are protected from damage due to static discharge by inter－ nal diode clamps to V_{CC} and ground．

Features

■ Typical propagation delay： 7 ns
Fanout of 15 LS－TTL loads
■ Quiescent power consumption： $10 \mu \mathrm{~A}$ maximum at room temperature
－Low input current： $1 \mu \mathrm{~A}$ maximum

Ordering Code：

Order Number	Package Number	Package Description
MM74HCU04M	M14A	14－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－120，0．150＂Narrow
MM74HCU04SJ	M14D	14－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
MM74HCU04MTC	MTC14	14－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide
MM74HCU04N	N14A	14－Lead Plastic Dual－In－Lead Package（PDIP），JEDEC MS－001，0．300＂Wide

Devices also available in Tape and Reel．Specify by appending the suffix letter＂X＂to the ordering code．

Connection Diagram

Pin Assignments for DIP，SOIC，SOP and TSSOP

Schematic Diagram

Absolute Maximum Ratings（Note 1） （Note 2）

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	-0.5 to +7.0 V
DC Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current $\left(\mathrm{I}_{\mathrm{IK}}, \mathrm{I}_{\mathrm{OK}}\right)$	$\pm 20 \mathrm{~mA}$
DC Output Current，per pin $\left(\mathrm{I}_{\mathrm{OUT}}\right)$	$\pm 25 \mathrm{~mA}$
DC V_{CC} or GND Current，per pin（I ICC$)$	$\pm 50 \mathrm{~mA}$
Storage Temperature Range（ $\left.\mathrm{T}_{\mathrm{STG}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation（ $\left.\mathrm{P}_{\mathrm{D}}\right)$	
（Note 3）	600 mW
S．O．Package only	500 mW
Lead Temperature（ $\left.\mathrm{T}_{\mathrm{L}}\right)$	
（Soldering 10 seconds）	$260^{\circ} \mathrm{C}$

Recommended Operating

 Conditions| | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2 | 6 | V |
| DC Input or Output Voltage | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$ | | | | $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

DC Electrical Characteristics
（Note 4）

Symbol	Parameter	Conditions	v_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
				Typ		Guaranteed Li	imits	
V_{IH}	Minimum HIGH Level		2.0 V		1.7	1.7	1.7	V
	Input Voltage		4.5 V		3.6	3.6	3.6	V
			6.0 V		4.8	4.8	4.8	V
V_{IL}	Maximum LOW Level		2.0 V		0.3	0.3	0.3	V
	Input Voltage		4.5 V		0.8	0.8	0.8	V
			6.0 V		1.1	1.1	1.1	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$						
	Output Voltage	$\left\|\mathrm{l}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A}$	2.0 V	2.0	1.8	1.8	1.8	V
			4.5 V	4.5	4.0	4.0	4.0	V
			6.0 V	6.0	5.5	5.5	5.5	V
		$\mathrm{V}_{\text {IN }}=\mathrm{GND}$						
		$\left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA}$	4.5 V	4.2	3.98	3.84	3.7	V
		$\|\mathrm{IOUT}\| \leq 5.2 \mathrm{~mA}$	6.0 V	5.7	5.48	5.34	5.2	V
V_{OL}	Maximum LOW Level	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$						
	Output Voltage	$\left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A}$	2.0 V	0	0.2	0.2	0.2	V
			$4.5 \mathrm{~V}$	0	0.5	0.5	0.5	V
			6.0 V	0	0.5	0.5	0.5	V
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$						
		$\left\|\mathrm{l}_{\text {OUT }}\right\| \leq 6.0 \mathrm{~mA}$	4.5 V	0.2	0.26	0.33	0.4	V
		$\left\|\mathrm{I}_{\text {OUT }}\right\| \leq 7.8 \mathrm{~mA}$	6.0 V	0.2	0.26	0.33	0.4	V
I_{IN}	Maximum Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		2.0	20	40	$\mu \mathrm{A}$

Note 4：For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case output voltages（ V_{OH} ，and V_{OL} ）occur for HC at 4.5 V ．Thus the 4.5 V values should be used when designing with this supply．Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively．（The $\mathrm{V}_{I H}$ value at 5.5 V is 3.85 V ．）The worst case leakage cur－ rent $\left(\mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{CC}}\right.$ ，and $\left.\mathrm{I}_{\mathrm{OZ}}\right)$ occur for CMOS at the higher voltage and so the 6.0 V values should be used．

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	（Parameter	Conditions	Typ	Guaranteed Limit	Units
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay		7	13	ns

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$（unless otherwise specified）

Symbol	Parameter	Conditions	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation		2.0 V	49	82	103	120	ns
	Delay		4.5 V	9.9	16	21	24	ns
			6.0 V	8.4	14	18	20	ns
$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	Maximum Output Rise		2.0 V	30	75	95	110	ns
	and Fall Time		4.5 V	8	15	19	22	ns
			6.0 V	7	13	16	19	ns
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance（Note 5）	（per gate）		90				pF
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			8	15	15	15	pF

Note 5：$C_{P D}$ determines the no load dynamic power consumption，$P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$ ，and the no load dynamic current consumption，
$I_{S}=C_{P D} V_{C C} f+I_{C C}$.

Typical Applications

FIGURE 2．Stable RC Oscillator

FIGURE 3．Schmitt Trigger

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

14 LD, TSSLP，JEDEC Mロ－153，4．4MM WIDE

LAND PATTERN RECIMMENDATIIN

> PIN \#1 IDENT. -

A．CINFIRMS TI JEDEC REGISTRATIDN Mロ－153，VARIATICN AB， REF NLTE 6，DATED 7／93
B．DIMENSIUNS ARE IN MILLIMETERS
C．DIMENSIINS ARE EXCLUSIVE IF BURRS，MILD FLASH AND TIE BAR EXTRUSIINS

14－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide Package Number MTC14

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

14－Lead Plastic Dual－In－Line Package（PDIP），JEDEC MS－001，0．300＂Wide
Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or（b）support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be rea－ sonably expected to result in a significant injury to the user．

2．A critical component in any component of a life support device or system whose failure to perform can be rea－ sonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．
www．fairchildsemi．com

