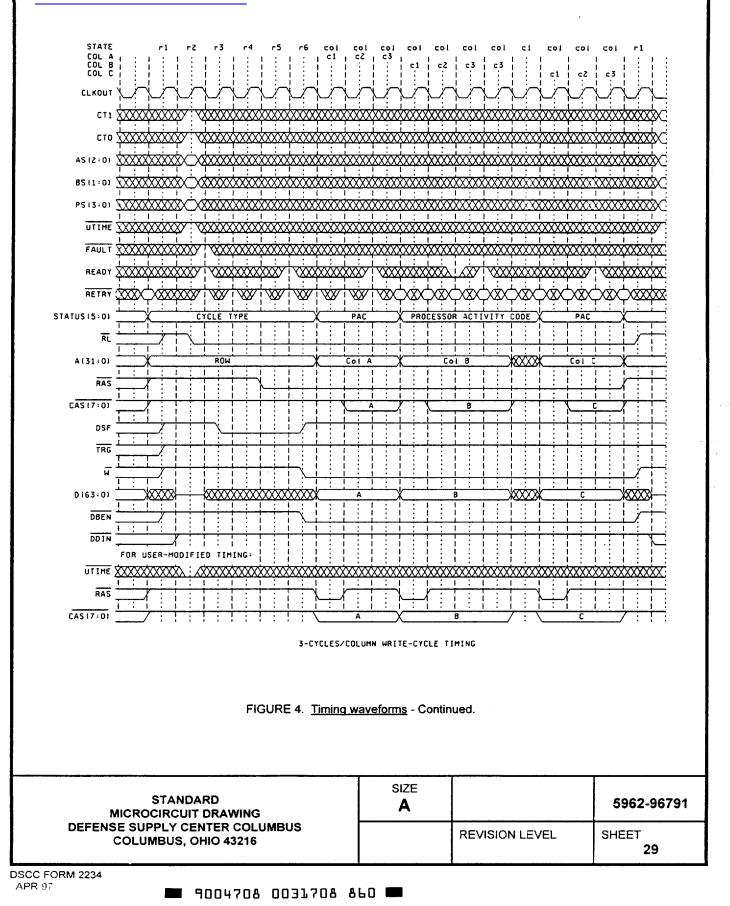

Powered by ICminer.com Electronic-Library Service CopyRight 2003



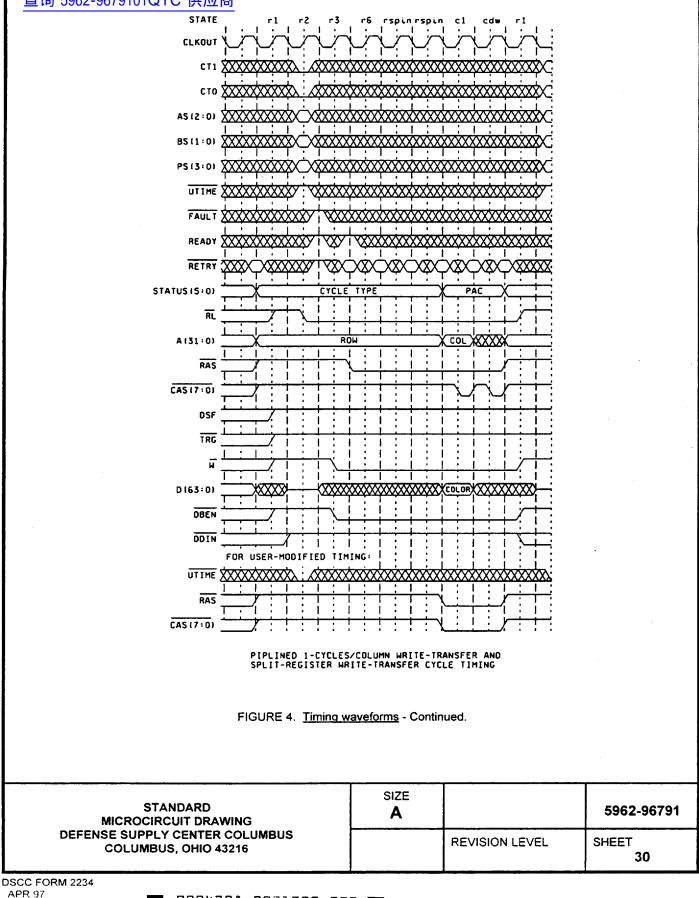
🖩 9004708 0031702 342 🛲

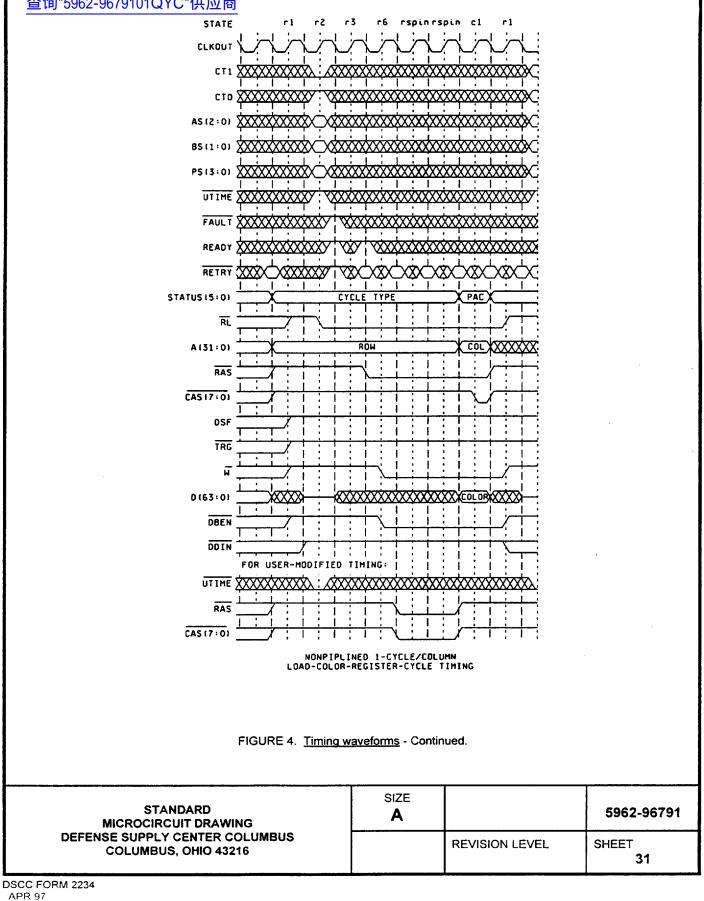


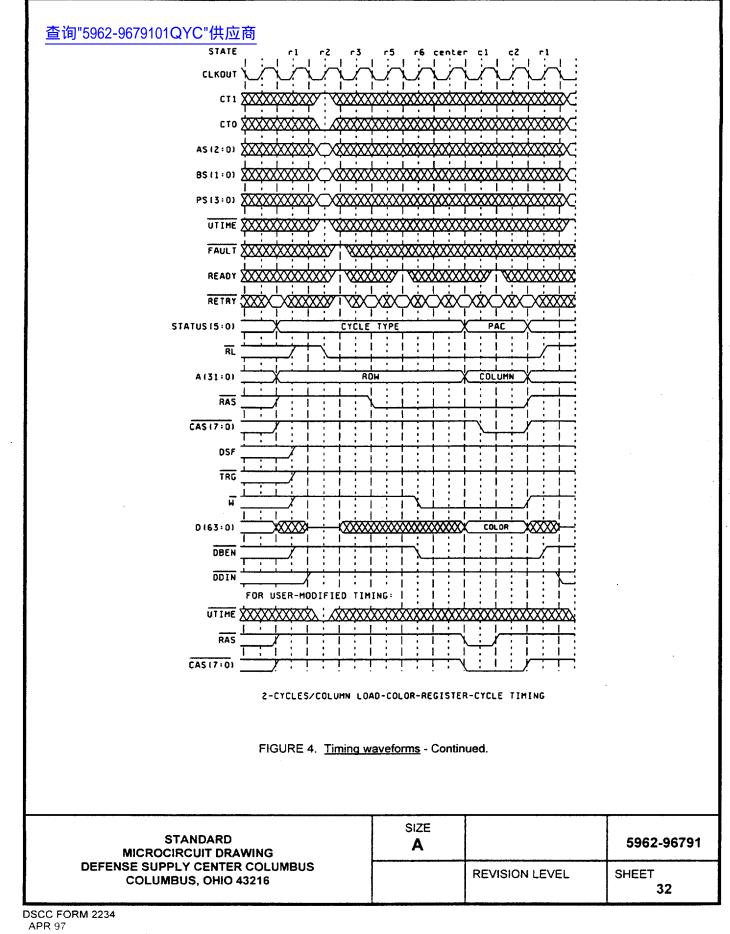

9004708 0031703 289 📟



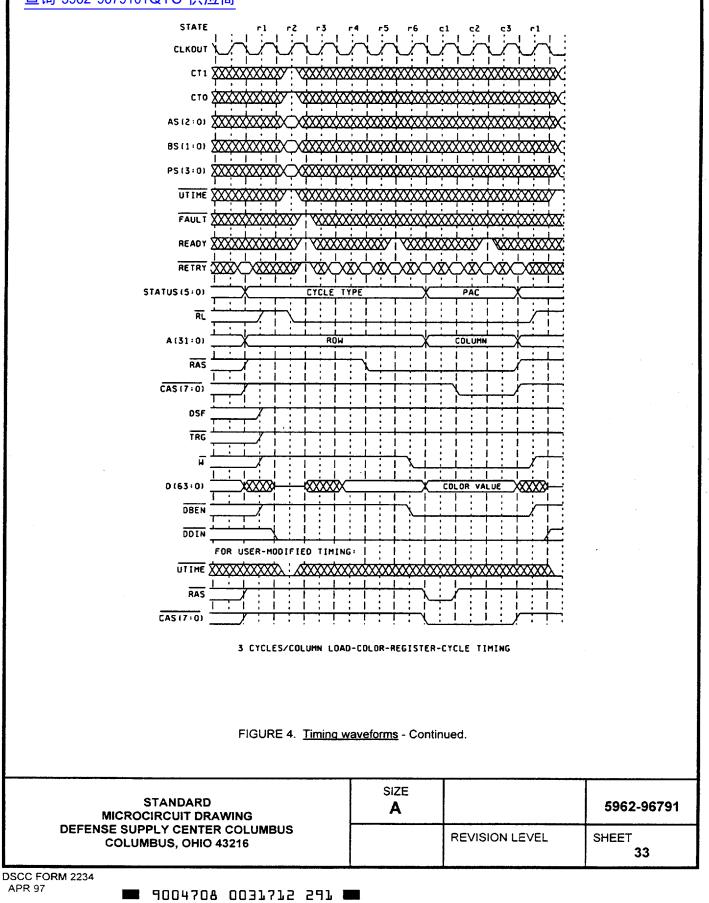
9004708 0031705 051 📟

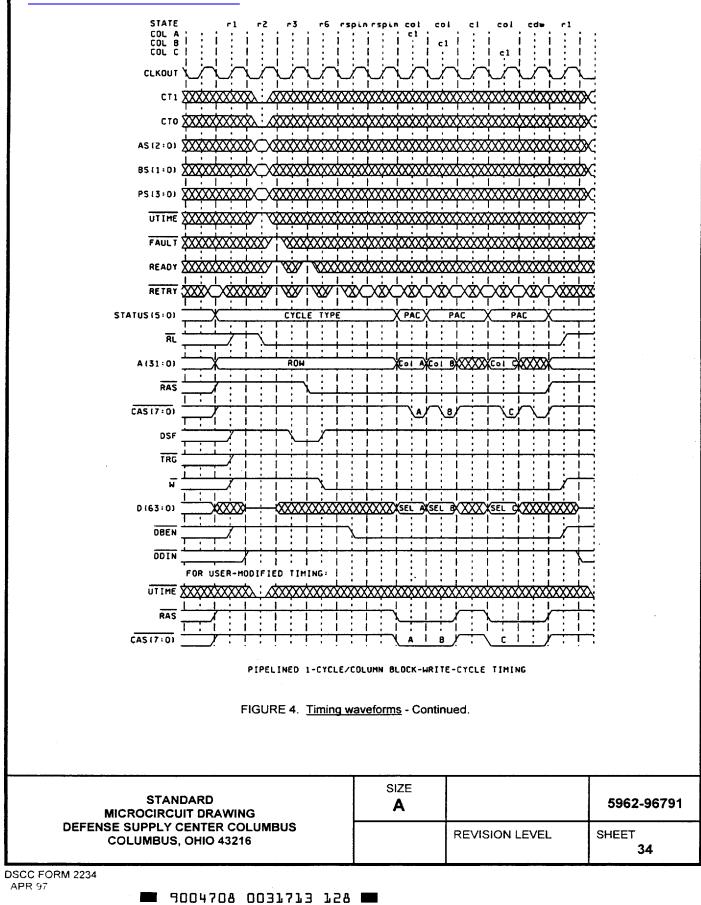



Powered by ICminer.com Electronic-Library Service CopyRight 2003

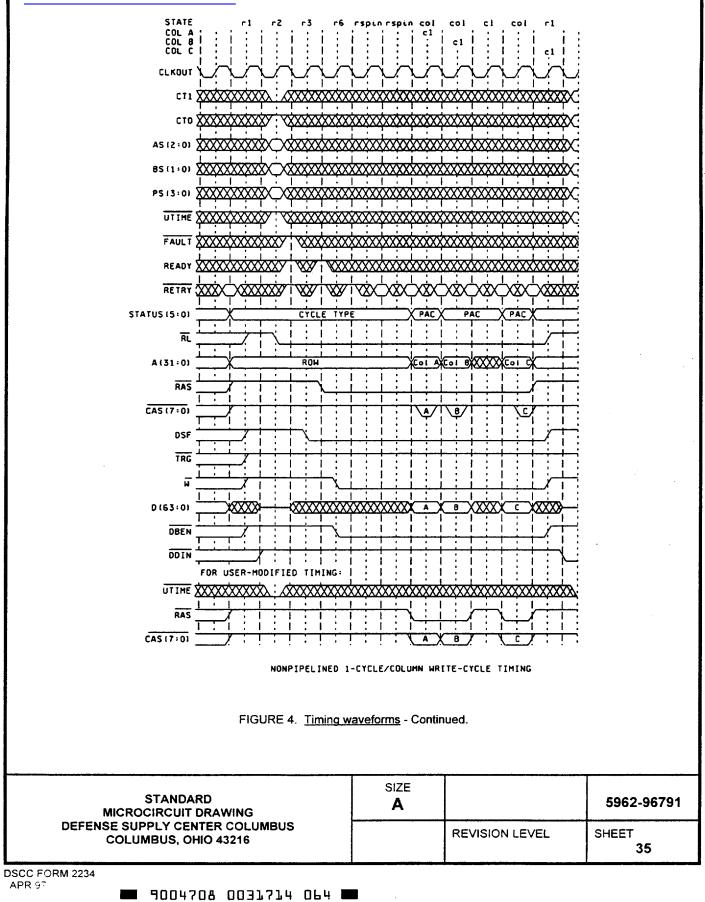


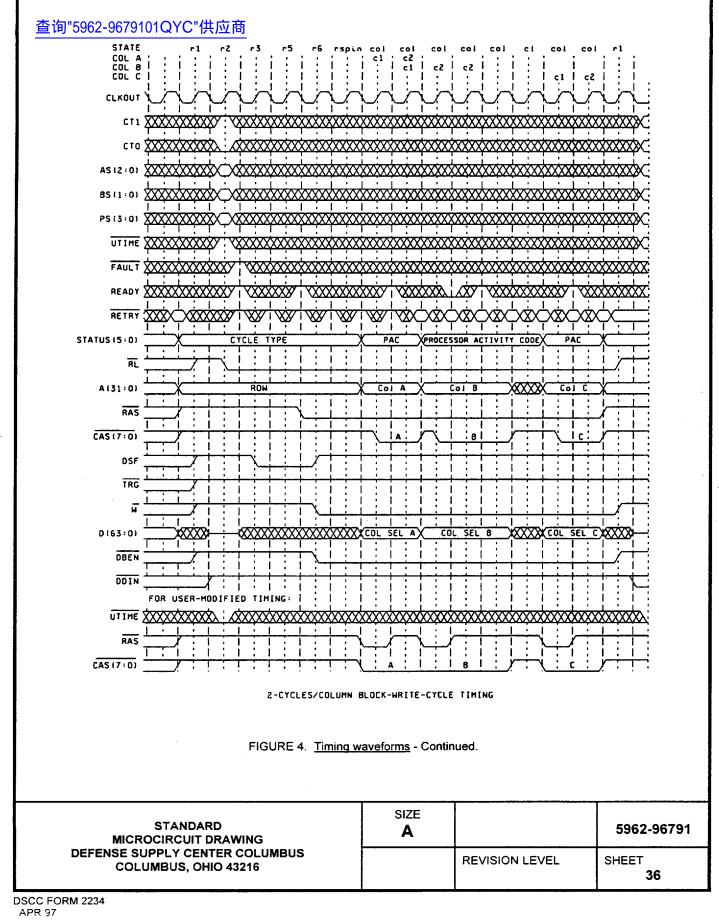
9004708 0031709777

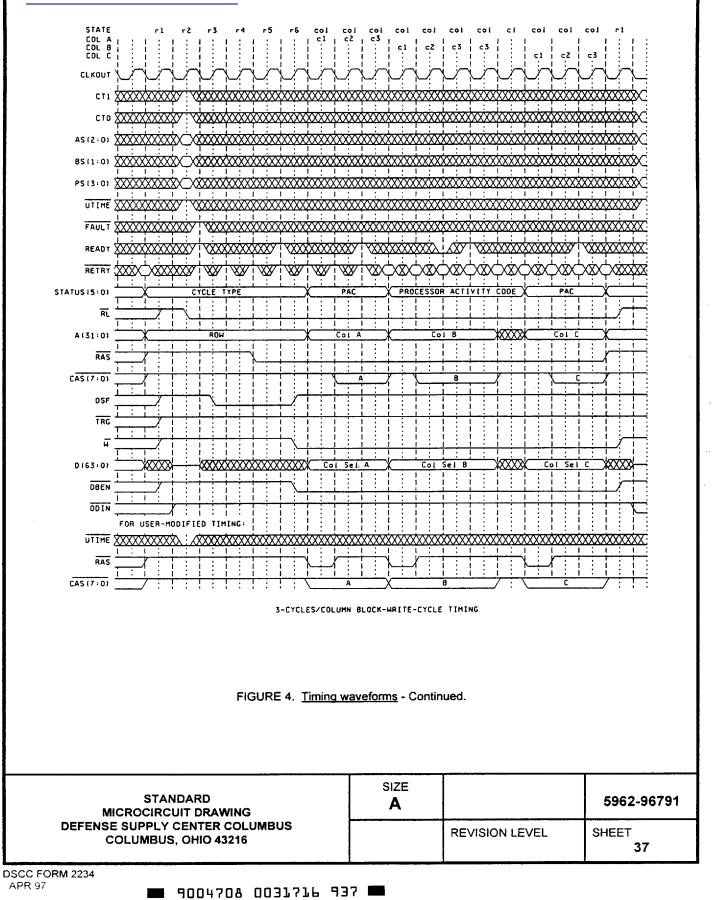


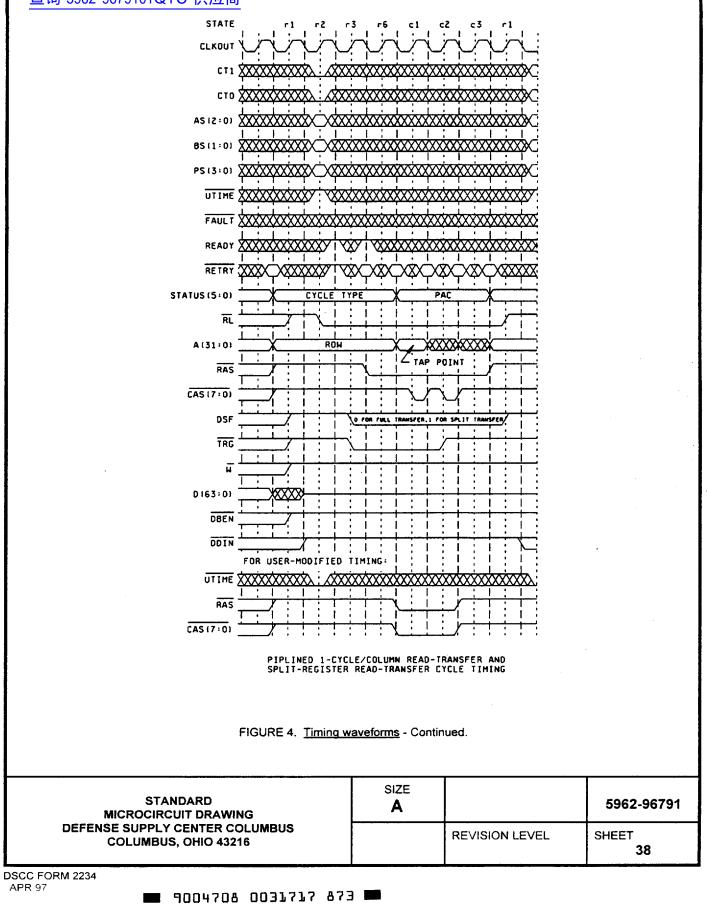


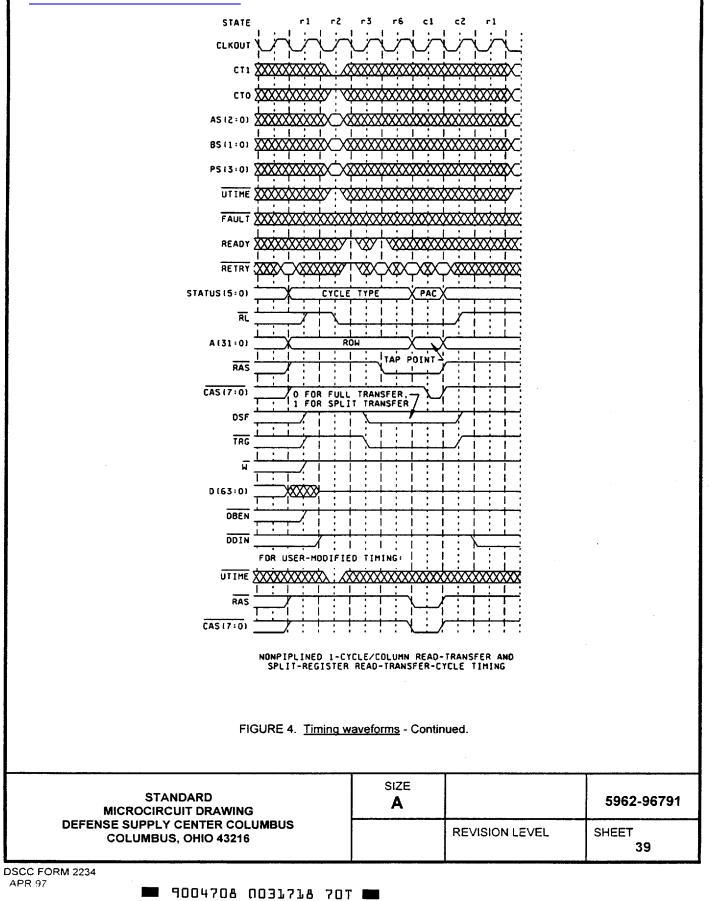
9004708 0031710 419 🎟

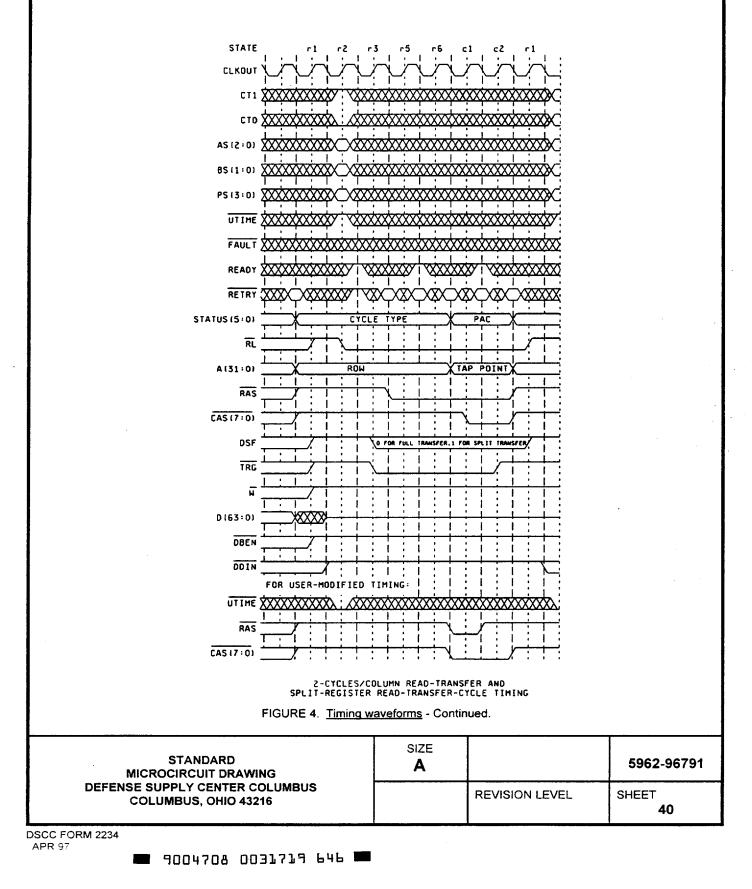


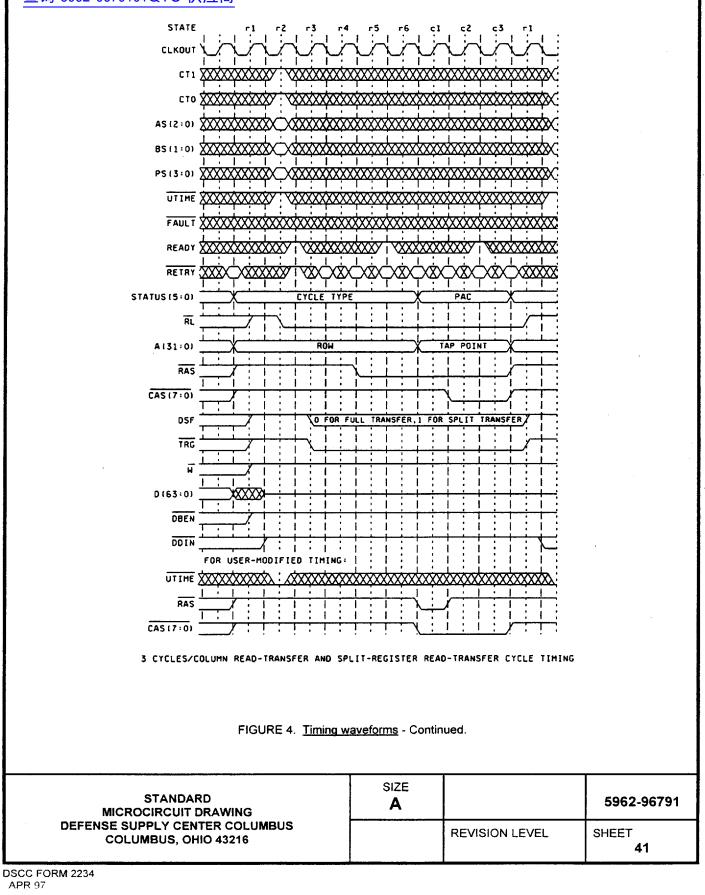

📟 9004708 0031711 355 📟

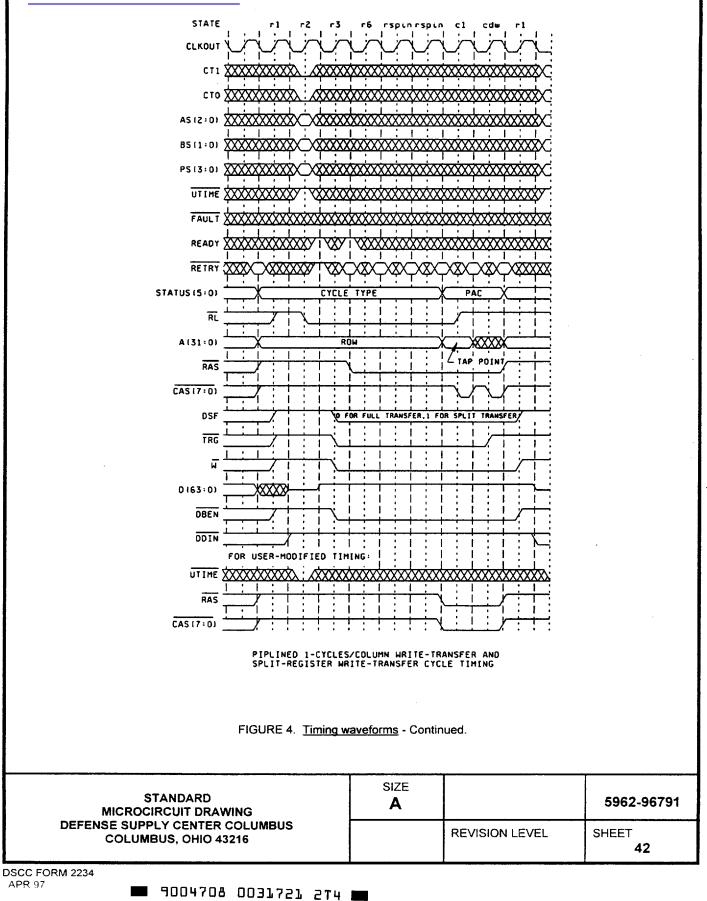


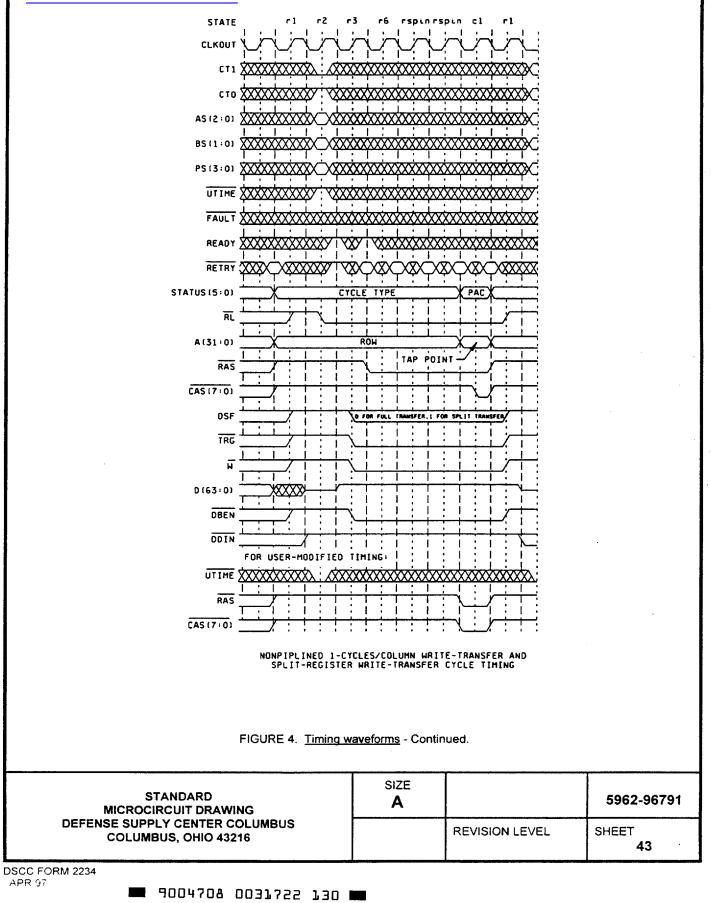

Powered by ICminer.com Electronic-Library Service CopyRight 2003

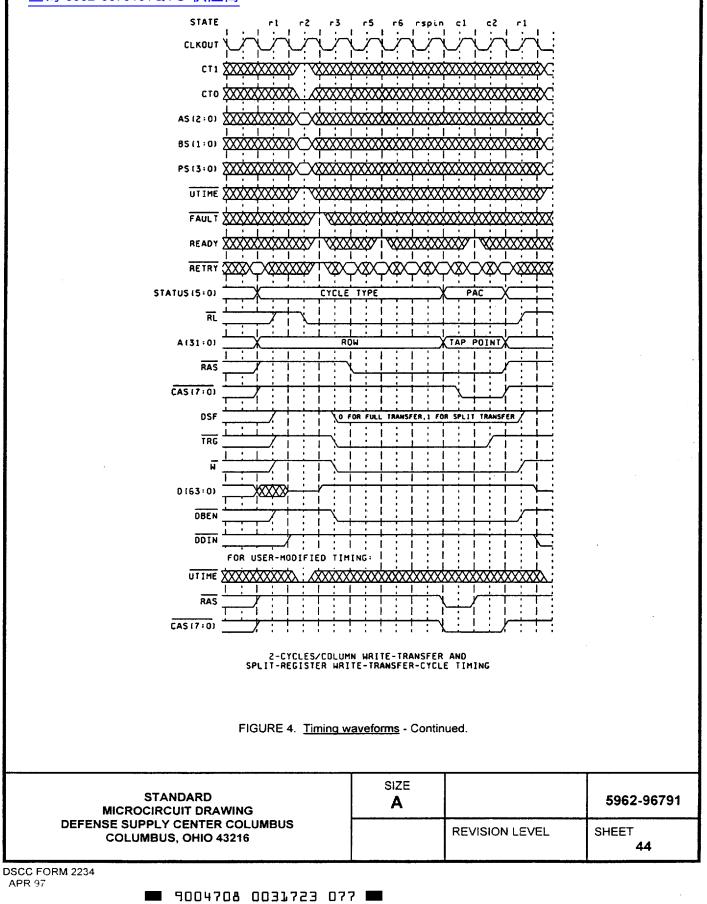


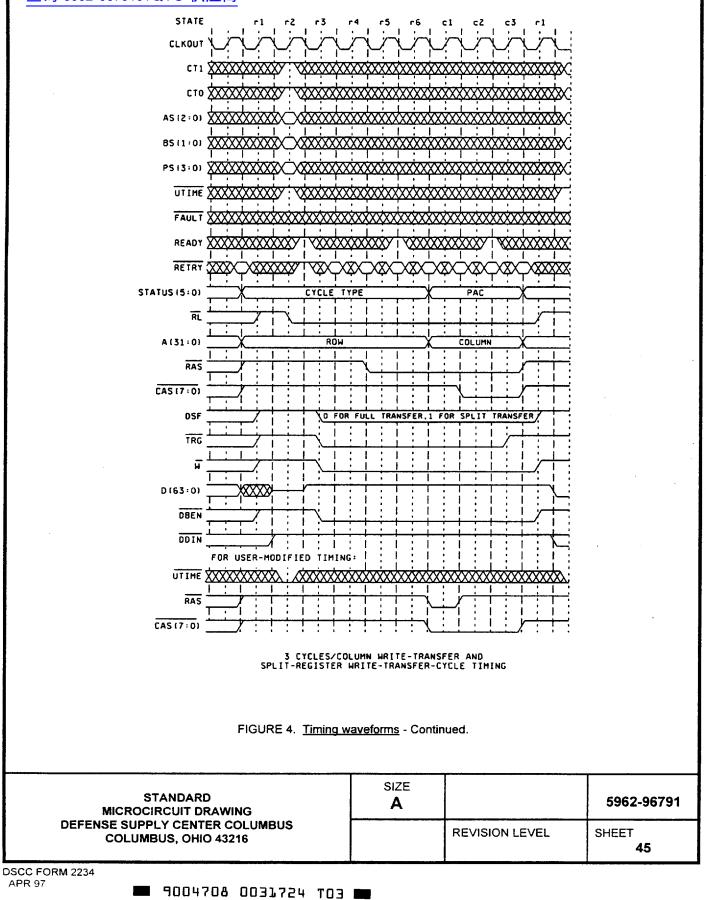


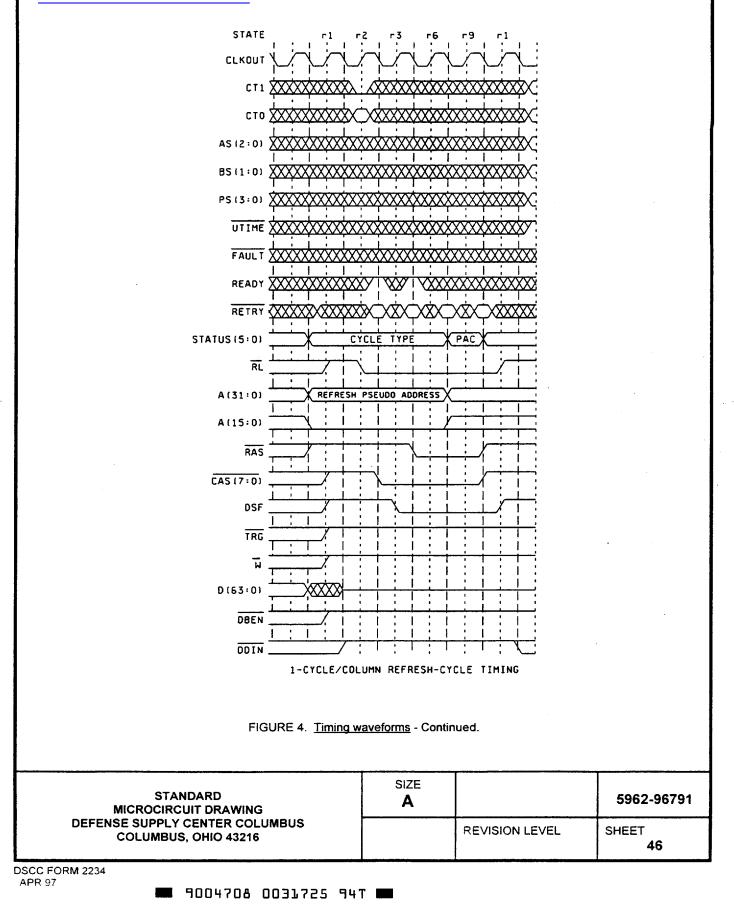

🔳 9004708 0031715 TTO 📕

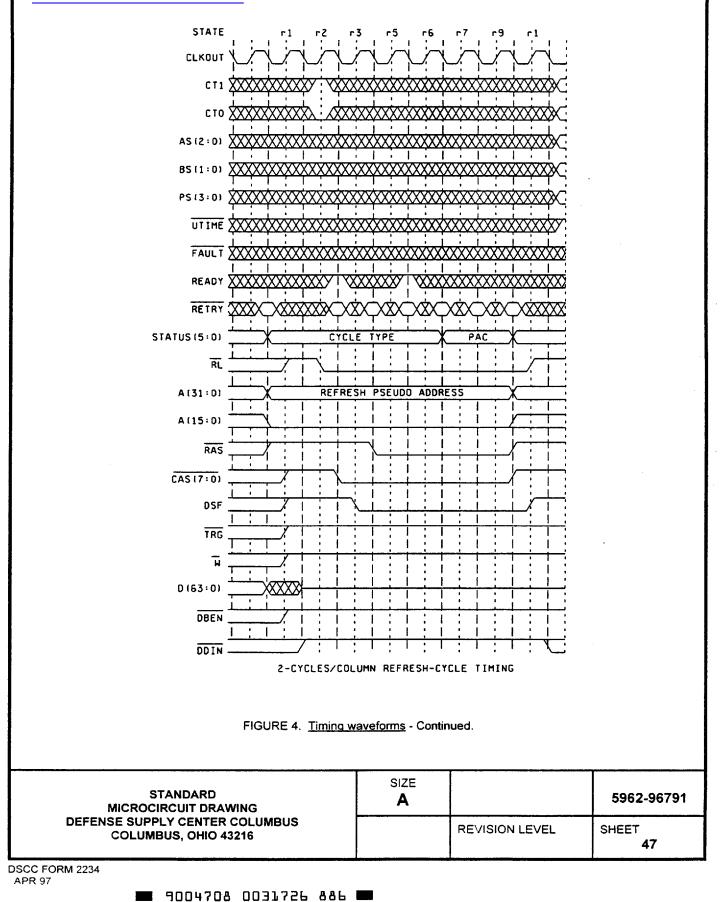


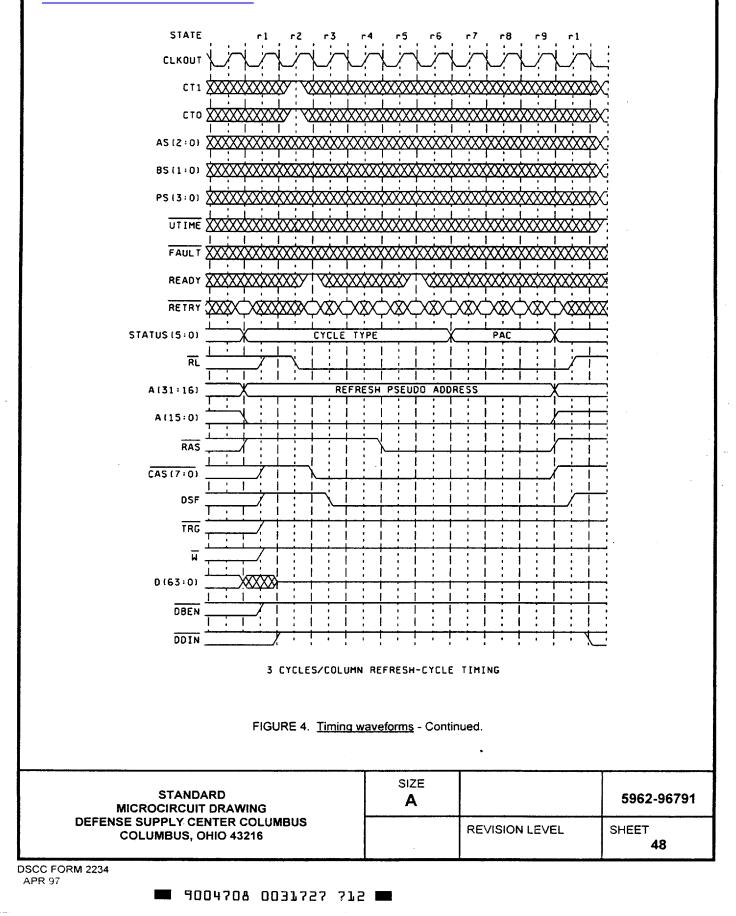


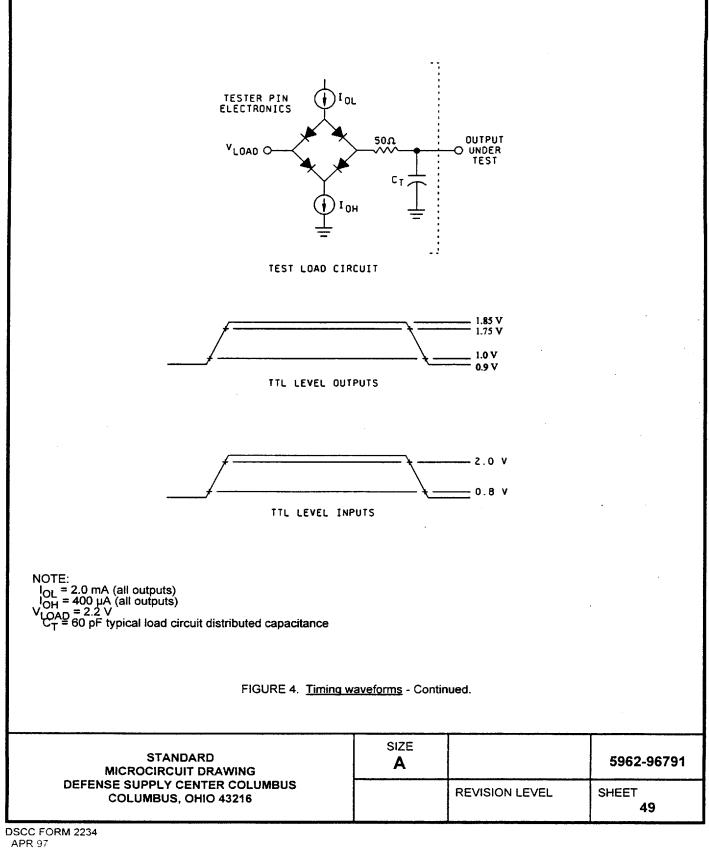


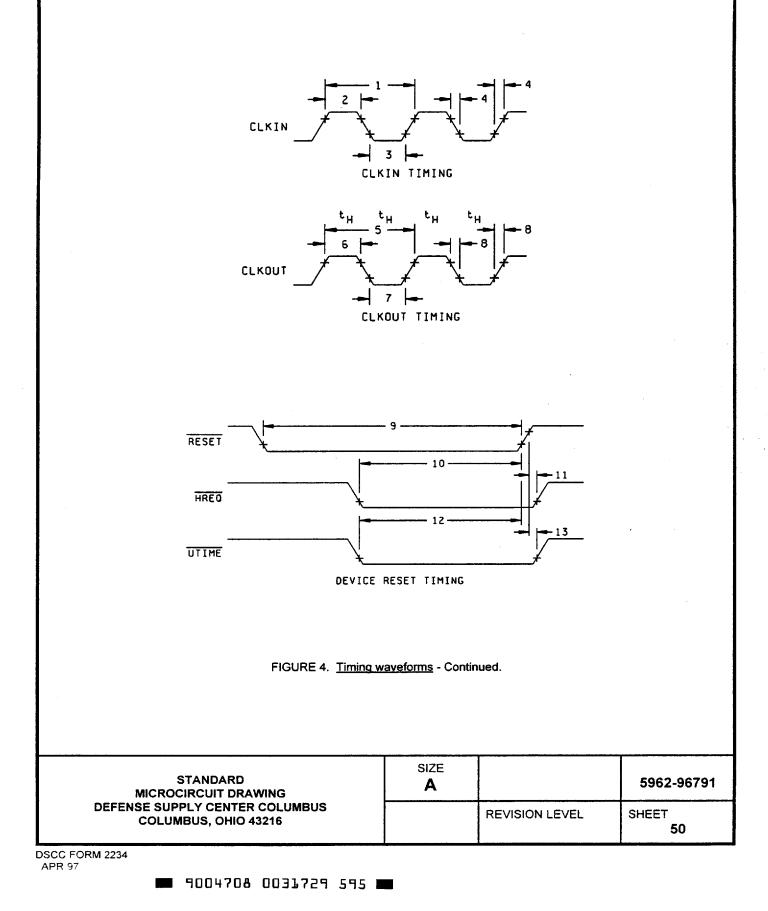


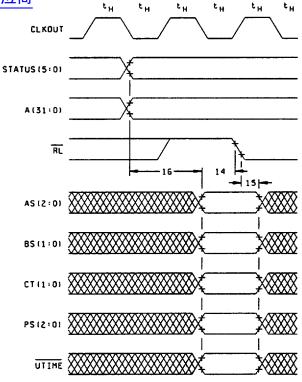

9004708 0031720 368 📟

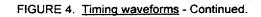




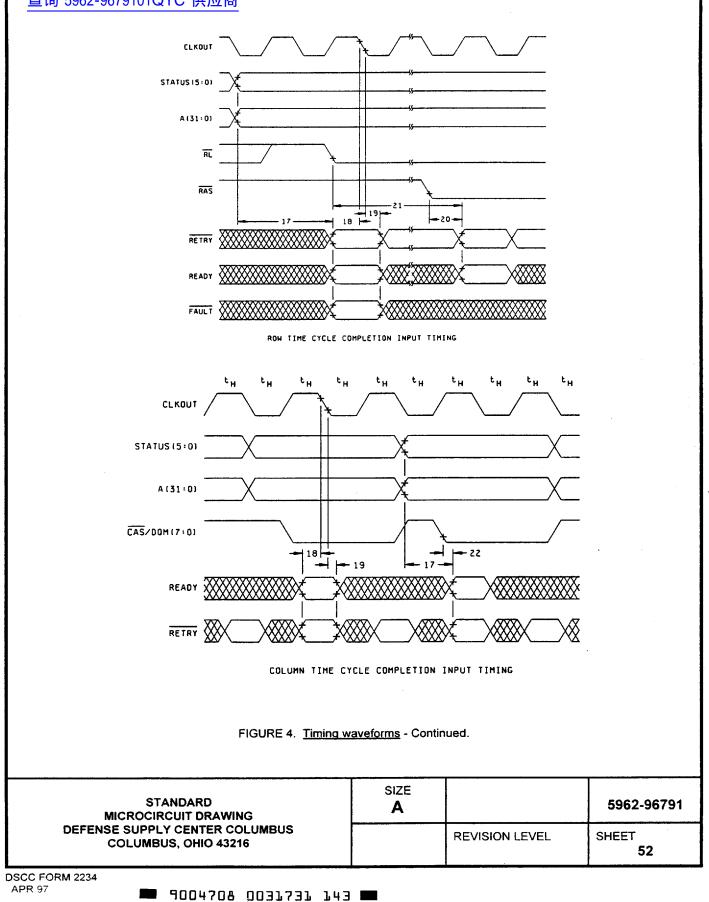


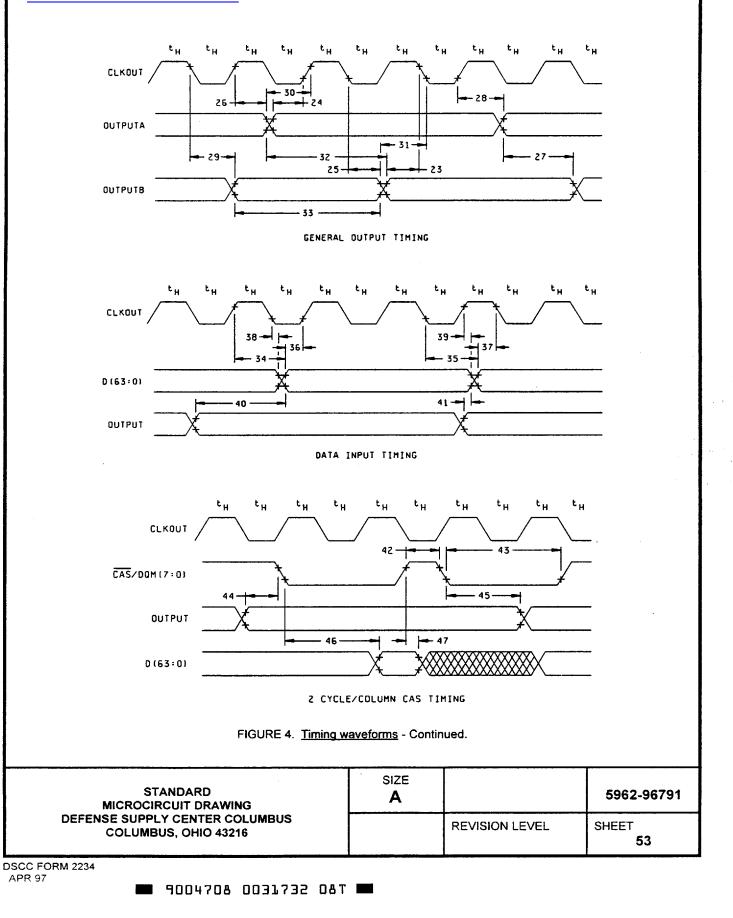


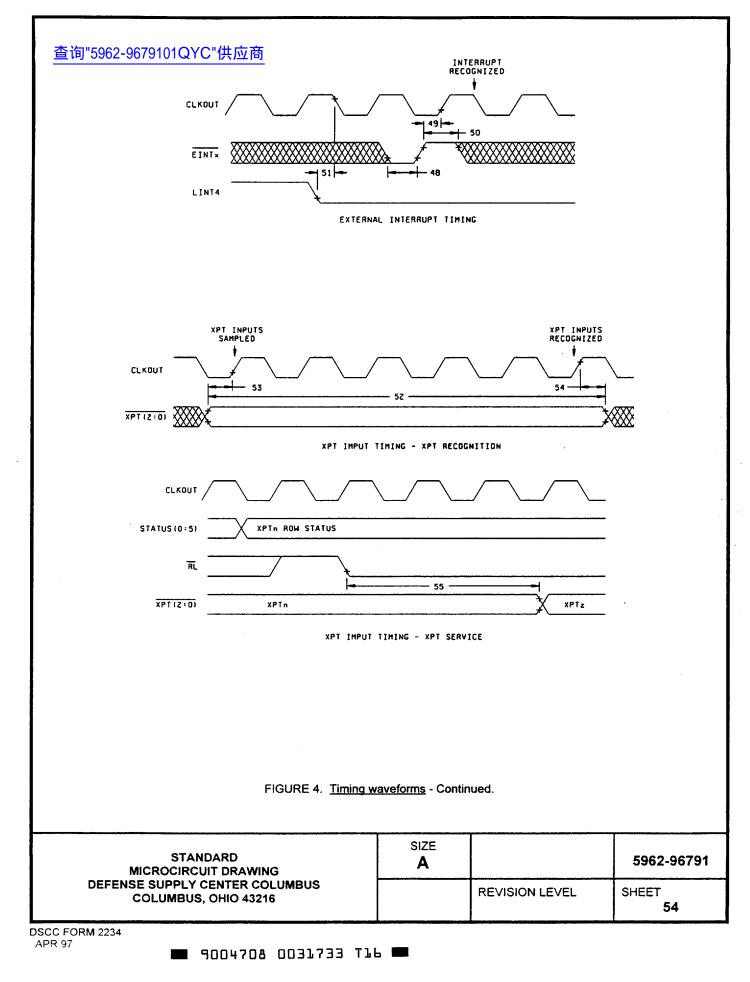


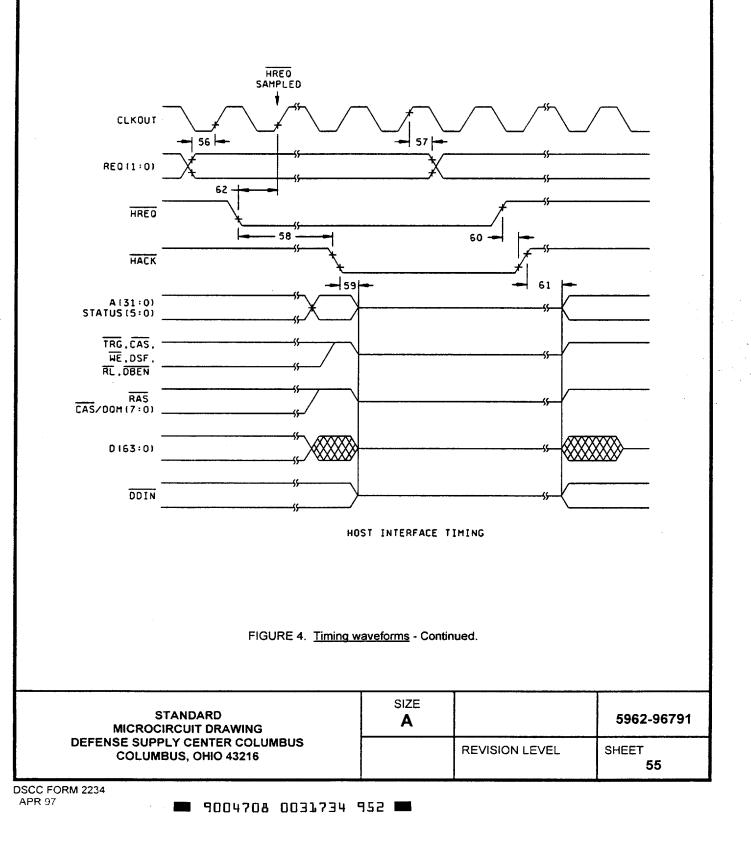


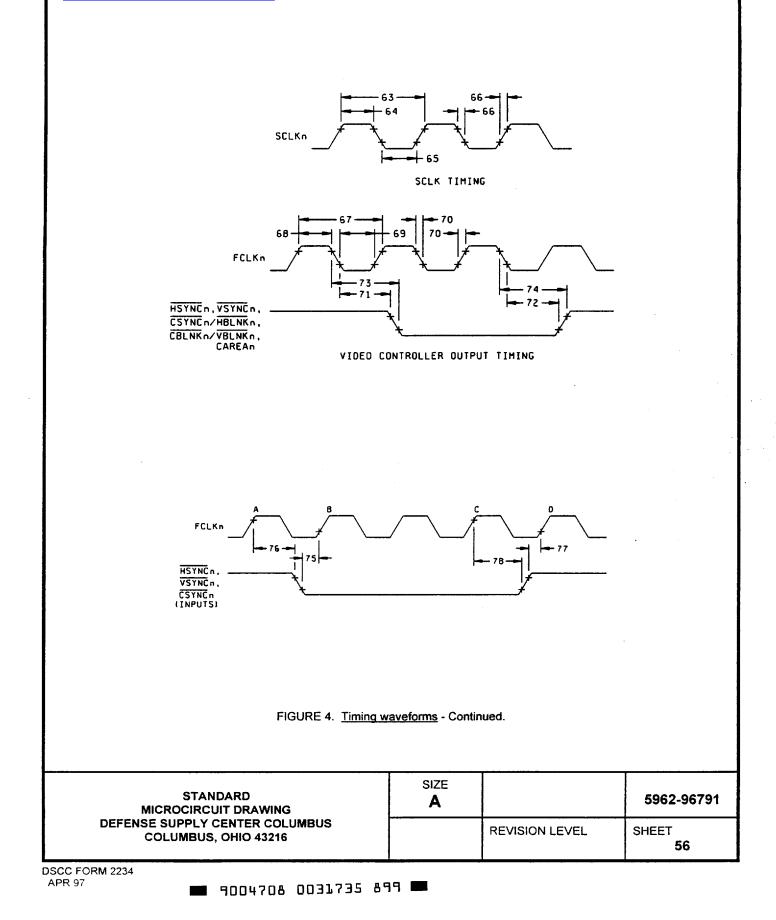
🛚 9004708 0031728 659 🛲


CYCLE CONFIGURATION INPUT TIMING




STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 51


DSCC FORM 2234 APR 97


9004708 0031730 207 🖿

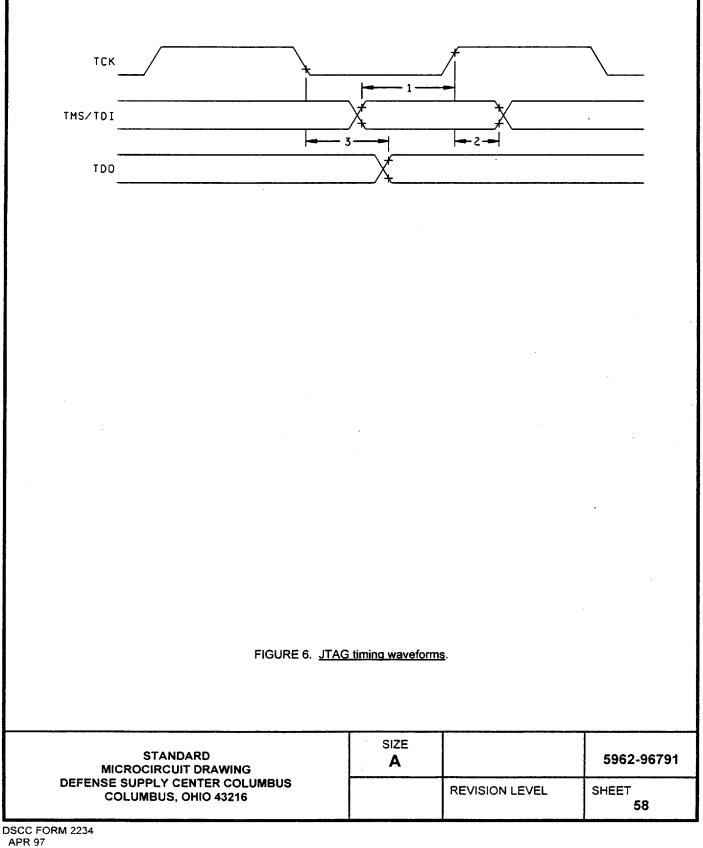

Instruction Code	Instruction Name
0000000	Extest
11111111	Bypass
00000010	Sample
00000110	TRIBYP
00000011	INTEST

FIGURE 5. Boundry scan instruction codes.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 57

DSCC FORM 2234 APR 97

■ 9004708 0031736 725 **■**

9004708 0031737 661 📟 .

4. QUALITY ASSURANCE PROVISIONS

查试验: A Constant of the consta

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the funcionality of the device. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein).
 - c. Subgroup 4 (C₁ and C₀ measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of 5 devices with zero rejects shall be required.
- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 59

DSCC FORM 2234 APR 97

9004708 0031738 ST8 📰

	TABLE II. Electrical test requirements.							
<u>查询"5</u>	962-9679101QYC"供应商	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)					
		Device class M	Device class N	Device class Q	Device class V			
	Interim electrical parameters (see 4.2)				1,7,9			
	Final electrical parameters (see 4.2)	1,2,3,7,8, 9,10,11 <u>1</u> /	1,2,3,7,8, 9,10,11 <u>1</u> /	1,2,3,7,8, 9,10,11 <u>1</u> /	1,2,3,7,8, 9,10,11 <u>2</u> /			
	Group A test requirements (see 4.4)	1,2,3,4,7,8,9,10,11	1,2,3,4,7,8,9, 10,11	1,2,3,4,7,8,9, 10,11	1,2,3,4,7,8,9, 10,11			
	Group C end-point electrical parameters (see 4.4)	2,8A,10	2,8A,10	2,8A,10	2,8A,10			
	Group D end-point electrical parameters (see 4.4)	2,8A,10	2,8A,10	2,8A,10	2,8A,10			
	Group E end-point electrical parameters (see 4.4)	1,7,9	1,7,9	1,7,9	1,7,9			

1/ PDA applies to subgroup 1.

2/ PDA applies to subgroups 1 and 7.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-96791
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 60

DSCC FORM 2234 APR 97

9004708 0031739 434 📟

5. PACKAGING

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 Substitutability. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-I-38535 and MIL-STD-1331 and as follows:

<u>Pin symbol</u>	<u>Type</u>	Description					
		LC	CAL ME	EMOR	Y INTERFACE		
A31-A0	0	Address bus. These terminals ouput the 32-bit byte address of the external memory cycle. The address can be multiplexed for DRAM accesses.					
AS2-AS0	1					mine how the column addres d, including zero.	ss appears on the
BS1-BS0	1	Bus-size sel accessed, al below:	Bus-size selection. These signals indicate the bus size of the memory or other device being accessed, allowing dynamic bus sizing for data buses less than 64 bits wide, as indicated below:				
		CT2	CT1	сто	Cycle timing		
		0 0 1 1 1	0 1 1 0 0	1 0 1 0 1 0 1	Pipelined (burs Interleaved (bur	cycle/column	atency of 3 tency of 2
D63-D0	1/0	Data bus. T the device.	Data bus. These signals transfer up to 64 bits of data per memory cycle into or out of the device.				
DBEN	0	Data buffer transceivers	Data buffer enable. This signal drives the active-low output enables of bidirectional transceivers that can be used to buffer input and output data on D63-D0.				
DDTN	0	Data-direction through the through the device.	Data-direction indicator. This signal indicate the direction of the data that passes through the transceivers. When DDTN is low, the transfer is from external memory into the device.				
FAULT	ł	Fault. This input signal is driven low by external circuitry to inform the device that a fault occurred on the current memory row access.					
	SIZE STANDARD MICROCIRCUIT DRAWING SIZE A SIZE A SIZE 5962-96791					5962-96791	
	E SUPPLY CEN COLUMBUS, OF	ITER COLUMBU 110 43216	S			REVISION LEVEL	SHEET 61
SCC FORM 2234	· · ·				······································	<u> </u>	

DSCC FOR APR 97

🔳 9004708 0031740 156 📰

<u></u>							
Pin symbol	<u>Type</u>	Description - Continued.					
<u> </u>	79101QYC"	供应裔ge-size indication. T being accessed by the new row access.	hese signals indi current cycle. Th	icate the page size of the r ne device uses this to dete	nemory device(s) rmine when to begin a		
READY	I	Ready. This signal indicates that the external device is ready to complete the memory cycle. This signal is driven low by external circuitry to insert wait states into a memory cycle.					
RL	0	Row latch. The high-to address that is present		RL can be used to latch th	e valid 32-bit byte		
RETRY	1	Retry. This signal is dr memory is busy. The d	iven low by exter levice will begin t	nal circuitry to indicate that he cycle again.	t the addressed		
STATUS5-STA	TUSO O			indicate the type of cycle to and type of request that			
UTIME	1		n memory timings	es the time of RAS and CA can be generated. During vice operates.			
			RAM CONTROL	·			
CAS7-CAS0	0	Column-address strobe The eight stroves provid	s. These outputs de byte write acc	s drive the CAS inputs of E ess to memory.	RAMs and VRAMs.		
DSF	0	Special function. This s color register, and split-		ecial VRAM functions such	as block write, load		
RAS	0	Row-address strobe. T	his signal drives	the RAS inputs of DRAMs	and VRAMs.		
TRG	0		Transfer/output enable. During memory-read cycles, TRG is used as an output enable or DRAMs and VRAMs. During VRAM register-transfer cycle, TRG is used as a transfer enable.				
∇	0	Write enable. This signal is driven low before CAS during write cycles. W controls the direction of the transfer during VRAM transfer cycles.					
		HOST IN	ITERFACE				
HACK	0	indicate that it has drive is relinguishing the bus	Host acknowledge. The device drives this terminal low following an active HREQ to indicate that it has driven the local-memory-bus signals to the high-impedance state and is relinquishing the bus. HACK is driven high asynchronously following HREQ being detected inactive and the device resumes driving the bus.				
HREQ	I	memory bus. When HF internally synchronized determine the power-up	REQ is high, the c to the devices in state of the MP. ng. If HREQ is h	this input low to request o device owns and drives the ternal clock. HREQ is also If HREQ is low at the risi igh, the MP remains halted	e bus. HREQ is b used at reset to ng edge of RESET,		
REQ1,REQ0	0	priority memory-cycle re	equest that is bein	ovide a two-bit code indica ng received ty the TC. Ext necessary to relinquish th	ernal logic can		
INTERNAL REC	QUEST	REQ1 REC	סכ				
		0 0	Low-priority p	acket transfer, trackle refr	esh, idle		
		0 1 1 0	High-priority (Cache/DEA (packet transfer direct exterbak access) re			
		1 1	transfer VC SRT (seri (external pac	al-register transfer), urgen ket transfer) or VCPT (VC	t refresh, XP⊺ packet transfer)		
	STANDA		SIZE A		5962-96791		
DEFENSE	CROCIRCUIT SUPPLY CE OLUMBUS, O	NTER COLUMBUS		REVISION LEVEL	SHEET 62		
CC FORM 2234 PR 97		1004708 0031741 0	92 📖				

...

<u>?in symbol</u> 查询"5962-96791(ĴĨQŶC"₿	Description - Continu <u> 、</u> 文	ed. M CONTROL			
CLKIN	I	Input clock. This sign functions (except the t		nternal device clocks to wh synchronous.	nich all processor	
CLKOUT	0	Local output clock. The internal timings. All do this clock.	nis signal provides evice output signa	s a way to synchronize ext ls (except the VC signals)	ernal circuitry to are synchronous to	
EINTI.EINT2, EINT3	I	MP on one of three in rising-edge triggered. halted, the first rising of	Edge-triggered interrupts. These signals allow external devices to interrupt the MP on one of three interrupt levels (ETNTT is the highest priority). The interrupts are rising-edge triggered. ETNT3 also serves as an unhalt signal. If the MP is powered halted, the first rising edge on ETNT3 causes the MP to unhalt and fetch its reset vector (the ETNT3 interrupt pending bit is not set in this case).			
LINT4	I	the MP. Its priority fal	is below that of the	ovides and active-low leve e edge-triggered interrupts ognized by the device.		
RESET	I	internal registers are s high-impedance levels	Reset. This signal is driven low to reset the device (all processors). During reset, all internal registers are set to their initial state and all ouputs are driven to their inactive or high-impedance levels. During the rising edge of RESET, the MP reset mode and the devices operating endian mode are determined by the levels of HREQ and UTTME terminals, respectively.			
XPT2-XPT0	1	External packet transf a high-prioity XPT by t		ed inputs are used by exter	nal devices to requ	
		EMULATI	ON CONTROL			
EMU0, EMU1	I/O			re used to support emulati ocessor, and multiprocesso		
тск	1	Test clock. This signa to be compatible with different clock rates.	I provides the clo IEEE-1149.1 devi	ck for the devices IEEE-11 ces, controllers, and test e	49.1 logic, allowing quipment designed	
TDI	1		Test data input. This signal provides input data for all IEEE-1149.1 instructions and data scans of the device.			
TDO	0	Test data output. This signal provides output data for all IEEE-1149.1 instructions and data scans of the device.				
TMS	1	Test mode select. This	s signal controls t	he IEEE-1149.1 state mad	hine.	
TRST	ł			es IEEE-1149.1 module. V g normal device operation		
CAREA0, CAREA1	0			a special area such as an o e internal horizontal and ve		
CBINKO/VBINI CBINK1/VBINI	रक रन	blanking functions, de	pending on the co king disables pixe periods and is ena	ach of these signals provion nfiguration of the CSYNC I display/capture during bo Ibled when CSYNC is sel	C/HBLNK termina	
		Vertical blanking	disables pixel dis	splay/capture during vertic ed for separate-sync video	al retrace periods a	
				CBENKO, CBENKT	y systems.	
MICR	STANDA		SIZE A		5962-9679	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216			REVISION LEVEL	SHEET 63		

🔳 9004708 0031742 T29 🖿

Dia availat	Ture	Description Continued
<u>Pin symbol</u> 查询"5962-9679	<u>Type</u> 101QYC"供	<u>Description</u> - Continued. 应商 DESCRIPTION
		Composite sync/horizontal blanking. Thes terminals can be programmed for one of
CSYNCO/HBINKO/O/Z CSYNC1/HBINK1		two functions: Composite sync is for use on composite-sync video systems and can be programmed as an input, output, or high-impedance signal. As an input, the device extracts horizontal and vertical sync information from externally generated from either external HSYNC and VSYNC signals or the devices internal video timers. In the high- impedance state, the terminal is neither driven nor allowed to drive circuitry.
		Horizontial blank disables pixel display/capture during horizontal retrace periods in separate-sync video systems and can be used as an output only.
		Immediately following reset, these signals are configured as high-impedance $\overline{CSYNC0}$ and $\overline{CSYNC1}$.
FCLK0, FCLK1	I	Frame clock. These signals are derived from the external video system's dotclock and are used to drive the devices video logic for frame timer 0 and frame timer 1.
HSYNCO HSYNCI	1/0/Z	Horizontal sync. These signals control the video system. They can be programmed as input, ouput, or high-impedance signals. As an input, HSYNC synchronizes the video timer to externally generated horizontal sync pulses. As an output, HSYNC is an active-low horizontal sync pulse gererated by the device on-chip frame timer. In the high impedance state, the terminal is not driven and no internal synchronization is allowed to occur. Immediately folowing reset, these signals are in the high-impedance state.
SCLK0, SCLK1	1	Serial data clock. These clock inputs are used by the devices SRT controller to track the VRAM tap point when using midline reload. SCLK0 and SCLK1 should be the same signals that clock the serial register on the VRAMs controlled by frame timer 0 and frame timer 1, respectively.
VSYNCO VSYNC	I/O/Z	Vertical sync. These signals control the video system. They can be programmed as an inputs, outputs, or high-impedance signals. As inputs, VSYNCx synchronizes the frame timer to externally generated vertical sync pulses. As ouputs, VSYNCx are active-low vertical-sync pulses generated by the device on-chip frame timer. In the high-impedance state, the terminal is not driven and no internal synchronization is allowed to occur, Immediately following reset, this signal is in the high-impedance state.
v _{ss}	1	Ground. Electrical ground inputs.
V _{DD}	l.	Power. Nominal 3.3-V power supply inputs.
V _{CC}	ł	5 V power. Nominal 5-V power supply inputs.
6.6 Sources of sur	ylac	
C.C.A. Courses of a	والمتعام والمتعارية والمتعارية	a classes O and M. Courses of eventy for device classes O and V are listed in OMI 29525

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING		5962-96791	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216		REVISION LEVEL	SHEET 64

DSCC FORM 2234 APR 97

9004708 0031743 965 🖿

查询"5962-9679101QYC"供应商 STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN

DATE: 97-06-10

Approved sources of supply for SMD 5962-96791 are listed below for immediate acquisition only and shall be added to MIL-HDBK-103 during the next revision. MIL-HDBK-103 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-9679101QXA	01295	SMJ320C80GFM50
5962-9679101QYC	01295	SMJ320C80HFHM50

1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. The device manufacturers listed herein are authorized to supply alternate lead finishes "A", "B", or "C" at their discretion. Contact the listed approved source of supply for further information. <u>Caution</u>. Do not use this number for item

2/ acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

01295

Vendor name and address

Texas Instrument, Incorporated 13500 North Central Expressway P.O. Box 655303 Dallas TX 75265 Point of contact: I-20 at FM 1788 Midland TX 79711-0448

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

🔳 9004708 0031744 8T1 📟