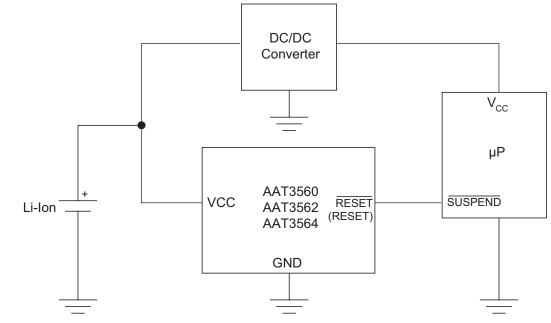


General Description

The AAT3560/2/4 series of PowerManager products are part of AnalogicTech's Total Power Management IC[™] (TPMIC[™]) product family. These voltage detectors are ideal for monitoring voltage supplies in portable systems, where extended battery life is critical. They provide a lowcost, reliable solution by eliminating several external components. The AAT3560 series operates by monitoring the system power supply voltage. When the input voltage drops below a fixed threshold, the device output changes state depending upon configuration. When the input voltage rises above the threshold, the device output reverts back to the previous state. The AAT3560 series is available with three different output stages: AAT3560 push-pull active high output; AAT3562 push-pull active low output; and AAT3564 open drain active low output.

The quiescent supply current is extremely low, typically $1\mu A$, making it ideal for portable battery-operated equipment.

AAT3560/2/4 devices are available in a Pb-free, 3-pin SOT23 package and are specified over the -40°C to +85°C operating temperature range.


Features

PowerManager[™]

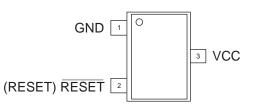
- Input Voltage Range: 1.2V to 5.5V
- Operates Down to 1.2V
- Extremely Low Quiescent Current: Less Than 2µA
- High Accuracy Detection Threshold: ±1.5%
- Monitor Power Supply Voltages
- Fixed Thresholds from 2.2V to 4.6V
- Active Noise Suppression
- Available Output Configurations:
 - Open-Drain Output
 - CMOS Active High Output
 - CMOS Active Low Output
- Temperature Range: -40°C to +85°C
- 3-Pin SOT23 Package

Applications

- Battery Charger Circuits
- Battery Packs
- Data Acquisition Systems
- Intelligent Instruments
- Notebook Computers
- Portable Electronics
- Power Supplies

Typical Application

Pin Descriptions


Pin #	Symbol	Function
1	GND	Ground
2	RESET (RESET)	Reset output. See table below for output configurations.
3	VCC	Supply voltage (+1.2V to +5.5V).

Part Number Descriptions

SOT23-3 Part Number	Part Description
AAT3560	RESET Push Pull Active High
AAT3562	RESET Push Pull Active Low
AAT3564	RESET Open Drain, Active Low

Pin Configuration

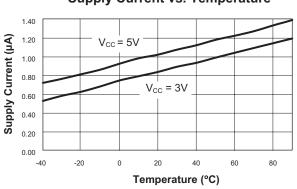
Absolute Maximum Ratings¹ $T_A = 25^{\circ}C$, unless otherwise noted.

Symbol	Description	Value	Units	
V _{cc}	V _{CC} to GND	-0.3 to 5.5	V	
	RESET to GND (Push-Pull Output)	-0.3 to V _{CC} +0.3		
V _{RESET}	RESET to GND (Open-Drain Output)	-0.3 to 5.5	V	
I _{MAX}	Maximum Continuous Input Current	20	mA	
I _{RESET}	RESET/RESET Current	20	mA	
TJ	Operating Junction Temperature Range	-40 to 150	°C	
T _{LEAD}	Maximum Soldering Temperature (at Leads) for 10s	300	°C	

Thermal Information²

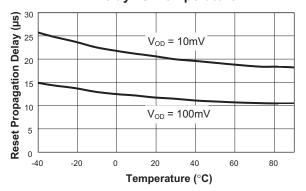
Symbol	Description	Value	Units
Θ_{JA}	Maximum Thermal Resistance	200	°C/W
P _D	Maximum Power Dissipation	320	mW

^{1.} Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time. 2. Mounted on an FR4 board.

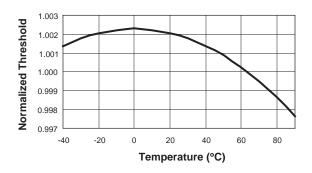

Electrical Characteristics

 $V_{IN} = 5V$; $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are at $T_A = 25^{\circ}$ C; $V_{CC} = 5V$ for 4.63/4.38V versions; $V_{CC} = 3.3V$ for 3.08/2.93V versions; $V_{CC} = 3.0V$ for 2.63V version; $V_{CC} = 2.5V$ for 2.32/2.2V versions.

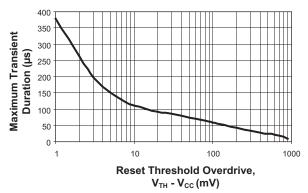
Symbol	Description	Conditions	Min	Тур	Max	Units	
	Operation Voltage	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	1.0		5.5	V	
V _{cc}	Operation voltage	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.2		5.5		
ا _م	Quiescent Current	$V_{CC} = 3V$		0.85	2	μA	
'Q		$V_{CC} = 5.5V$		1.05	3		
V _{TH}	RESET Threshold (Table 1)	$T_A = 25^{\circ}C$	V _{TH} - 1.5%	V_{TH}	V _{TH} +1.5%	- v I	
* I H		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	V _{TH} - 2.5%	V_{TH}	V _{TH} +2.5%		
dV _{TH} /°C	RESET Threshold Tempco			40		ppm/°C	
	RESET Low Output Voltage	$I_{SINK} = 1.2mA, V_{CC} = V_{TH(min)}, V_{TH} \le 3.08V, RESET Asserted$			0.3	V	
V _{OL}	AAT3562, AAT3564	$I_{SINK} = 3.2mA, V_{CC} = V_{TH(min)}, V_{TH} > 3.08V, RESET Asserted$			0.4		
V _{OH}	RESET High Output Voltage,	I_{SOURCE} = 800µA, V_{TH} > 3.08V, V_{CC} > $V_{TH (max)}$	V _{CC} -1.5			- V	
	AAT3562	$\begin{split} I_{SOURCE} &= 500 \mu A, \ V_{TH} \leq 3.08 \text{V}, \\ V_{CC} &> V_{TH \ (max)} \end{split}$	0.8 V _{CC}				
V _{OL}	RESET Low Output Voltage	I_{SINK} = 1.2mA, V_{CC} > $V_{TH (max)}$, $V_{TH} \le$ 3.08V, RESET Not Asserted			0.3	V	
	AAT3560	I_{SINK} = 3.2mA, V_{CC} > $V_{TH (max)}$, V_{TH} > 3.08V, RESET Not Asserted			0.4		
Vou	RESET High Output Voltage AAT3560	I _{SOURCE} = 500μA, V _{CC} > 2.1V, RESET Asserted	0.8V _{CC}			- V	
		I _{SOURCE} = 50μA, V _{CC} > 1.2V, RESET Asserted	0.8V _{CC}				
I _{DOFF}	RESET Leakage Current, AAT3564	$V_{CC} > V_{TH}$			1	μA	



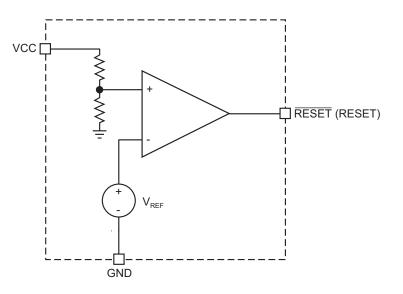
$\frac{\text{Typical Characteristics}}{V_{\text{IN}} = 5\text{V}; \text{ } \text{T}_{\text{A}} = 25^{\circ}\text{C}, \text{ unless otherwise noted}.}$



Supply Current vs. Temperature


Power-Down Reset Propagation Delay vs. Temperature

Normalized Reset Threshold vs. Temperature



Maximum Transient Duration vs. Reset Threshold Overdrive

Functional Block Diagram

Functional Description

General

The AAT3560 series of NanoPower voltage detectors monitor a system power supply and assert an output signal (low for AAT3562 and AAT3564; high for AAT3560) when the supply voltage drops below a factory-programmed threshold voltage. The output signal will remain valid until the input voltage falls below the minimum operating voltage of 1V. Below this value, the output voltage is undefined. When the input voltage rises above the factory-programmed threshold, the output signal will resume its inactive state. An active noise-suppression circuit in the AAT3560/2/4 gives the output excellent immunity from power supply transients. See graph titled "Maximum Transient Duration vs. Reset Threshold Overdrive" for further information.

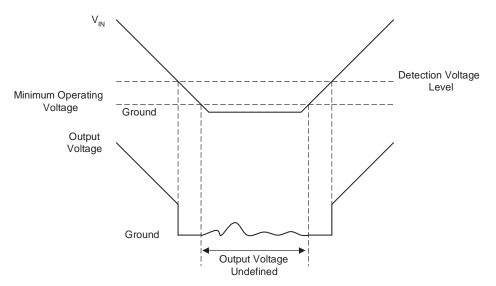


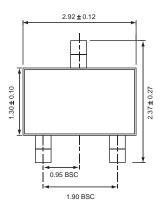
Figure 1: AAT3562 Timing Diagram.

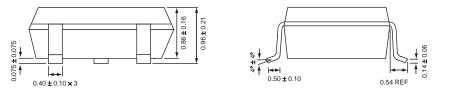
Factory-Trimmed Reset Thresholds¹ and Ordering Information

		Reset Threshold Voltage, V _{TH} (V)					
Ordering	Package Marking Code ³		T _A = 25°C			T _A = -40°C to +85°C	
Ordering Part Number ²		MIN	TYP	MAX	MIN	MAX	
AAT3560IGY-2.20-T1	EBXYY	2.167	2.200	2.233	2.145	2.255	
AAT3562IGY-2.20-T1	FWXYY	2.107	2.200	2.233	2.145	2.200	
AAT3562IGY-2.30-T1	FXXYY	2.266	2.300	2.335	2.243	2.358	
AAT3560IGY-2.50-T1 AAT3562IGY-2.50-T1	ECXYY IPXYY	2.463	2.500	2.538	2.438	2.563	
AAT3562IGY-2.70-T1	FOXYY	2.660	2.700	2.741	2.633	2.768	
AAT3562IGY-3.10-T1	KOXYY	3.054	3.100	3.147	3.023	3.178	

All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at http://www.analogictech.com/pbfree.

1 Contact local sales office for custom trim options.


2. Sample stock is generally held on part numbers listed in BOLD.


3. XYY = assembly and date code.

Package Information

SOT23-3

All dimensions in millimeters.

© Advanced Analogic Technologies, Inc.

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessarily performed.

Advanced Analogic Technologies, Inc. 830 E. Arques Avenue, Sunnyvale, CA 94085 Phone (408) 737-4600 Fax (408) 737-4611

