
www.ti.com

CLASS V, 13 BIT, 250 MSPS ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 13 Bit Resolution
- 250 MSPS Sample Rate
- SNR = 67.6 dBc at 230 MHz IF and 250 MSPS
- SFDR = 74.0 dBc at 230 MHz IF and 250 MSPS
- 2.2 VPP Differential Input Voltage
- Fully Buffered Analog Inputs
- 5 V Analog Supply Voltage
- LVDS Compatible Outputs
- Total Power Dissipation: 2 W
- Offset Binary Output Format
- Pin Compatible With the ADS5440
- Military Temperature Range
($-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C} \mathrm{T}_{\text {case }}$)

APPLICATIONS

- Test and Measurement
- Software-Defined Radio
- Multichannel Base Station Receivers
- Base Station Tx Digital Predistortion
- Communications Instrumentation

RELATED PRODUCTS

- ADS5424-14 Bit, 105 MSPS ADC
- ADS5423-14 Bit, 80 MSPS ADC
- ADS5440-13 Bit, 210 MSPS ADC

DESCRIPTION/ORDERING INFORMATION

The ADS5444 is a 13 bit 250 MSPS analog-to-digital converter (ADC) that operates from a 5 V supply, while providing LVDS-compatible digital outputs from a 3.3 V supply. The ADS5444 input buffer isolates the internal switching of the onboard track and hold $(T \& H)$ from disturbing the signal source. An internal reference generator is also provided to further simplify the system design. The ADS5444 has outstanding low noise and linearity over input frequency.

The ADS5444 is available in a 84 pin ceramic nonconductive tie-bar package (HFG). The ADS5444 is built on a state-of-the-art Texas Instruments complementary bipolar process (BiCom3X) and is specified over the full military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C} \mathrm{T}_{\text {case }}\right)$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TEMPERATURE	PACKAGE ${ }^{(1)(2)}$	ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}_{\text {case }}$	$84 / \mathrm{HFG}$	$5962-0720701 \mathrm{VXC}$	$5962-0720701 \mathrm{VXC}$ ADS5444MHFG-V

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

over operating temperature range (unless otherwise noted) ${ }^{(1)}$

		VALUE/UNIT
Supply voltage	AV $\mathrm{DD}^{\text {do }}$ GND	6 V
	$\mathrm{DRV}_{\text {DD }}$ to GND	5 V
Analog input to GND		-0.3 V to $\mathrm{AV}^{\text {DD }}+0.3 \mathrm{~V}$
Clock input to GND		-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
CLK to CLK		$\pm 2.5 \mathrm{~V}$
Digital data output to GND		-0.3 V to $\mathrm{DRV}^{\text {DD }}+0.3 \mathrm{~V}$
T_{C}	Characterized case operating temperature range	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	$150^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ESD Human Body Model (HBM)		2.5 kV

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other conditions beyond those specified is not implied.

INSTRUMENTS
ADS5444-SP
www.ti.com
查诲"ADs8444 spur
SGLS391-MARCH 2008

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
SUPPLIES				
AV $\mathrm{V}_{\text {D }} \quad$ Analog supply voltage	4.75	5	5.25	V
DRV ${ }_{\text {DD }}$ Output driver supply voltage	3	3.3	3.6	V
ANALOG INPUT				
Differential input range		2.2		$V_{P P}$
$\mathrm{V}_{\mathrm{CM}} \quad$ Input common mode		2.4		V
CLOCK INPUT				
ADCLK input sample rate (sine wave)	10		250	MSPS
Clock amplitude, differential sine wave		3		VPP
Clock duty cycle		50\%		
$\mathrm{T}_{\mathrm{C}} \quad$ Operating case temperature	-55		125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Typical values at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full temperature range is $\mathrm{T}_{\mathrm{C}, \mathrm{MIN}}=-55^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{C}, \mathrm{MAX}}=125^{\circ} \mathrm{C}$, sampling rate $=250 \mathrm{MSPS}, 50 \%$ clock duty cycle, $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{DRV}_{\mathrm{DD}}=3.3 \mathrm{~V},-1 \mathrm{dBFS}$ differential input, and $3 \mathrm{~V}_{\mathrm{PP}}$ differential clock (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Resolution				13		Bits
ANALOG INPUTS						
Differential input range				2.2		V_{pp}
Differential input resistance (DC)				1		k Ω
Differential input capacitance				1.5		pF
Analog input bandwidth				800		MHz
INTERNAL REFERENCE VOLTAGE						
VREF Reference voltage			2.38	2.4	2.42	V
DYNAMIC ACCURACY						
No missing codes			Assured			
DNL Differential linearity error	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$	Full temp range	-0.98	± 0.4	2	LSB
INL Integral linearity error	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}, \mathrm{MAX}}$	-2.8		2.8	LSB
		$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{C}, \mathrm{MIN}}$	-4.8		4.8	
Offset error		Full temp range	-0.6		0.6	\%FS
Offset temperature coefficient			0.0005			\%FS/ ${ }^{\circ} \mathrm{C}$
Gain error		Full temp range	-5		5	\%FS
Gain temperature coefficient				-0.02		\%FS/ ${ }^{\circ} \mathrm{C}$
POWER SUPPLY						
$\mathrm{I}_{\text {AVDD }}$ Analog supply current	$\mathrm{V}_{\mathrm{IN}}=$ full scale, $\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{F}_{\mathrm{S}}=250 \mathrm{MSPS}$			340	410	mA
IDRVDD Output buffer supply current				80	100	mA
Power dissipation				2	2.29	W

ELECTRICAL CHARACTERISTICS (continued)

Typical values at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full temperature range is $\mathrm{T}_{\mathrm{C}, \mathrm{MIN}}=-55^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{C}, \mathrm{MAX}}=125^{\circ} \mathrm{C}$, sampling rate $=250 \mathrm{MSPS}, 50 \%$ clock duty cycle, $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{DRV}_{\mathrm{DD}}=3.3 \mathrm{~V},-1 \mathrm{dBFS}$ differential input, and $3 \mathrm{~V}_{\mathrm{PP}}$ differential clock (unless otherwise noted)

ELECTRICAL CHARACTERISTICS (continued)

Typical values at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full temperature range is $\mathrm{T}_{\mathrm{C}, \mathrm{MIN}}=-55^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{C}, \mathrm{MAX}}=125^{\circ} \mathrm{C}$, sampling rate $=250 \mathrm{MSPS}, 50 \%$ clock duty cycle, $A V_{D D}=5 \mathrm{~V}, \mathrm{DRV}_{\mathrm{DD}}=3.3 \mathrm{~V},-1 \mathrm{dBFS}$ differential input, and $3 \mathrm{~V}_{\mathrm{PP}}$ differential clock (unless otherwise noted)

ELECTRICAL CHARACTERISTICS (continued)

Typical values at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full temperature range is $\mathrm{T}_{\mathrm{C}, \mathrm{MIN}}=-55^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{C}, \mathrm{MAX}}=125^{\circ} \mathrm{C}$, sampling rate $=250 \mathrm{MSPS}, 50 \%$ clock duty cycle, $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{DRV}_{\mathrm{DD}}=3.3 \mathrm{~V},-1 \mathrm{dBFS}$ differential input, and $3 \mathrm{~V}_{\mathrm{PP}}$ differential clock (unless otherwise noted)

TIMING CHARACTERISTICS

Figure 1. Timing Diagram

TIMING CHARACTERISTICS
Typical values at $T_{C}=25^{\circ} \mathrm{C}, 50 \%$ clock duty cycle, sampling rate $=250 \mathrm{MSPS}, \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{DRV}_{\mathrm{DD}}=3.3 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{A}} \quad$ Aperture delay			500		ps
$\mathrm{t}_{J} \quad$ Clock slope independent aperture uncertainty (jitter)			200		fs RMS
Latency			4		cycles
Clock Input					
tcLk Clock period			4		ns
tclkh Clock pulse width high			2		ns
$\mathrm{t}_{\text {CLKL }} \quad$ Clock pulse width low			2		ns
Clock to DataReady (DRY)					
$\mathrm{t}_{\mathrm{DR}} \quad$ Clock rising to DataReady falling			1.1		ns
$\mathrm{t}_{\text {C_DR }} \quad$ Clock rising to DataReady rising	Clock duty cycle $=50 \%{ }^{(1)}$	2.7	3.1	3.5	ns
Clock to DATA, OVR ${ }^{(2)}$					
$\mathrm{tr}_{\mathrm{r}} \quad$ Data rise time (20\% to 80\%)			0.6		ns
$\mathrm{t}_{\mathrm{f}} \quad$ Data fall time(80\% to 20\%)			0.6		ns
$\mathrm{t}_{\text {su_c }} \quad$ Data valid to clock (setup time)			3.1		ns
$\mathrm{t}_{\mathrm{h}} \mathrm{c} \quad$ Clock to invalid data (hold time)			0.2		ns
DataReady (DRY)/DATA, OVR ${ }^{(2)}$					
$\mathrm{t}_{\text {su(DR) }} \quad$ Data valid to DRY		1.5	2		ns
$\mathrm{th}_{\text {(DR) }} \quad$ DRY to invalid data		0.9	1.3		ns

(1) $t_{C D R}=t_{D R}+t_{C L K H}$ for clock duty cycles other than 50%
(2) Dāta is updated with clock falling edge or DRY rising edge.

DEVICE INFORMATION

HFG PACKAGE (TOP VIEW)

TERMINAL FUNCTIONS

TERMINAL		DESCRIPTION
NAME	NO.	
AVDD	$\begin{gathered} 4,9,14,15,20,23, \\ 25,27,29,33,37,39, \\ 41 \end{gathered}$	Analog power supply
DVDD	2, 54, 70	Output driver power supply
GND	$\begin{gathered} 1,3,8,10,13,16,19, \\ 21,22,24,26,28,30, \\ 32,34,36,38,40,42, \\ 43,55,64,69 \end{gathered}$	Ground
VREF	7	Reference voltage
CLK	11	Differential input clock (positive). Conversion initiated on rising edge.
CLK	12	Differential input clock (negative)
AIN	17	Differential input signal (positive)
$\overline{\text { AIN }}$	18	Differential input signal (negative)
OVR, OVR	44, 45	Over range indicator LVDS output. A logic high signals an analog input in excess of the full-scale range.
D0, $\overline{\mathrm{DO}}$	52, 53	LVDS digital output pair, least-significant bit (LSB)
D1-D4, $\overline{\mathrm{D} 1}-\overline{\mathrm{D} 4}$	56-63	LVDS digital output pairs
D5-D6, D5-D6	65-68	LVDS digital output pairs

TERMINAL FUNCTIONS (continued)

TERMINAL		DESCRIPTION
NAME	NO.	
D7-D11, $\overline{\text { 77- }}$ D11	71-80	LVDS digital output pairs
D12, $\overline{\text { 12 }}$	81, 82	LVDS digital output pair, most-significant bit (MSB)
DRY, DRY	83, 84	Data ready LVDS output pair
NC	5, 6, 31, 35, 46-51	No connect

THERMAL CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	TYP
$R_{\text {ӨJA }}$	Junction-to-free-air thermal resistance	Board mounted, per JESD 51-5 methodology	21.813
$\mathrm{R}_{\text {өJC }}$	Junction-to-case thermal resistance	MIL-STD-883 Test Method 1012	${ }^{\circ} \mathrm{C} / \mathrm{W}$

THERMAL NOTES

This CQFP package has built in vias that electrically and thermally connect the bottom of the die to a pad on the bottom of the package. To efficiently remove heat and provide a low-impedance ground path, a thermal land is required on the surface of the PCB directly underneath the body of the package. During normal surface mount flow solder operations, the heat pad on the underside of the package is soldered to this thermal land creating an efficient thermal path. Normally, the PCB thermal land has a number of thermal vias within it that provide a thermal path to internal copper areas (or to the opposite side of the PCB) that provide for more efficient heat removal. TI typically recommends an $11,9-\mathrm{mm}^{2}$ board-mount thermal pad. This allows maximum area for thermal dissipation, while keeping leads away from the pad area to prevent solder bridging. A sufficient quantity of thermal/electrical vias must be included to keep the device within recommended operating conditions. This pad must be electrically at ground potential.

Figure 2. ADS5444 Estimated Device Life at Elevated Temperatures Electromigration Fail Mode

DEFINITION OF SPECIFICATIONS

Analog Bandwidth The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low frequency value.
Aperture Delay The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs.

Aperture Uncertainty (Jitter) The sample-to-sample variation in aperture delay.
Clock Pulse Width/Duty CycleThe duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine wave clock results in a 50% duty cycle.
Maximum Conversion Rate The maximum sampling rate at which certified operation is given. All parametric testing is performed at this sampling rate unless otherwise noted.
Minimum Conversion Rate The minimum sampling rate at which the ADC functions.
Differential Nonlinearity (DNL)An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSB.
Integral Nonlinearity (INL)The INL is the deviation of the ADCs transfer function from a best fit line determined by a least squares curve fit of that transfer function. The INL at each analog input value is the difference between the actual transfer function and this best fit line, measured in units of LSB.
Gain Error The gain error is the deviation of the ADCs actual input full-scale range from its ideal value. The gain

DEFINITION OF SPECIFICATIONS (continued)

error is given as a percentage of the ideal input full-scale range.
Offset Error Offset error is the deviation of output code from mid-code when both inputs are tied to common-mode.

Temperature Drift Temperature drift (with respect to gain error and offset error) specifies the change from the value at the nominal temperature to the value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$. It is computed as the maximum variation the parameters over the whole temperature range divided by $\mathrm{T}_{\mathrm{MIN}}-\mathrm{T}_{\mathrm{MAX}}$.
Signal-to-Noise Ratio (SNR)SNR is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{S}}\right)$ to the noise floor power $\left(\mathrm{P}_{\mathrm{N}}\right)$, excluding the power at dc and the first five harmonics.
$S N R=10 \log _{10} \frac{P_{S}}{P_{N}}$
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-scale range.
Signal-to-Noise and Distortion (SINAD) SINAD is the ratio of the power of the fundamental (P_{S}) to the power of all the other spectral components including noise $\left(\mathrm{P}_{\mathrm{N}}\right)$ and distortion $\left(\mathrm{P}_{\mathrm{D}}\right)$, but excluding dc.
SINAD $=10 \log _{10} \frac{P_{S}}{P_{N}+P_{D}}$
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-scale range.
Effective Resolution Bandwidth The highest input frequency where the SNR (dB) is dropped by 3 dB for a full-scale input amplitude.

Total Harmonic Distortion (THD)THD is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{S}}\right)$ to the power of the first five harmonics (P_{D}).
$T H D=10 \log _{10} \frac{P_{S}}{P_{D}}$
THD is typically given in units of dBc (dB to carrier).
Two-Tone Intermodulation Distortion IMD3 is the ratio of the power of the fundamental (at frequencies f_{1}, f_{2}) to the power of the worst spectral component at either frequency $2 f_{1}-f_{2}$ or $2 f_{2}-f_{1}$). IMD3 is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's full-scale range.

INSTRUMENTS
www.ti.com
ADS5444-SP

TYPICAL CHARACTERISTICS

Figure 3.

Figure 5.

Figure 7.

AC Performance Input Amplitude (230 MHz)

Figure 4.

Figure 6.

Figure 8.

TYPICAL CHARACTERISTICS (continued)

Figure 9.

 SNR-dBc

Figure 11.

Figure 10.

SFDR
Input Frequency and Sampling Frequency

 $\square 74-76 \quad \square 76-78 \quad \square 78-80 \quad \square 80-82 \quad \square 82-84 \quad \square 84-86 \quad \square 86-88 \quad \square 88-90$

SFDR - dBc

Figure 12.

APPLICATION INFORMATION

Theory of Operation

The ADS5444 is a 13 bit, 250 MSPS, monolithic pipeline analog-to-digital converter (ADC). Its bipolar analog core operates from a 5 V supply, while the output uses a 3.3 V supply to provide LVDS compatible outputs. The conversion process is initiated by the rising edge of the external input clock. At that instant, the differential input signal is captured by the input track and hold $(\mathrm{T} \& \mathrm{H})$ and the input sample is sequentially converted by a series of small resolution stages, with the outputs combined in a digital correction logic block. Both the rising and the falling clock edges are used to propagate the sample through the pipeline every half clock cycle. This process results in a data latency of four clock cycles, after which the output data is available as a 13 bit parallel word, coded in offset binary format.

Input Configuration

The analog input for the ADS5444 consists of an analog differential buffer followed by a bipolar T\&H. The analog buffer isolates the source driving the input of the ADC from any internal switching. The input common mode is set internally through a 500Ω resistor connected from 2.4 V to each of the inputs. This results in a differential input impedance of $1 \mathrm{k} \Omega$.
For a full-scale differential input, each of the differential lines of the input signal (pins 17 and 18) swings symmetrically between $2.4+0.55 \mathrm{~V}$ and $2.4-0.55 \mathrm{~V}$. This means that each input has a maximum signal swing of $1.1 \mathrm{~V}_{\mathrm{PP}}$ for a total differential input signal swing of $2.2 \mathrm{~V}_{\mathrm{PP}}$. The maximum swing is determined by the internal reference voltage generator eliminating the need for any external circuitry for this purpose.
The ADS5444 obtains optimum performance when the analog inputs are driven differentially. The circuit in Figure 13 shows one possible configuration using an RF transformer with termination either on the primary or on the secondary of the transformer. If voltage gain is required, a step up transformer can be used. For voltage gains that would require an impractical transformer turn ratio, a single-ended amplifier driving the transformer is shown in Figure 14.

Figure 13. Converting a Single-Ended Input to a Differential Signal Using RF Transformers

Figure 14. Using the OPA695 with the ADS5444

Figure 15. Using the THS4509 with the ADS5444
Besides the OPA695, TI offers a wide selection of single-ended operational amplifiers that can be selected depending on the application. An RF gain block amplifier, such as the TI THS9001, can also be used with an RF transformer for high input frequency applications. For applications requiring dc-coupling with the signal source, a differential input/differential output amplifier like the THS4509 (see Figure 15) is a good solution, as it minimizes board space and reduces the number of components.
In this configuration, the THS4509 amplifier circuit provides 10 dB of gain, converts the single-ended input to differential, and sets the proper input common-mode voltage to the ADS5444.
The 50Ω resistors and 18 pF capacitor between the THS4509 outputs and ADS5444 inputs (along with the input capacitance of the ADC) limit the bandwidth of the signal to about $70 \mathrm{MHz}(-3 \mathrm{~dB})$.
Input termination is accomplished via the 78.9Ω resistor and $0.22 \mu \mathrm{~F}$ capacitor to ground in conjunction with the input impedance of the amplifier circuit. A $0.22 \mu \mathrm{~F}$ capacitor and 49.9Ω resistor are inserted to ground across the 78.9Ω resistor and $0.22 \mu \mathrm{~F}$ capacitor on the alternate input to balance the circuit.
Gain is a function of the source impedance, termination, and 348Ω feedback resistor. See the THS4509 data sheet for further component values to set proper 50Ω termination for other common gains.

Because the ADS5444 recommended input common-mode voltage is 2.4 V , the THS4509 is operated from a single power supply input with $\mathrm{V}_{\mathrm{S}_{+}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S}_{-}}=0 \mathrm{~V}$ (ground). This maintains maximum headroom on the internal transistors of the THS4509.

Clock Inputs

The ADS5444 clock input can be driven with either a differential clock signal or a single-ended clock input, with little or no difference in performance between both configurations. In low-input frequency applications, where jitter may not be a big concern, the use of single-ended clock (see Figure 16) could save some cost and board space without any trade-off in performance. When driven on this configuration, it is best to connect CLK to ground with a $0.01 \mu \mathrm{~F}$ capacitor, while CLK is ac-coupled with a $0.01 \mu \mathrm{~F}$ capacitor to the clock source, as shown in Figure 16.

Figure 16. Single-Ended Clock

Figure 17. Differential Clock
For jitter-sensitive applications, the use of a differential clock has some advantages (as with any other ADC) at the system level. The first advantage is that it allows for common-mode noise rejection at the PCB level.
A differential clock also allows for the use of bigger clock amplitudes without exceeding the absolute maximum ratings. In the case of a sinusoidal clock, this results in higher slew rates and reduces the impact of clock noise on jitter. See Clocking High Speed Data Converters (SLYT075) for more details.

Figure 17 shows this approach. The back-to-back Schottky diodes can be added to limit the clock amplitude in cases where this would exceed the absolute maximum ratings, even when using a differential clock.

Figure 18. Differential Clock Using PECL Logic
Another possibility is the use of a logic-based clock, such as PECL. In this case, the slew rate of the edges is most likely much higher than the one obtained for the same clock amplitude based on a sinusoidal clock. This solution would minimize the effect of the slope dependent ADC jitter. Using logic gates to square a sinusoidal clock may not produce the best results, as logic gates may not have been optimized to act as comparators, adding too much jitter while squaring the inputs.
The common-mode voltage of the clock inputs is set internally to 2.4 V using internal $1 \mathrm{k} \Omega$ resistors. It is recommended to use ac coupling, but if this scheme is not possible due to, for instance, asynchronous clocking, the ADS5444 features good tolerance to clock common-mode variation.

Additionally, the internal ADC core uses both edges of the clock for the conversion process. Ideally, a 50% duty cycle clock signal should be provided.

Digital Outputs

The ADC provides 13 data outputs (D12 to D0, with D12 being the MSB and D0 the LSB), a data-ready signal (DRY), and an over-range indicator (OVR) that equals a logic high when the output reaches the full-scale limits. The output format is offset binary. It is recommended to use the DRY signal to capture the output data of the ADS5444.

The ADS5444 digital outputs are LVDS compatible.

Power Supplies

The use of low-noise power supplies with adequate decoupling is recommended. Linear supplies are the preferred choice versus switched ones, which tend to generate more noise components that can be coupled to the ADS5444.

The ADS5444 uses two power supplies. For the analog portion of the design, a 5 V AVDD is used, while for the digital outputs supply (DRVDD) TI recommends the use of 3.3 V . All the ground pins are marked as GND, although AGND pins and DRGND pins are not tied together inside the package.

Layout Information

The evaluation board represents a good guideline of how to lay out the board to obtain the maximum performance out of the ADS5444. General design rules such as the use of multilayer boards, single ground plane for ADC ground connections and local decoupling ceramic chip capacitors should be applied. The input traces should be isolated from any external source of interference or noise including the digital outputs, as well as the clock traces. The clock signal traces should also be isolated from other signals, especially in applications where low jitter is required as high IF sampling.
Besides performance-oriented rules, care has to be taken when considering the heat dissipation out of the device.

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead／Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5962-0720701$ VXC | ACTIVE | CFP | HFG | 84 | 1 | TBD | Call TI | Call TI |

${ }^{(1)}$ The marketing status values are defined as follows：
ACTIVE：Product device recommended for new designs．
LIFEBUY：TI has announced that the device will be discontinued，and a lifetime－buy period is in effect．
NRND：Not recommended for new designs．Device is in production to support existing customers，but TI does not recommend using this part in a new design．
PREVIEW：Device has been announced but is not in production．Samples may or may not be available．
OBSOLETE：TI has discontinued the production of the device．
${ }^{(2)}$ Eco Plan－The planned eco－friendly classification：Pb－Free（RoHS），Pb－Free（RoHS Exempt），or Green（RoHS \＆no Sb／Br）－please check http：／／www．ti．com／productcontent for the latest availability information and additional product content details．
TBD：The Pb－Free／Green conversion plan has not been defined．
Pb －Free（RoHS）：TI＇s terms＂Lead－Free＂or＂Pb－Free＂mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances，including the requirement that lead not exceed 0.1% by weight in homogeneous materials．Where designed to be soldered at high temperatures，TI Pb－Free products are suitable for use in specified lead－free processes．
Pb －Free（RoHS Exempt）：This component has a RoHS exemption for either 1）lead－based flip－chip solder bumps used between the die and package，or 2）lead－based die adhesive used between the die and leadframe．The component is otherwise considered Pb－Free（RoHS compatible）as defined above．
Green（RoHS \＆no $\mathbf{S b} / \mathrm{Br}$ ）：TI defines＂Green＂to mean Pb－Free（RoHS compatible），and free of Bromine（ Br ）and Antimony（Sb）based flame retardants（ Br or Sb do not exceed 0.1% by weight in homogeneous material）
${ }^{(3)}$ MSL，Peak Temp．－－The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications，and peak solder temperature．

Important Information and Disclaimer：The information provided on this page represents TI＇s knowledge and belief as of the date that it is provided．TI bases its knowledge and belief on information provided by third parties，and makes no representation or warranty as to the accuracy of such information．Efforts are underway to better integrate information from third parties．TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals．TI and TI suppliers consider certain information to be proprietary，and thus CAS numbers and other limited information may not be available for release．

In no event shall TI＇s liability arising out of such information exceed the total purchase price of the TI part（s）at issue in this document sold by TI to Customer on an annual basis．

OTHER QUALIFIED VERSIONS OF ADS5444－SP ：
－Catalog：ADS5444
－Enhanced Product：ADS5444－EP
NOTE：Qualified Version Definitions：
－Catalog－TI＇s standard catalog product
－Enhanced Product－Supports Defense，Aerospace and Medical Applications
$\operatorname{HFG}(S-C Q F P-F 84)$
CERAMIC QUAD FLATPACK WITH NCTB

NOTES：A．All linear dimensions are in inches（millimeters）．
B．This drawing is subject to change without notice．
C．Ceramic quad flatpack with flat leads brazed to non－conductive tie bar carrier．
D．This package is hermetically sealed with a metal lid．
E．The leads are gold plated and can be solderdipped．
F．Leads not shown for clarity purposes．

HFG（S－CQFP－F84）CERAMIC QUAD FLATPACK WITH NCTB

NOTES：A．All linear dimensions are in inches（millimeters）．
B．This drawing is subject to change without notice．
C．Ceramic quad flatpack with flat leads brazed to non－conductive tie bar carrier．
D．This package is hermetically sealed with a metal lid．
E．The leads are gold plated and can be solderdipped．
F．Leads not shown for clarity purposes．

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries（TI）reserve the right to make corrections，modifications，enhancements，improvements， and other changes to its products and services at any time and to discontinue any product or service without notice．Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete．All products are sold subject to Tl＇s terms and conditions of sale supplied at the time of order acknowledgment．
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl＇s standard warranty．Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty．Except where mandated by government requirements，testing of all parameters of each product is not necessarily performed．
TI assumes no liability for applications assistance or customer product design．Customers are responsible for their products and applications using TI components．To minimize the risks associated with customer products and applications，customers should provide adequate design and operating safeguards．
TI does not warrant or represent that any license，either express or implied，is granted under any TI patent right，copyright，mask work right， or other TI intellectual property right relating to any combination，machine，or process in which TI products or services are used．Information published by TI regarding third－party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof．Use of such information may require a license from a third party under the patents or other intellectual property of the third party，or a license from Tl under the patents or other intellectual property of TI ．
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties，conditions，limitations，and notices．Reproduction of this information with alteration is an unfair and deceptive business practice． TI is not responsible or liable for such altered documentation．Information of third parties may be subject to additional restrictions．

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice． Tl is not responsible or liable for any such statements．
TI products are not authorized for use in safety－critical applications（such as life support）where a failure of the TI product would reasonably be expected to cause severe personal injury or death，unless officers of the parties have executed an agreement specifically governing such use．Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications，and acknowledge and agree that they are solely responsible for all legal，regulatory and safety－related requirements concerning their products and any use of TI products in such safety－critical applications，notwithstanding any applications－related information or support that may be provided by TI．Further，Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety－critical applications．
TI products are neither designed nor intended for use in military／aerospace applications or environments unless the TI products are specifically designated by TI as military－grade or＂enhanced plastic．＂Only products designated by TI as military－grade meet military specifications．Buyers acknowledge and agree that any such use of TI products which TI has not designated as military－grade is solely at the Buyer＇s risk，and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use．

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO／TS 16949 requirements．Buyers acknowledge and agree that，if they use any non－designated products in automotive applications，TI will not be responsible for any failure to meet such requirements．

Following are URLs where you can obtain information on other Texas Instruments products and application solutions：

Products

Amplifiers	$\underline{\text { amplifier．ti．com }}$
Data Converters	
DLP® Products	$\underline{\text { dataconverter．ti．com }}$
DSP	$\underline{\text { dsp．ti．com }}$
Clocks and Timers	$\underline{\text { www．ti．com／clocks }}$
Interface	$\underline{\text { interface．ti．com }}$
Logic	
Power Mgmt	
Microcontrollers	$\underline{\text { power．ti．com }}$
RFID	$\underline{\text { www．ti－rfid．com }}$

RF／IF and ZigBee® Solutions www．ti．com／lprf

Applications

Audio	$\underline{\text { www．ti．com／audio }}$
Automotive	
Communications and	
Telecom	$\underline{\text { www．ti．com／automotive }}$
Computers and	
Peripherals	$\underline{\text { www．ti．com／communications }}$
Consumer Electronics	$\underline{\text { www．ti．com／computers }}$
Energy	$\underline{\text { www．ti．com／energy }}$
Industrial	$\underline{\text { www．ti．com／industrial }}$
Medical	$\underline{\text { www．ti．com／medical }}$
Security	$\underline{\text { www．ti．com／security }}$
Space，Avionics \＆	
Defense	$\underline{\text { www．ti．com／video }}$
Video and Imaging	$\underline{\text { www．ti．com／wireless－apps }}$
Wireless	

Mailing Address：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265 Copyright © 2010，Texas Instruments Incorporated

