

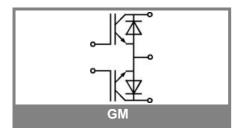
SEMITOP® 2

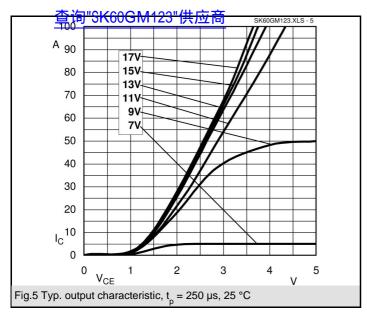
IGBT Module

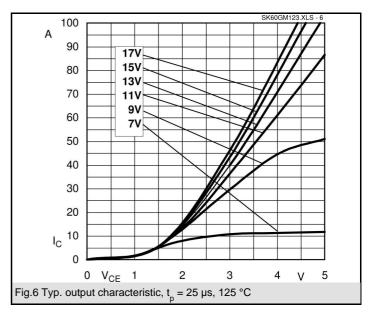
SK 60 GM 123

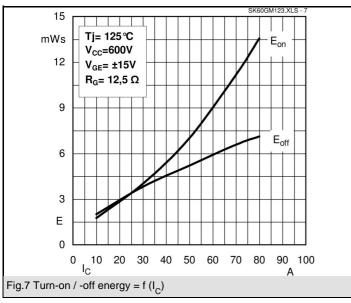
Target Data

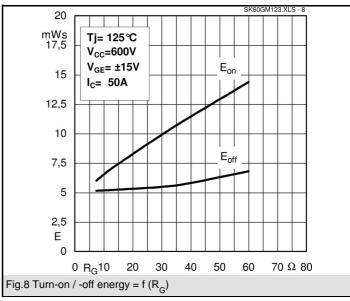
Features

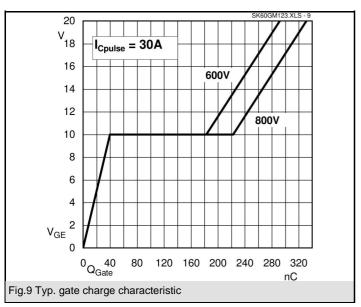

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence

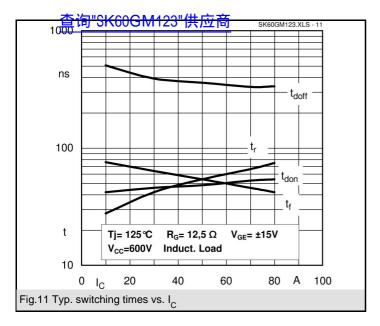

Typical Applications

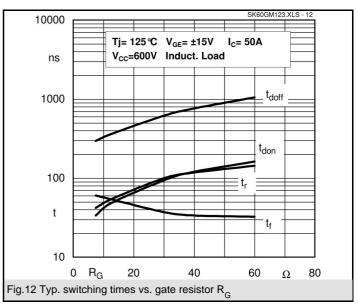

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

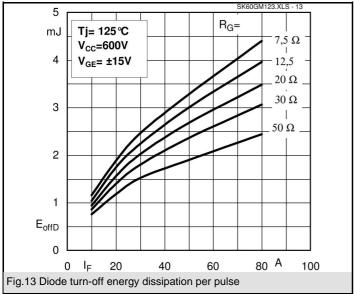

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V_{GES}		± 20	V					
I _C	T _s = 25 (80) °C;	60 (40)	Α					
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) °C;$	120 (80)	Α					
T _j		- 40 + 150	°C					
Inverse/Freewheeling CAL diode								
I _F	T _s = 25 (80) °C;	60 (40)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	120 (80)	Α					
T _j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

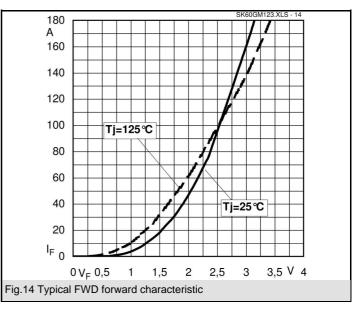

Characteristics T _s = 25 °C, unless otherwise specified								
Characteristics								
Symbol	Conditions	min.	typ.	max.	Units			
	IGBT							
V _{CE(sat)}	$I_C = 50 \text{ A}, T_j = 25 (125) °C$		2,5 (3,1)	3 (3,7)	V			
$V_{GE(th)}$	$V_{CE} = V_{GE}; I_{C} = 0,002 A$	4,5	5,5	6,5	V			
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		3,3		nF			
$R_{th(j-s)}$	per IGBT			0,6	K/W			
	per module				K/W			
	under following conditions:							
t _{d(on)}	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		48		ns			
t _r `´	I _C = 50 A, T _i = 125 °C		54		ns			
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 12.5 \Omega$		360		ns			
t _f			54		ns			
$E_{on} + E_{off}$	Inductive load		12,2		mJ			
Inverse/F	Inverse/Freewheeling CAL diode							
$V_F = V_{EC}$	I _F = 50 A; T _i = 25 (125) °C	1	2 (1,8)	2,5	V			
V _(TO)	T _j = (125) °C		(1)	(1,2)	V			
r _T	T _j = (125) °C		(16)	(22)	mΩ			
$R_{th(j-s)}$				0,7	K/W			
	under following conditions:							
I _{RRM}	I _F = 44 A; V _R = 600 V		50		Α			
Q_{rr}	$dI_F/dt = -500 \text{ A/}\mu\text{s}$		9		μC			
E _{off}	$V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		2		mJ			
Mechanic	cal data							
M1	mounting torque			2	Nm			
w			21		g			
Case	SEMITOP® 2		T 35					

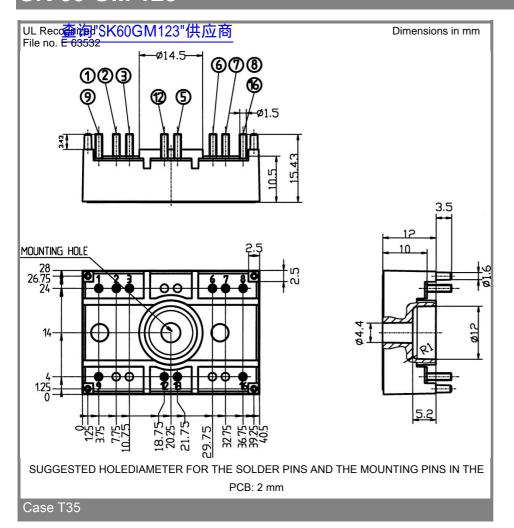


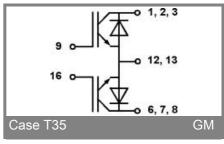












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.