T COP								I	REVIS	IONS		IONS								
LTR				<u>/44</u>	ı I	DESCI	RIPTI	ON					DAT	E (Y	R-MO-D	A)		APP	ROVEI)
查询"5	t cyc		awing table terru ersion ; dela lified		<u> </u>	tow volume to the left of the	-STD-18 oltage IRO/ EX lim nanged utline	835. , chan change it fro min L Y. E	Made t ged I _c d unit m t _{cyc} imit f ditori	the following from 100 the from	lowing 1 -1.6 1 ns to 1 to 15.5 to inges	MA to		92-12-04			Monica L. Poeli		king	
REV	<u> </u>			Ţ		I		Γ	Γ	<u> </u>			· · · · · ·		Γ	Γ	· · · · · ·	1	1	
SHEET	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
SHEET REV	A 15	A 16	A 17	A 18	A 19	A 20	A 21	A 22	A 23	A 24	A 25	A 26	A 27	A 28	A 29	A 30	A 31	A 32	A 33	A 34
SHEET REV SHEET REV STATU	15 US			 	19	 		 	_			-			 		 		 	-
SHEET REV SHEET	15 US			18 RE	19	 	21	22	23	24	25	26		28	29	30	31	32	33	34
SHEET REV SHEET REV STATU OF SHEETS	15 US			18 REV	19 V EET	20	21 A 1	22 A	23 A	24 A 4	25 A 5	26 A 6	27 7 ECTR	28 A 8	29 A 9	30 A 10	31 A 11	32 A 12	33 A	34 A
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STAND MIL	15 US S PARDI	16 ZED		18 REV SHI	Tim	20	21 A 1	22 A	23 A	24 A 4	25 A 5 E FENS	26 A 6 SE EL D	27 7 ECTR	28 A 8 ONIC	29 A 9 S SUI	30 A 10 PPLY 4544	31 A 11 CENT	32 A 12 TER	33 A 13	34 A
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STAND MIL DRAWIN FOR USE BY A	JARDI JARDI JITAR AWING	ZED Y AILABI ARTMEN	17 LE	18 REV SHI	Tim	20 H. Nol	21 A 1	22 A 2	23 A	24 A 4 DI	25 A 5 EFENS	26 A 6 SE EL D IRCU 3-BI	27 7 ECTRAYTO	28 A 8 ONIC N, O	29 A 9 S SUIHIO	30 A 10 PPLY 4544	31 A 11 CENT 44	32 A 12 TER	33 A 13	34 A
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STAND MIL DRA	ARDI SITAR AWING IG IS AV ALL DEP ICIES OF	ZED YAILABIARTMEN	17	18 REV SHI PREPA CHECK APPRO	VEET RED BY Tim	20 H. Nol	21 A 1 h h DATE	22 A 2	23 A	A 4 DI	25 A 5 EFENS ROCI	26 A 6 EE EL D IRCU 3-BI PHIC	7 ECTRAYTO	28 A 8 ONIC N, O	29 A 9 S SUIHIO	30 A 10 PPLY 4544 L, H	31 A 11 CENT 44 IIGH	32 A 12 TER SPE	33 A 13	34 A
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STAND MIL DRA THIS DRAWING FOR USE BY A AND AGEN	DARDI ITAR AWING	ZED YAILABIARTMEN	17	18 REV SHI PREPA CHECK APPRO DRAWII 11	Tim EED BY Tim VED BY Willia	H. No.	21 A 1 h h DATE	22 A 2	23 A	24 A 4 DI	25 A 5 EFENS ROCI	26 A 6 EE EL D IRCU 3-BI PHIC	27 7 ECTRAYTO	28 8 ONIC N, O	29 A 9 S SUIHIO	30 A 10 PPLY 4544 L, H	31 A 11 CENT 44	32 A 12 TER SPE	33 A 13	34 A

JUL 91

<u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

5962-E585-92

1. SCOPE 查询"5962-8952701XA"供应商 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of for the use of MIL-STD-888 in conjunction with compliant non-JAN devices". MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example: 5962-89527 Drawing number Device type (1.2.1) Case outline Lead finish per (1.2.2)MIL-M-38510 1.2.1 Device type(s). The device type(s) shall identify the circuit function as follows: Device type Generic number Circuit function 01 68HC811E2 8-bit microcontroller, EEPROM 2K bytes, RAM 256 bytes 1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835, and as follows: Outline letter Descriptive designator Terminals Package style GDIP1-T48 or CDIP2-T48 48 Dual-in-line See figure 1 52 Square leaded chip carrier 1.3 Absolute maximum ratings. -65°C to +150°C Junction temperature (T₁)----+150°C Thermal resistance, junction to case $(\Theta_{JC}):-----$ See MIL-STD-1835 1.4 Recommended operating conditions. 4.5 V dc minimum to 5.5 V dc maximum **STANDARDIZED** SIZE 5962-89527 MILITARY DRAWING A DEFENSE ELECTRONICS SUPPLY CENTER

REVISION LEVEL

SHERT

2

DESC FORM 193A JUL 91

DAYTON, OHIO 45444

2. APPLICABLE DOCUMENTS

3.2.1.1 Government specification, standards, and bulletin. Unless otherwise specified, the following specification, standard, and bulletin of before Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-1835 - Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standards, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be as specified on figure 1 and in accordance with 1.2.2 herein.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Block diagram. The block diagram shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical</u> test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.7 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements o MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 Notification of change. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 3

DESC FORM 193A

DAY	TON, OHIO 45444		REVISION L	EVEL	SHEET						
MI DEFENSE RI	STANDARDIZED LITARY DRAWING ECTRONICS SUPPLY C	SIZE A			5962-8	9527					
See footnotes at end	of table.										
Functional tests		 	V _{DD} = 4.5 V, 5.5 V	7,8		! 					
	IRQ, XIRQ PAT, PA3, PCO-PC7, PDO-PD5, AS/STRA MODA/LIR, RESET		See 4.5.1b			14	.				
Input capacitance	 PAO-PA2, <u>PEO</u> -P <u>E7,</u> EXTAL,	CIN	V _{IN} = 0 V f _{IN} = 1 MHz See 4.3.1b	4		8	pF				
	STOP:	SIDD	V _{DD} = 5.5 V Single-chip	1,2,3		15 30 0	μA				
	WAIT: All peripheral functions shut down	WI _{DD}	Single-chip V _{DD} = 5.5 V Expanded multiplexed	1,2,3		10	-				
<u>3</u> /			V _{DD} = 5.5 V Expanded multiplexed V _{DD} = 5.5 V			30	-				
Total supply	RUN:	IDD	V _{DD} = 5.5 v Single chip V _{DD} = 5.5 v	1,2,3		20	, mA				
RAM standby current	AM standby current powerdown		y current powerdown		current powerdown			1,2,3		20	μА
AM standby voltage powerdown		V _{SB}		1,2,3	4.0	V _{DD}	V				
	MODB/V _{stby}		<u>2</u> /			±10					
Input current	PAO - PA2, IRQ, XIRQ	IIN	V _{IN} = V _{DD} or V _{SS}	1,2,3		±1	μΑ				
I/O ports, three-st PA3, PA7, PCO- <u>PC7</u> AS/STRA, MODA/LIR	, PDO-PD5,	Ioz	V _{DD} = 5.5 V V _{IN} = V _{IH} or V _{IL}	1,2,3		±10	μΑ				
Input low voltage:	All inputs	v _{IL}	 	1,2,3	0.8 V _{DD}	0.2 V _{DD}	V				
	RESET					V _{DD}	-				
Input high voltage	All inputs except RESET	V _{IH}	V _{DD} = 4.5 V	1,2,3	0.7 V _{DD}	v _{DD}	V				
Output low voltage: All outputs excep	t XTAL	V _{OL}	I _{OL} = 1.6 mA V _{DD} = 4.5 V	1,2,3		0.4	V				
Output high voltage All outputs excep	: t RESET, XTAL, and MODA	V _{ОН}	I _{OH} = -0.8 mA V _{DD} = 4.5 V <u>1</u> /	1,2,3	v _{DD} -0.8		V				
			4.5 V ≤ V _{DD} ≤ 5.5 V V _{SS} = 0 V dc -55°C ≤ T _C ≤ +125°C	/ subgroups	Min	Max					
	Test	Symbol	Conditions	Group A	Limits		 Uni				

询"5962	-8 <u>9</u> 52701XA"(<u> </u>	Conditions	 Group	A 1.0	MHz	2.1	MHz	 Unit
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 V subgrou 	ps Min 	 Max	Min	Max	
			Contro	ol timing	1		l		<u> </u>
Frequency	of operation	fo	V _{DD} = 4.5 V See figure 4	9,10,1	1 0	1.0	0	2.1	MHz
E clock pe	eriod	t _{cyc}	 	9,10,1	1 1000.0	 	 476.0 		ns
Crystal fi	requency	TXTAL	 	9,10,1	1	4.0	! ! 	8.4	MHZ
External o	oscillator cy	f _{oEX}		9,10,1	1 0	4.0	0	8.4	MHz
rocessor	control setup	t _{PCS}	 	9,10,1	1 200.0		69.0		ns
Reset input pulse width	To guarantee external reset vector <u>4</u> /	PWRSTL		9,10,1	1 8.0	: 	8.0		t _{cyc}
	Minimum input time may be preempted by internal reset			9,10,1	1 1.0		1.0		
Mode progr time	ode programming setup t _{MPS}			9,10,1	1 2.0	 	2.0		t _{cyc}
dode progr time	ramming hold	^t MPH	 	9,10,1	0.0	 	0.0	 	 ns
	pulse width sensitive	PWIRQ		9,10,1	1 2.0		2.0		tcyc
Wait recov	very startup	twrs		9,10,1	1	4.0		4.0	tcyc
	se width apture, pulse ator input	PW _{TIM}		9,10,1	1 1020.0		496.0		 ns
ee footno	otes at end of ta	ble.							
	STANDARDIZED MILITARY DRAWING			SIZE A				5962-8	39527
DEF					REVISION	l LEVE	L S	SHEET	

A.5 Y s Y go S 5.5 V	Test	:	Symbol	Conditions	Gro	up A	·	MHz	2.1	MHz	 Unit
Precidency of operation Colored			 	$ \begin{array}{c c} 4.5 & V \leq V_{DD} \leq 5.5 \\ V_{SS} = 0 & V & dc \\ -55^{\circ}C \leq T_{C} \leq +125 \\ \end{array} $	5 V subg 5°C 	roups	!	 Max 	 Min 	 Max 	
See Figure 4 See Figure 5 See Figure 4 See Figure 5 See				Peripheral	port timing <u>5</u> /		•	<u> </u>	·		4
Peripheral data setup time MCU read of ports A, C, D, and E Peripheral data hold time MCU read of ports A, C, D, and E Peripheral data hold time MCU write to port A, C, D, and E Peripheral data write MCU write to port A, C, D, and E Postay time, and D to port B, C,			fo	V _{DD} = 4.5 V See figure 4	9,1	0,11	1.0	1.0	2.1	2.1	MHz
time MCU read of ports A, C, D, and E Peripheral date hold time MCU read of ports A, C, D, and E Pelay time, brown B,	lock period		t _{cyc}	 	9,1	0,11	1000.0	 	476.0	 	ns
time NCU read of ports A, C, D, and E elay time, CU write to port A,	ime MCU read	lof	t _{PDSU}		9,1	0,11	100.0		100.0		ns
Deripheral Deport A Deport A Deport B Deport B Deport B Deport B Deport B Deport B Deport C Deport	ime MCU read	of ports	^t PDH		9,1	0,11	50.0		50.0		ns
to port B, C, and D 209.0 340.0 209.0	eripheral <u>t</u> ata write	o port A	† _{PWD}		9,1	0,11		175		175	ns
STANDARDIZED MILITARY DRAWING 100.0 10	įt	o port B,					-	340.0		209.0	
Copert C)	(port C)		t _{IS}		9,1	0,11	60.0		60.0		ns
to STRB etup time, STRA asserted to E fall 6/ elay time, STRA asserted to port C, data output valid old time, STRA negated toport C data hree-state hold time tpCZ STANDARDIZED MILITARY DRAWING etup time, STRA posted tpCD			t _{IH}		9,1	0,11	100.0		100.0		ns
elay time, STRA asserted to port C, data output valid old time, STRA negated to port C data hree-state hold time tpCZ 9,10,11 10.0 10.0 ee footnotes at end of table. STANDARDIZED SIZE 5962-8		all	t _{DEB}] -	9,10	0,11		350.0		219.0	ns
asserted to port C, data output valid old time, STRA negated to port C data hree-state hold time tpCZ 9,10,11 10.0 150	up time, STR sserted to E	A fall <u>6</u> /	^t AES		9,1	0,11	0.0	:	0.0		ns
to port C data hree-state hold time t _{PCZ}	sserted to p	ort C,	t _{PCD}		9,10	0,11		100.0		100.0	ns
ee footnotes at end of table. STANDARDIZED MILITARY DRAWING STORY JANUARD JA			^t PCH		9,1	D,11	10.0		10.0		пs
STANDARDIZED SIZE 5962-8	e-state hold	d time	t _{PCZ}		9,10	0,11		150.0		150.0	ns
MILITARY DRAWING	footnotes a	t end of ta	ble.								
				•			5962-8	39527			
DEFENSE ELECTRONICS SUPPLY CENTER		A	+								

1		Group A subgroup		imits	_ Unit
	4.5 $V \le V_{DD} \le 5.5 V$ $V_{SS} = 0 V dc$ $-55^{\circ}C \le T_{C} \le 125^{\circ}C$ 750 kHz $\le E \le 2.1$ MHz	subgroups	 Min 	Max	
	A/D converter			<u> </u>	
RES	 Number of bits resolved by the A/D	4,5,6	8		Bits
NLI	 Maximum deviation from the ideal and A/D transfer characteristics	4,5,6		±1/2	LSB
ZER	Difference between the output of an ideal and an actual A/D for zero input	4,5,6		±1/2	LSB
 FSE 	Difference between the output of an ideal and an actual A/D for full-scale input voltage	4,5,6		±1/2	LSB
adjusted error TUE		4,5,6		±1/2	LSB
QTE	Uncertainty due to converter resolution	4,5,6		±1/2	LSB
AAC	Difference between the actual input voltage and the full-scale weighted equivalent of the binary output code, all error sources included	4,5,6		±1	LSB
COR	 Analog input voltage range 	4,5,6	v _{RL}	V _{RH}	V
v _{RH}	<u>7</u> /	4,5,6	v _{RL}	V _{DD} +0.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
v _{RL}	 <u>7</u> / 	4,5,6	v _{ss} -0.1	 v _{RH}	V
	NLI ZER FSE TUE QTE AAC COR	RES Number of bits resolved by the A/D NLI Maximum deviation from the ideal and A/D transfer characteristics ZER Difference between the output of an ideal and an actual A/D for zero input voltage FSE Difference between the output of an ideal and an actual A/D for full-scale input voltage TUE Maximum sum of non-linearity, zero error, and full-scale error QTE Uncertainty due to converter resolution AAC Difference between the actual input voltage and the full-scale weighted equivalent of the binary output code, all error sources included COR Analog input voltage range	RES Number of bits resolved by the A/D the A/D NLI Maximum deviation from the ideal and A/D transfer characteristics ZER Difference between the output of an ideal and an actual A/D for zero input voltage FSE Difference between the output of an ideal and an actual A/D for full-scale input voltage TUE Maximum sum of non-linearity, zero error, and full-scale error QTE Uncertainty due to converter resolution AAC Difference between the actual input voltage and the full-scale weighted equivalent of the binary output code, all error sources included COR Analog input voltage range 4,5,6	RES Number of bits resolved by the A/D NLI Maximum deviation from the ideal and A/D transfer characteristics ZER Difference between the output of an ideal and an actual A/D for zero input voltage FSE Difference between the output of an ideal and an actual A/D for full-scale input voltage TUE Maximum sum of non-linearity, zero error, and full-scale error QTE Uncertainty due to converter 4,5,6 AAC Difference between the actual input voltage and the full-scale weighted equivalent of the binary output code, all error sources included COR Analog input voltage range 4,5,6 VRL	RES Number of bits resolved by the A/D NLI Maximum deviation from the ideal and A/D transfer characteristics ZER Difference between the output of an ideal and an actual A/D for zero input voltage FSE Difference between the output of an ideal and an actual A/D for full-scale input voltage TUE Maximum sum of non-linearity, zero error, and full-scale error QTE Uncertainty due to converter resolution AAC Difference between the actual input voltage and the full-scale erighted equivalent of the binary output code, all error sources included COR Analog input voltage range 4,5,6 VRL VDD+0.1

	Test	Symbol	Со	nditions	Group A		Limits	 _ Unit
			4.5 V ≤ V _{SS} -55°C ≤ 750 kHz:	V _{DD} ≤ 5.5 V = 0 V dc T _C ≤ +125°C ≤ £ ≤ 2.1 MHz	subgroups	Min	Max	
Minimum differ	rence between	ΔV _R		<u>7</u> /	4,5,6	3		V
Conversion time	E clock	CONT	Total time to analog-to-digi	perform a single	4,5,6		32 8/	tcyc
	Internal RC oscillator <u>8</u> /			nated to digital conversion			t _{cyc} +40000	ns
Monotonicity		MON	Conversion resu decreases with in input voltag missing codes	an increase	4,5,6			
Zero input rea	eding	ZIR	Conversion resu V _{IN} = V _{RL}	ılt when	4,5,6	00		Hex
Full scale rea	ding	FSR	Conversion resu V _{IN} = V _{RH}	ult when	4,5,6		FF	Hex
Sample acquisi	tion time	SAT	 Analog input acquisition	E clock 10/	4,5,6	12		t _{cyc}
			sampling time	Internat RC 11/	-		12	μs
Input leakage	ut leakage	IIN	Input leakage	PEO-PE7			400	nA.
			on A/D pins V _{RL} , V _{RH}		9,10,11		1.0	 µA

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 8

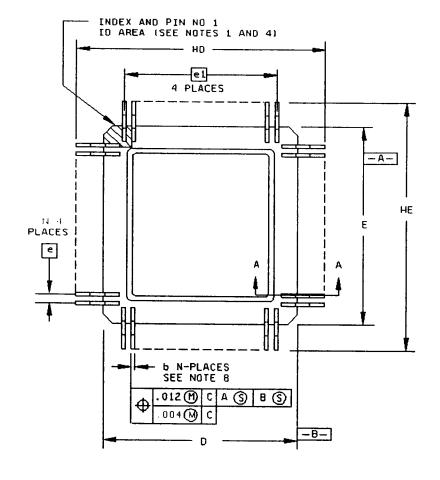
See figure 4 See footnotes at end of table. See figure 4 S	道询"5962 <u>-89</u> 52701XA"	怎 一	Conditions	 Group A	 1.0	MHz		MHz	Unit
Prequency of operation (Colock frequency) Four Colock frequency Four Colock frequency Four Colock frequency) Four Colock frequency Four Colock freq			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V subgroup °C		 Max	 Min 	Max	
See Figure 4 See			Expansion	bus timing			I		<u> </u>
Pulse width, E low PWEL 9,10,11 477.0 215.0 PWEL 9,10,11 477.0 215.0 Pulse width, E high PWEH 9,10,11 472.0 210.0 20.0 E and AS rise time tr Pulse width, E high PWEH 9,10,11 20.0 20.0 20.0 Pulse width, E high PWEH 9,10,11 20.0 20.0 20.0 Pulse width, E high PWEH 9,10,11 20.0 20.0 20.0 Pulse width, E high PwEH 20.0 20.0 20.0 Pulse		fo	V _{DD} = 4.5 V See figure 4	9,10,11	1.0	1.0	2.1	2.1	MHz
Pulse width, E high	Cycle time	t _{cyc}		9,10,11	1000.0		 476.0 	 	ns
E and AS rise time	Pulse width, E low	PWEL		9,10,11	477.0		215.0		ns
E and AS fall time	Pulse width, E high	PWEH		9,10,11	472.0	İ	210.0		l ns
Address hold time tah	E and AS rise time	t _r		9,10,11		20.0		20.0	ns
AH	E and AS fall time	t _f	· 	9,10,11		20.0		20.0	ns
Read data setup time to Erise 8/	Address hold time	t _{AH}	 	9,10,11	95.5		30.0	ļ	ns
Read data hold time		† _{AV}		9,10,11	281.5		85.0		ns
## Prite data delay tome 8a/ t	Read data setup time	tDSR	· 	9,10,11	30.0		30.0		ns
## ## ## ## ## ## ## ## ## ## ## ## ##	Read data hold time			9,10,11	10.0	145.5	10.0	80.0	ns
fuxed address valid time to E rise 8b/ See footnotes at end of table.		t _{DDW}		9,10,11		190.5		125.0	ns
to E rise 8b/ See footnotes at end of table.	Write data hold time <u>8a</u> /	t _{DHW}		9,10,11	95.5		30.0		ns
See footnotes at end of table.	Muxed address valid time to E rise <u>8b</u> /	^t AVM		9,10,11	271.5		75.0		ns
	ee footnotes at end of to	able.							
MILITARY DRAWING	STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE		· · · · · · · · · · · · · · · · · · ·		5962-8	39527		

Test	Symbol	Conditions	Group A		MHz	2.1	MHz	 Unit
		4.5 $V \le V_{DD} \le 5.5 V$ $V_{SS} = 0 V dc$ $-55^{\circ}C \le T_{C} \le +125^{\circ}C$	subgroups 	 Min 	 Max 	 Min 	Max	
Muxed address valid time to AS fall	^t ASL	 V _{DD} = 4.5 V See figure 4	9,10,11	151.0		20.0		ns
Muxed address hold time <u>&b</u> /	t _{AHL}		9,10,11	95.5		30.0		ns
Delay time, E to AS rise <u>8b</u> /	tASD		9,10,11	115.5		50.0		ns
Pulse width, AS high	PWASH		9,10,11	221.0		90.0		ns
Delay time, AS to E rise <u>8b</u> /	tASED		9,10,11	95.5		40.0		ns
MPU address access time 8b/	tACCA		9,10,11	733.5		275.0		ns
MPU access time	^t ACCE		9,10,11		442.0		180.0	ns
Muxed address delay (previous cycle MPU read) 8a/	† _{MAD}		9,10,11	145.5		80.0		ns

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 10

$-55^{\circ}\text{C} \stackrel{<}{\times} \text{T}_{\text{C}} \stackrel{<}{\times} +125^{\circ}\text{C}$ Serial peripheral interface (SPI) timing Operating frequency Master fop(m) V_DD = 4.5 V 9,10,11 0 0.	2701XA"供应商 Symbol	i	Group A	Lim	its	 Uni
Operating frequency Master slave fop(m) fop(s) Vomal of the pop shade of the pop shad		S V SI	subgroups	Min	Max	
Salave Fop(m) See figure 4 9,10,11 0 2.0	Serial	PI) timing				
Slave tcyc(s) 9,10,11 2.0 9,10,11 480	(OD(m)			•	0.5 2.1	 МН:
Enable lead time	Master t _{cyc(m)}	5	9,10,11	2.0		tcyc
Slave tlead(m) tlead(s) 9,10,11 12/ 240	slave t _{cyc(s)}		9,10,11	480		ns
	lead(m)			1 <u>2</u> / 240		ns
time slave tw(SCKH)m y,10,11 190 Clock (SCK) low time Master tw(SCKL)m tw(SCKL)m y,10,11 190 Data setup time Master tsu(m) tsu(s) y,10,11 100 y,10,11 100 Data hold time Master th(m) y,10,11 100 y,10,11 100 Data hold time Master th(m) y,10,11 100 y,10,11 100 Data setup time Master th(m) y,10,11 100 y,10,11 100 Data hold time tave ta y,10,11 0 120 Data hold time (hold time to data active ta y,10,11 240 Data hold time (hold time to high impedance state) slave ta y,10,11 240 Data hold time tax y,10,11	; (aq(m) !	9	9,10,11 9,10,11			ns
Stave tw(SCKL)s 9,10,11 190 Oata setup time Master tsu(m) 15u(s) 9,10,11 100 9,10,11 100 Oata hold time Master th(m) 100 100 Oata hold time Master th(m) 100 100 100 Oata hold time to data active ta 100 120 120 Oata hold time to high impedance state) slave ta 120 120 120 Oata valid (after enable edge) 13/ tv(s) 9,10,11 240 120 120 120 120 120 120 Oata hold time to high impedance state) slave ta 120	' !TWCSCKH)m !	9 9	9,10,11			ns
Slave t Sl(m) 9,10,11 100 Obtain hold time Master th(m) 100 100 Coccess time (time to data active ta 9,10,11 100 100 Coccess time (time to data active ta 9,10,11 100 120 Coccess time (hold time to high- impedance state) slave ta 9,10,11 240 Object time (hold time to high- impedance state) slave to 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state) slave 13/ t _V (s) 9,10,11 240 Object time (hold time to high- impedance state)	; W(SCKE)m !					ns
slave th(m) th(s) 9,10,11 100 Access time (time to data active from high impedance state) slave ta 9,10,11 0 120 Disable time (hold time to high-impedance state) slave this phase state) slave 1240 Data valid (after enable edge) 13/t _{V(s)} 9,10,11 240 Data hold time to the foliation of the f	SULMI	•				ns
from high impedance state) slave Disable time (hold time to high- tdis	; , ; n(m) !					ns
Disable time (hold time to high- tdis 9,10,11 240 attained and time to high- tv(s) 9,10,11 240 attained and time to high- tdis 9,10,11 240 attained	me to data active ta	9	9,10,11	0	120	ns
Pata hold time t.	old time to high-	9	9,10,11		240	ns
	er enable edge) 13/t _{V(s)}	9,	9,10,11		240	ns
	er enable edge)	9,	9,10,11	0		ns
See footnotes at end of table.	t end of table.	•	l l			<u> </u>
STANDARDIZED SIZE MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER SIZE A 5962	MILITARY DRAWING				5962-89	9527


Test		Symbol			Group A	Limits		Unit
		 	4.5 v ≤ v _{DD} v _{SS} = 0 -55°c ≤ T _C ≤	> 5.5 V V dc +125°C	subgrou ps 	 Min 	Max	
Rise time	SCK, MOSI, and MISO	t _{rm}	V _{DD} = 4.5 V See figure 4	20% V _{DD} to 70% V _{DD}	9,10,11		100	ns
	SCK, MOSI, MISO, and SS	t _{rs}		c _L = 200 pF	 9,10,11 		2.0	μs
Fall time	SCK, MOSI, and MISO	 t 	 _	 70% V _{DD} to 20% V _{DD} c _L = 200 pF	9,10,11		100	ns
	SCK, MOSI, MISO, and SS	 t 		c _L = 200 pF 	9,10,11		2.0	μs
Programmir time	g 2.1 MHz	 	V _{DD} = 4.5 V Not shown		9,10,11	25		ms
	RC oscillator <u>15</u> / enabled		 -			25		
Erase time	 Byte, row, and bulk	 	_		9,10,11	25		ms
Write/eras	e endurance		_		 	5,000		cycle:
Data reter	tion <u>16</u> /				 	10		 years

- $V_{\mbox{OH}}$ specification for RESET and MODA is not applicable because they are open-drain pins.
- Von Specification not applicable to ports C and D in wire-OR mode. See A/D specification for leakage current for port E.
- 3/ All ports configured as inputs, $V_{IL} \le 0.2 \text{ V}$, $V_{IH} \ge V_{DD}$ -0.2 V, no dc loads, EXTAL driven with a square wave,
- and t cyc = 476.5 ns.

 RESET will be recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt.
- Ports C and D timing is valid for active drive (CWOM and DWOM bits not set in PIOC and SPCR registers respectively).
- If this setup time is met, STRB will acknowledge in the next cycle. If it is not met, the response may be delayed one more cycle.
- Performance verified down to 2.5 V ΔV_R , but accuracy is tested and guaranteed at ΔV_R = 5 V ± 10 percent. Source impedances greater than 10 k Ω will adversely affect accuracy, due mainly to input leakage.
- 8/ Input clocks with duty cycles other than 50 percent will affect bus performance. Timing parameters affected by input clock duty cycle are identified by "a" and "b". To recalculate the approximate bus timing values, substitute the following expressions in place of 1/8 $t_{
 m cyc}$ in the above formulas where applicable:

 - a. (1-dc) x (1/4 x t $_{\rm cyc}$) b. DC x (1/4 x t $_{\rm cyc}$) Where dc is the decimal value of duty cycle percentage (high time).
- Subgroups 4, 5, and 6 shall be guaranteed for all bits.
- Absolute (shall be exact value).
- 11/ Conversions using internal RC oscillator not tested at -55°C.
- 12/ Signal production depends on software.
- 13/ Assumes 200 pF load on all SPI pins.
- Programming time tested at 2.1 MHz with internal RC oscillator disabled for all three temperatures.
- Programming time with internal RC oscillator enabled is tested at 500 kHz. Recommend that internal RC oscillator be used when frequency falls below 1.0 MHz or when temperature exceeds 85°C and frequency falls below 2.0 MHz.
- The 10 years specified is based on an average operating temperature of 70°C.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 12

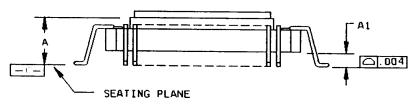
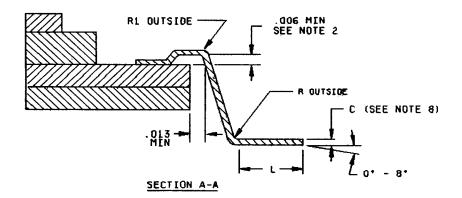



FIGURE 1. Case outlines.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 13

Case outline Y

Case Y					
	Inch	es	Milli	meters	
Symbol	Min	Max	Min	Max	
Α		.125		3.175	
A1	.018	.035	0.457	0.889	
b	.018	.030	0.457	0.762	
С	.005	.010	0.127	0.254	
D/E	.940	. 960	23.88	24.38	
е	.050	BSC		- -	
e1	. 600	BSC			
HD/HE	1.133	1.147	28.78	29.13	
L	.024	.040	0.610	1.016	
N	52			2	
R	.011	.034	0.279	0.864	
R1	.009		0.229		

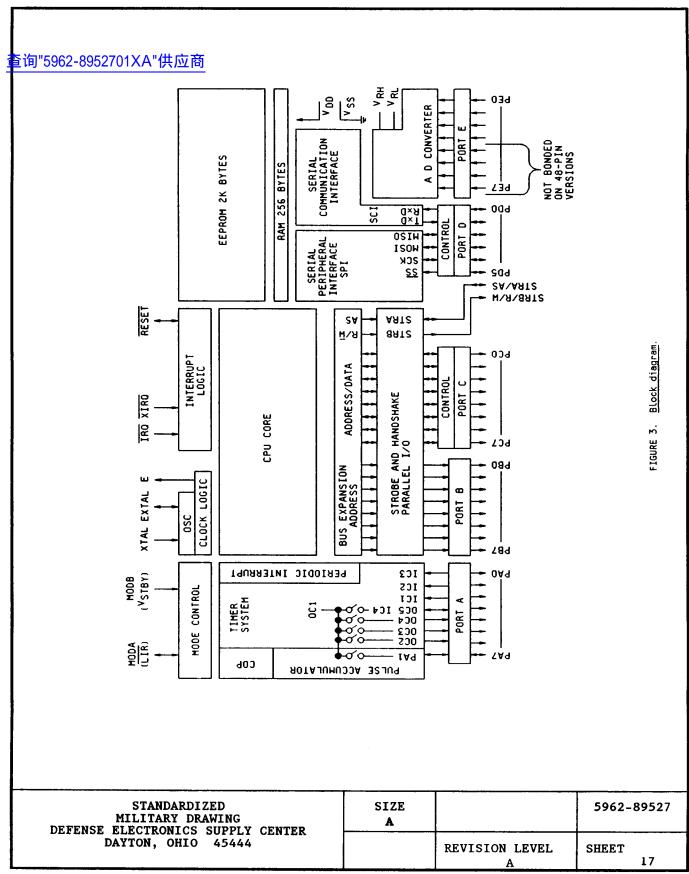
NOTES:

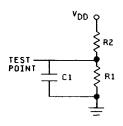
- 1. A terminal 1 identification mark shall be located at the index corner in the shaded area shown. Terminal 1 is located immediately adjacent to and counterclockwise from the index corner. Terminal numbers increase in a counterclockwise direction when viewed as shown.
- 2. Generic lead attach dogleg depiction.
- Dimension N: Number of terminals.
 Corner shapes (square, notch, radius, etc.) may vary from that shown on the drawing. The index corner shall be clearly unique.
- 5. Metric equivalents are given for general information only.6. Controlling dimension: Inch.
- 7. Datums X and Y to be determined where center leads exit the body.
- 8. Dimensions b and c include lead finish.

FIGURE 1. <u>Case outlines</u> - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL	SHEET

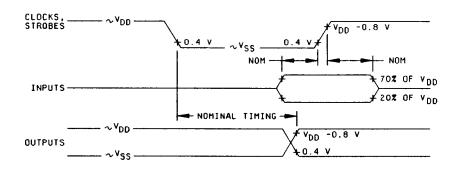
Device type	01						
Case outline		x					
Terminal number	Terminal symbol	Terminal number	Terminal symbol				
1	PA7/PAI/OC1	25	MODA/LIR				
2	PA6/0C2/0C1	26	STRA/AS				
3	PA5/OC3/OC1	27	E				
4	PA4/0C4/0C1	28	STRB/R/W				
5	PA3/0C5/0C1	29	EXTAL				
6	PA2/IC1	30	XTAL				
7	PA1/IC2	31	PCO/ADO				
8	PAO/IC3	32	PC1/AD1				
9	PB7/A15	33	PC2/AD2				
10	PB6/A14	34	PC3/AD3				
11	PB5/A13	35	PC4/AD4				
12	PB4/A12	36	PC5/AD5				
13	PB3/A11	37	PC6/AD6				
14	PB2/A10	38	PC7/AD7				
15	PB1/A9	39	RESET				
16	PBO/A8	40	XIRQ				
17	PEO/ANO	41	IRQ				
18	PE1/AN1	42	PDO/RxD				
19	PE2/AN2	43	PD1/TxD				
20	PE3/AN3	44	PD2/MISO				
21	v _{RL}	45	PD3/MOSI				
22	v _{RH}	46	PD4/SCK				
23	v _{ss}	47	PD5/SS				
24	MODB/V _{stby}	48	v _{DD}				

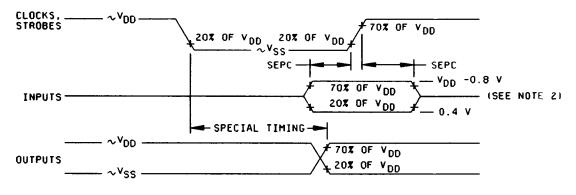

FIGURE 2. <u>Terminal connections</u>.


STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 15

Device type	01						
Case outline		Υ					
Terminal number	Terminal symbol	Terminal number	Terminal symbol				
1 2	XTAL PCO/ADO	27 28	PAO/IC3 PB7/A15				
3 4	PC1/AD1 PC2/AD2	29 30	PB6/A14 PB5/A13				
5	PC3/AD3	31	PB4/A12				
6 7	PC4/AD4 PC5/AD5	32 33	PB3/A11 PB2/A10				
8	PC6/AD6	34	PB1/A9				
9	PC7/AD7	35	PBO/A8				
10	RESET	36	PEO/ANO				
11	XIRQ	37	PE4/AN4				
12	IRQ	38	PE1/AN1				
13	PDO/R×D	39	PE5/AN5				
14	PD1/TxD	40	PE2/AN2				
15	PD2/MISO	41	PE6/AN6				
16	PD3/MOSI	42	PE3/AN3				
17	PD4/SCK	43	PE7/AN7				
18	PD5/SS	44	v _{RL}				
19	v _{DD}	45	v _{RH}				
20	PA7/PAI/OC1	46	v _{ss}				
21	PA6/0C2/0C1	47	MODB/V _{stby}				
22	PA5/OC3/OC1	48	MODA/LIR				
23	PA4/0C4/0C1	49	STRA/AS				
24	PA3/OC5/OC1	50	E				
25	PA2/IC1	51	STRB/R/W				
26	PA1/IC2	52	EXTAL				

FIGURE 2. <u>Terminal connections</u> - Continued.

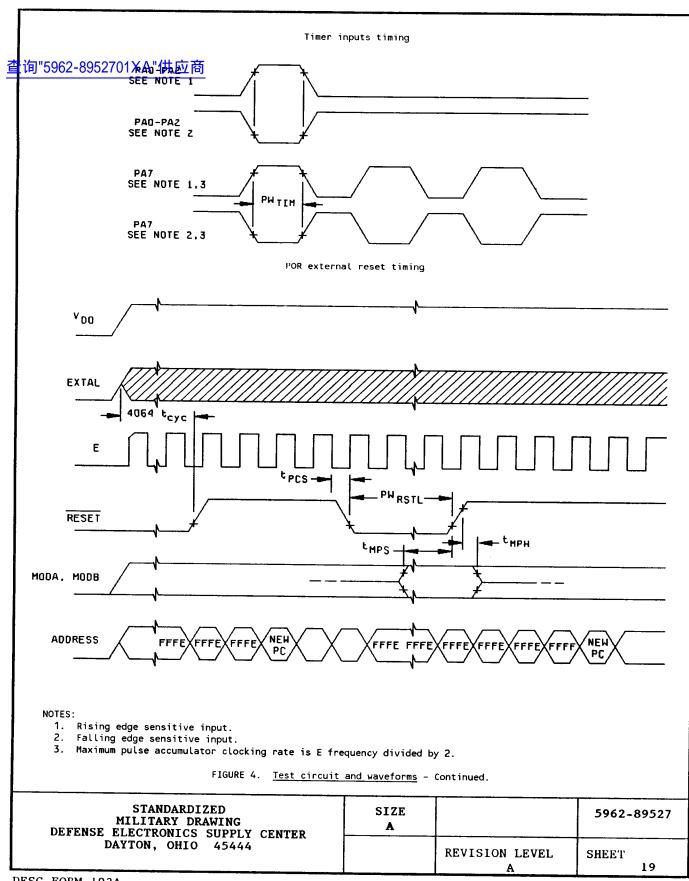

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 16

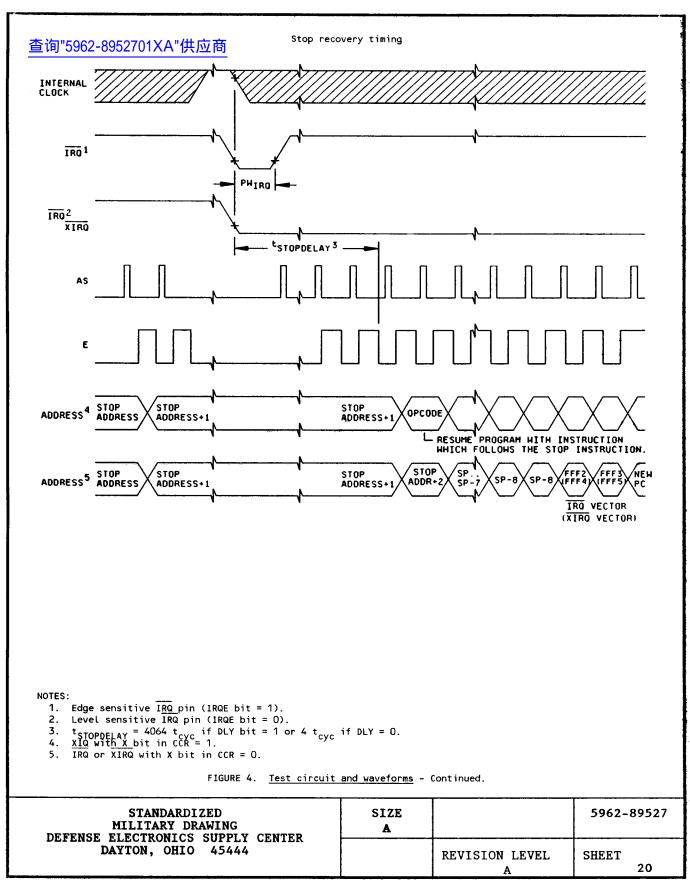


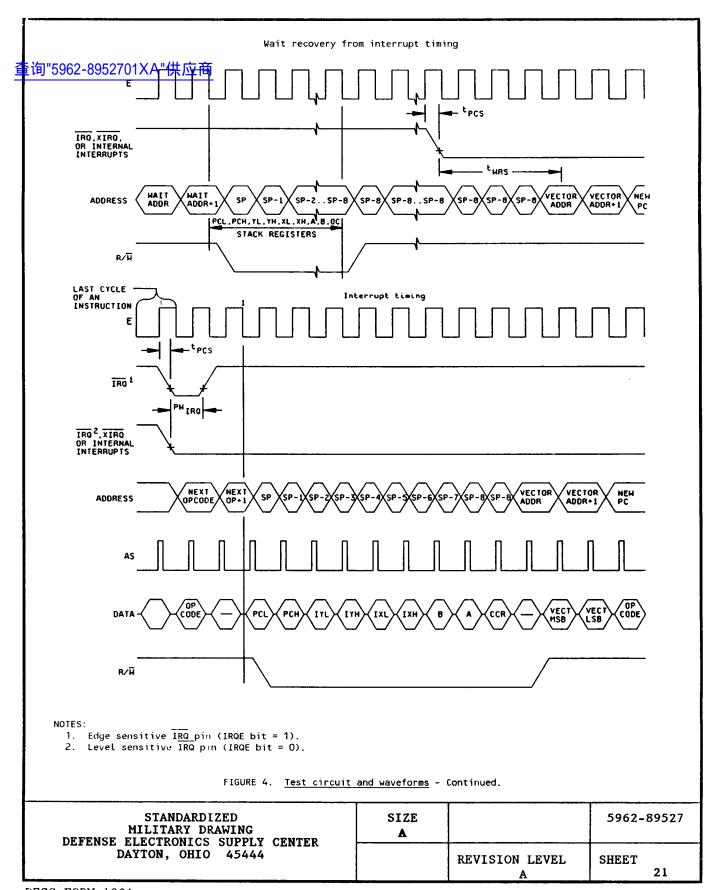
Equivalent test load

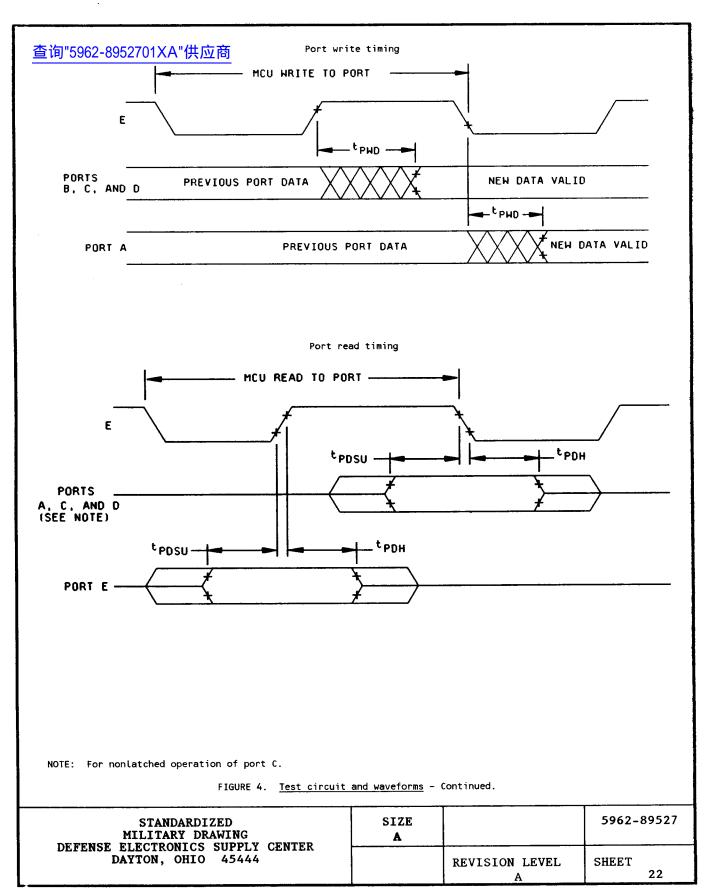
Pins	R1	R2	c1
PA3-PA7 PBO-PB7 PCO-PC7 PDO-PD5 E, AS, R/W	3.26 k	2.38 k	90 pF
PD1-PD4	3.26 k	2.38 k	200 pF

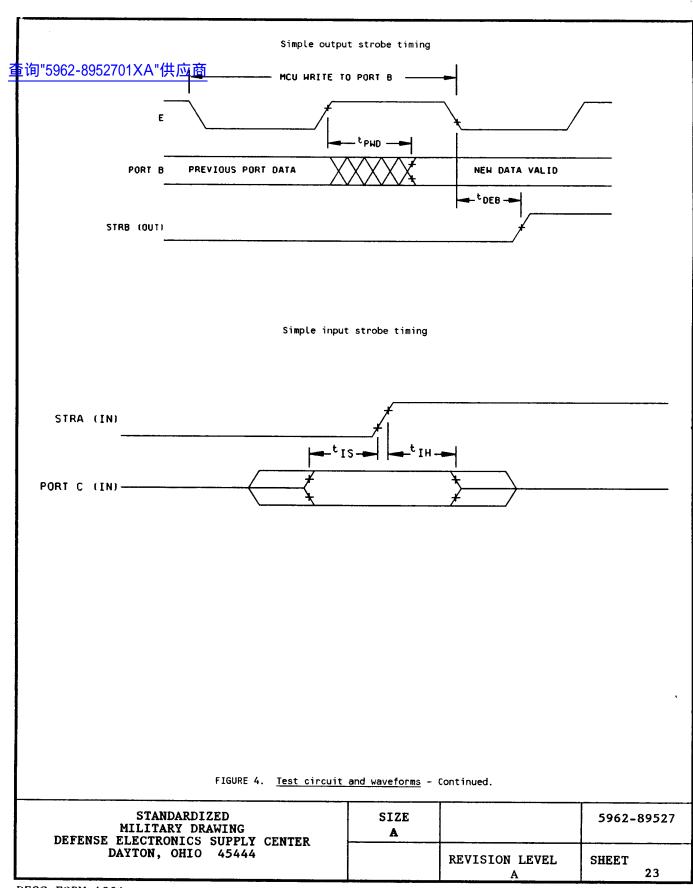
DC testing

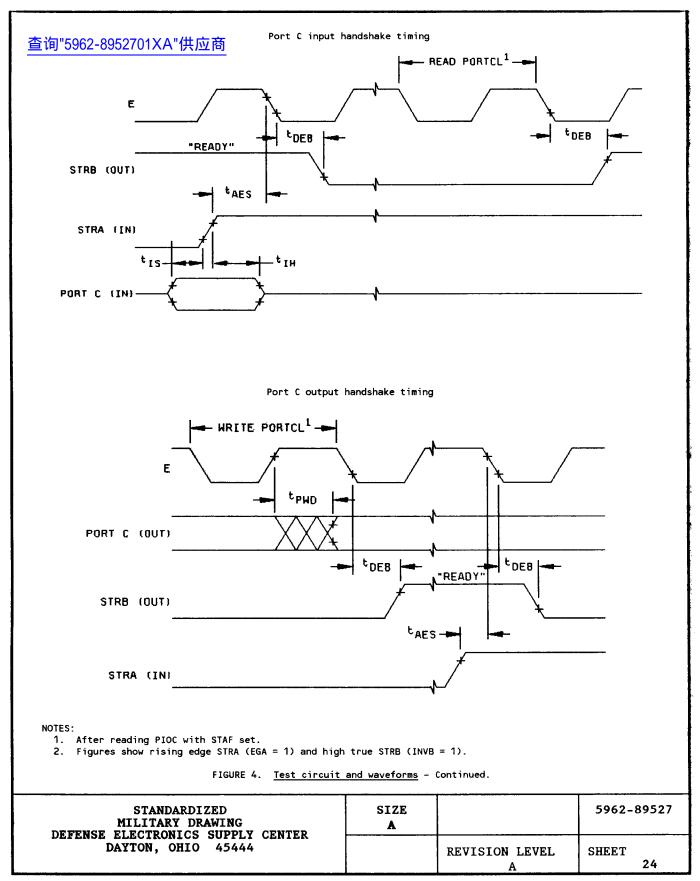

AC testing


NOTES:

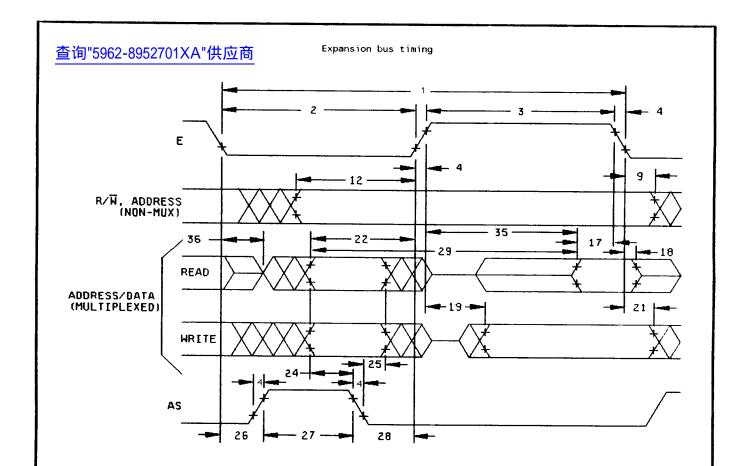

- 1. Full test loads are applied during all ac electrical tests and ac timing measurements.
- 2. During ac timing measurements, inputs are driven to 0.4 volt and $\rm V_{DD}$ -0.8 volt while timing measurements are taken at the 20 percent and 70 percent of $\rm V_{DD}$ points.


FIGURE 4. Test circuit and waveforms.


STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 18



Three-state variation of output handshake timing (STRA enables output buffer) 询"5962-8952701XA"供应商 - WRITE PORECL¹ 🕳 [€]PWD PORT C (OUT) (DDR=1) t_{DE8} [€]DEB "READY" STRB (OUT) [₹]AES STRA (INI tPCD -PORT C (OUT) (DDR=1) OLD VALID DATA a) STRA ACTIVE BEFORE PORTCL WRITE STRA ([N) t PCH |-PORT C (QUT) (DDR=1) VALID DATA - bi STRA ACTIVE AFTER PORTCL WRITE =-^tPCZ-


NOTES:

- After reading PIOC with STAF set.
 Figures show rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

FIGURE 4. Test circuit and waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 25

DESC FORM 193A

NOTE: Measurement points shown are 20 percent and 70 percent $\rm V_{DD}.$

Waveform number references.

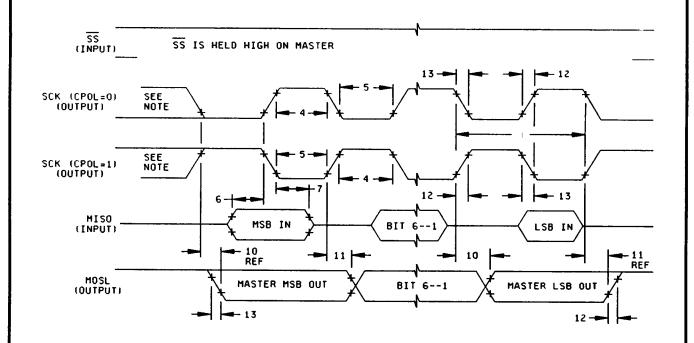
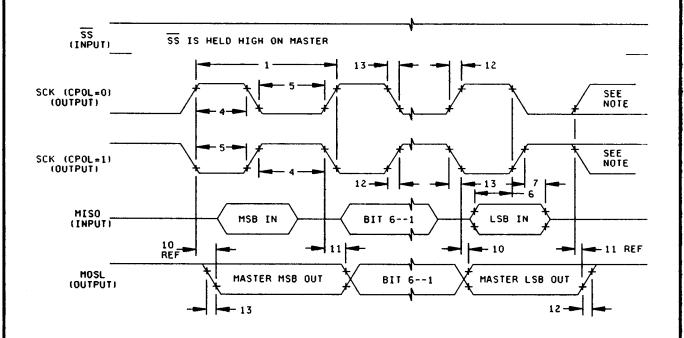

Number	Symbol	Number	Symbol	Number	Symbol	Number	Symbol
1	t _{cyc}	2	PWEL	3	PWEH	4	t _r , t _f
9	^t AH	12	t _{AV}	17	t _{DSR}	18	^t DHR
19	^t DDW	21	t _{DHW}	22	t _{AVM}	24	^t asl
25	t _{AHL}	26	t _{ASD}	27	PW _{ASH}	28	^t ased
29	^t ACCA	35	t _{ACCE}	36	t _{MAD}		

FIGURE 4. Test circuit and waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 26

SPI timing

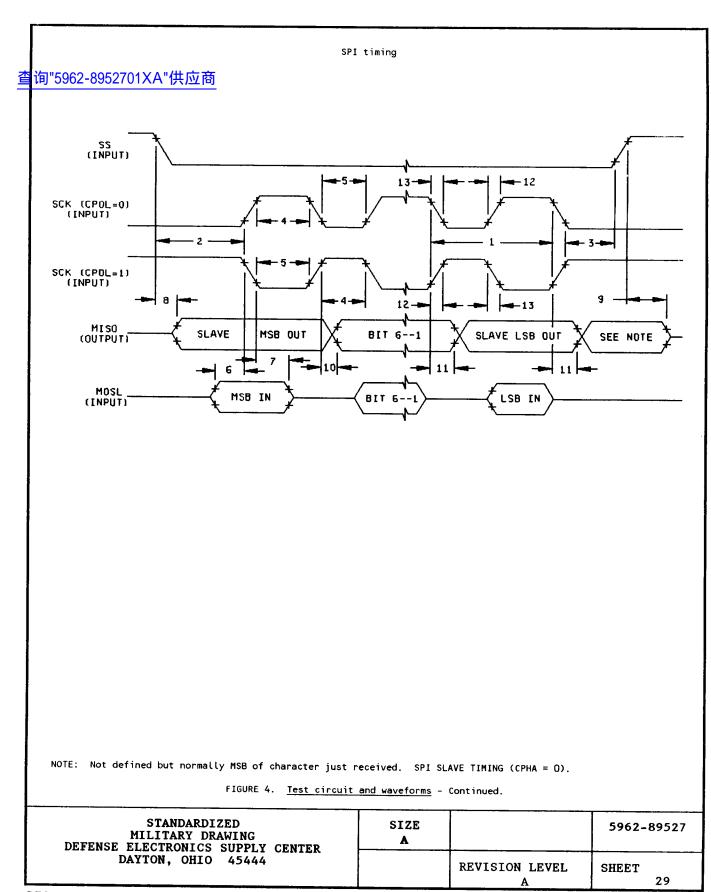
≦询"5962-8952701XA"供应商

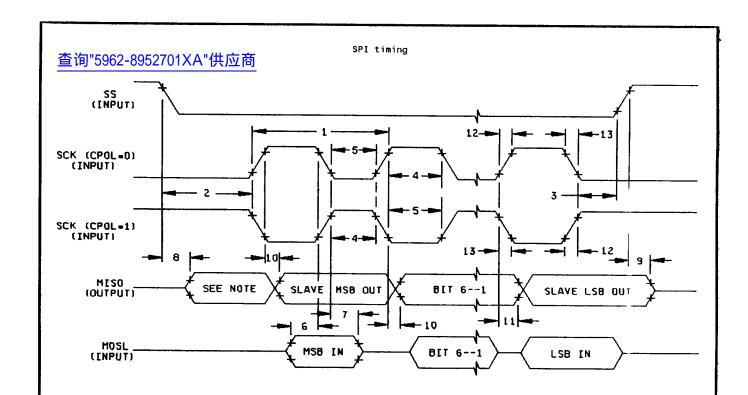


NOTE: This first clock edge is generated internally but is not seen at the SCK pin. SPI MASTER TIMING (CPHA = 0).

FIGURE 4. Test circuit and waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 27


SPI timing



NOTE: This last clock edge is generated internally but is not seen at the SCK pin. SPI MASTER TIMING (CPHA = 0).

FIGURE 4. Test circuit and waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 28

NOTE: Not defined but normally LSB of character previously transmitted. SPI SLAVE TIMING (CPHA = 0).

Waveform number references - SPI timing.

Number	Symbol	Master/slave	Number	Symbol	Master/slave
1	t _{cyc}	m,s	2	t _{lead}	m,s
3	t _{lag}	m,s	4	tw(SCKH)	m,s
5	t _w (SCKL)	m,s	6	t _{su}	m,s
7	t _h	m,s	8	t _a	
9	t _{dis}		10	t _V	s
11	t _{ho}		12	t _r	m,s
13	t _f	m,s			

FIGURE 4. <u>Test circuit and waveforms</u> - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 30

- 3.9 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore 望旬h5982i89827h9 XXI9供应商
- 3.10 Processing EEPROMS. All testing requirements and quality assurance provisions herein shall be satisfied by the manufacturer prior to delivery.
- 3.10.1 Erasure of EEPROM. When specified, devices shall be erased in accordance with the procedures and characteristics specified in 4.4.
- 3.10.2 Programmability of EEPROM. When specified, devices shall be programmed to the specified pattern using the procedures and characteristics specified in 4.5.
- 3.10.3 <u>Verification of erasure or programmability of EEPROM</u>. When specified, devices shall be verified as either programmed to the specified pattern or erased. As a minimum, verification shall consist of performing a functional test (subgroup 7) to verify that all bits are in the proper state. Any bit that does not verify to be in the proper state shall constitute a device failure, and shall be removed from the lot.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
 - c. An endurance/data retention test prior to burn-in, in accordance with method 1033 of MIL-STD-883, shall be included as part of the screening procedure with the following conditions:
 - (1) Cycling may be block, byte, or page at +125°C and shall cycle all bytes for a minimum of 1000 cycles and the devices shall remain at +125°C for 24 hours.
 - (2) After cycling, perform a high temperature unbiased bake for 72 hours at 150° C (minimum). The storage time may be accelerated by using higher temperature in accordance with the Arrhenius Relationship:

 $A_F = \exp(-E_A/K*(1/T1 - 1/T2))$ where:

 $A_F = acceleration factor (unitless quantity) = t_1/t_2$

= temperature in Kelvin

 t_1 = time (hrs) at temperature T1

 t_2^{\dagger} = time (hrs) at temperature T2 K = Boltzmann's constant = 8.62 x 10⁻⁵ eV/°K using an apparent activation energy (E_A) of 0.6 V.

The maximum storage temperature shall not exceed 200°C for packaged devices or 300°C for unassembled devices.

(3) Read the data retention pattern and test using subgroups 1, 7, and 9 (minimum, e.g., high temperature equivalent subgroups 2, 8A, and 10 may be used) after cycling and bake, prior to burn-in. Devices having bits not in the proper state after storage shall constitute a device failure.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 31

DESC FORM 193A

4 🐴 ந்துக்க மது நடிக்கும் நாக்க வெளியாக Quality conformance inspection shall be in accordance with method 5005 of MIL_SID_883 including groups A, B, t, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of five devices with zero rejects shall be required.
- c. All devices selected for testing shall have the EEPROM programmed with a checkerboard pattern or equivalent. After completion of all testing, the devices shall be erased and verified (except devices submitted for groups C and D testing).
- d. Subgroups 7 and 8 shall consist of verifying the EEPROM pattern specified and the instruction set. The instruction set forms a part of the vendors test tape and shall be maintained and available from the approved source of supply upon request.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. All devices requiring end-point electrical testing shall be programmed with a checkerboard or equivalent alternating bit pattern.
- c. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- d. An endurance test, in accordance with method 1033 of MIL-STD-883, shall be added to group C1 inspection prior to performing the steady-state life test (see 4.3.2c) and extended data retention (see 4.3.2e).

Cycling may be block, byte, or page from devices passing group A after the completion of the requirements of

- (1) All bytes shall be cycled for a minimum of 4,000 cycles at +25°C.
- (2) Perform group A subgroups 1 and 7.
- e. Extended data retention shall consist of:
 - (1) All devices shall be programmed with a charge on all memory cells in each device, such that the cell will read opposite the state that the cell would read in its equilibrium state (e.g., worst case pattern, see 4.2c(2)).
 - (2) Perform a high temperature unbiased bake for 1000 hours at 150°C (minimum). The storage time may be accelerated by using higher temperature in accordance with the Arrhenius Relationship:

 $A_{r} = \exp(-E_{\Delta}/K*(1/T1 - 1/T2))$ where:

 A_F = acceleration factor (unitless quantity) = t_1/t_2 T = temperature in Kelvin

 t_1 = time (hrs) at temperature T1

 t_2 = time (hrs) at temperature T2 K2 = Boltzmann's constant = 8.62 x 10^{-5} eV/°K using an apparent activation energy (E_A) of 0.6 V.

The maximum storage temperature shall not exceed 200°C for packaged devices or 300°C for unassembled

(3) Read the pattern after bake and perform endpoint electrical tests for table II herein for group C.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 32

DESC FORM 193A

TABLE II. <u>Electrical test requirements</u>.

查询"5962-8952701XA"供应i	MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
	Interim electrical parameters (method 5004)	1, 7, 9
	Final electrical test parameters (method 5004)	1*, 2, 3, 5, 6, 7, 8a, 9, 10, 11
	Group A test requirements (method 5005)	1*, 2, 3, 4, 5, 6, 7, 8a, 9, 10, 11
	Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

- * PDA applies to subgroup 1
- 4.4 <u>Programming procedures</u>. The programming procedures shall be as specified by the device manufacturer and shall be made available to the user on request.
- 4.5 <u>Erasing procedures</u>. The erasing procedures shall be as specified by the device manufacturer and shall be made available to the user on request.
 - 5. PACKAGING
 - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.

	,		
STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 33

DESC FORM 193A

6.6 Signal pin description

<u></u>	Description						
RESET	Reset: This active low bidirectional control pin is used as an input to initialize the MCU to a known startup state and as an open-drain output to indicate that an internal failure has been detected in either the clock monitor or the computer operating properly (COP) circuit.						
XTAL, EXTAL	Crystal driver and external clock input: These pins provide the interface for either a crystal or a CMOS-compatible clock to control the internal clock generator circuitry. The frequency applied shall be four times higher than the desired clock rate.						
E		E clock output: This pin provides an output for the internally generated E clock which can be used for timing reference. The frequency of the E output is one fourth that of the input frequency at the XTAL and EXTAL pins.					
ĪRQ	Interrupt request: This pin provides the capability for asynchronously applying interrupts to the MCU. Either negative edge-sensitive or level-sensitive triggering is program selectable. This pin is configured to level-sensitive during reset. An external resistor connected V _{DD} is required on IRQ.						
XIRQ	Non-maskable interrupt: This pin provides the capability for asynchronously applying non-maskable interrupts to the MCU after a power on reset (POR). During reset, the X bit in the condition code register is set, and any interrupt is masked until enabled by software. This input is level-sensitive and requires an external pullup resistor to VDD.						
MODA/LIR and MODB/V _{stby}	During reset, these pins are used to control the two basic operating modes and the two special operating modes. The LIR output can be used as an aid in debugging once reset is completed. The open-drain LIR pin goes to an active low during the first E-clock cycle of each instruction and remains low for the duration of that cycle. The Vstby (voltage standby) is used to retain RAM contents during device powerdown. The mode selections are shown below.						
		rdown. Ti	re mode				
		MODB	MODA				
			1	selections are shown b			
		MODB	MODA	selections are shown b			
		MODB	MODA	selections are shown b Mode selected Single chip			
		1 1	MODA 0	selections are shown b Mode selected Single chip Expanded multiplexed			
VRL, VRH	contents during device power	1 1 0	0 1 0 1	selections are shown b Mode selected Single chip Expanded multiplexed Special bootstrap Special test			

6.7 <u>Approved source of supply</u>. An approved source of supply is listed in MIL-BUL-103. Additional sources will be added to MIL-BUL-103 as they become available. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89527
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 34

DESC FORM 193A JUL 91

035289 _ _ _