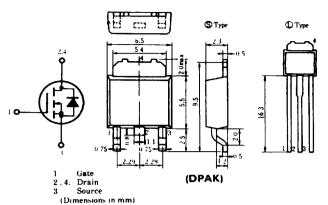
2SK384L,2SK384S

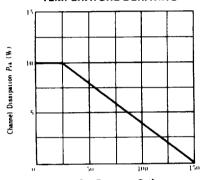

SILICONIN2SHARMUELIMOS FET

HITACHI/(OPTOELECTRONICS)

HIGH SPEED POWER SWITCHING, HIGH FREQUENCY POWER AMPLIFIER

■ FEATURES

- Small Package.
- High Speed Switching.
- High Cutoff Frequency.
- No Secondary Breakdown.
- Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power Oscillators

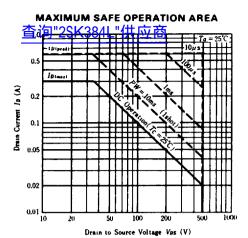


■ ABSOLUTE MAXIMUM RATINGS (T_a =25 °C)

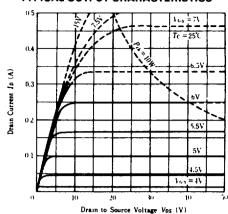
Item	Symbol	Rating	Unit	
Drain-Source Voltage	Voss	500	V	
Gate-Source Voltage	Voss	±20	V	
Drain Current	I _D	0.3	A	
Drain Peak Current	I _{D(peak)}	0.6	A	
Body-Drain Diode Reverse Drain Current	IDR	0.3	A	
Channel Dissipation	Pch*	10	w	
Channel Temperature	T _{ch}	150	50 °C	
Storage Temperature	Tsig	-55 ~ +150	۰c	

^{*}Value at T = 25 °C

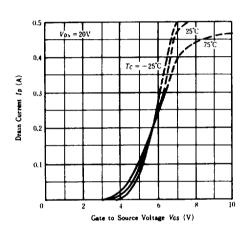
POWER VS. TEMPERATURE DERATING

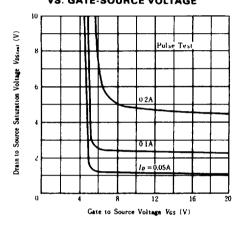

Case Temperature To 't

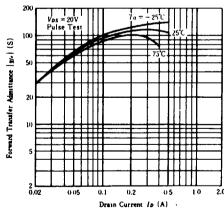
■ ELECTRICAL CHARACTERISTICS (T_e=25 °C)

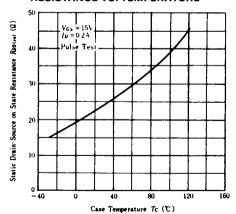

Item	Symbol	Test Condition	min.	typ.	max.	Unit
Drain-Source Breakdown Voltage	VIBRIDSS	$I_D=10$ mA, $V_{GS}=0$	500	_	_	V
Gate-Source Leak Current	Icss	$V_{cs}=\pm 20$ V. $V_{cs}=0$	_	_	±1	μА
Zero Gate Voltage Drain Current	IDSS	$V_{os} = 400 \text{V}, V_{os} = 0$	_	_	1	m A
Gate-Source Cutoff Voltage	Vusion	$I_D=1$ mA, $V_{DS}=10$ V	1.0	_	5.0	v
Static Drain-Source On State Resistance	RDSIONI	I_0 =0.2A. V_{os} =15V*	_	25	50	Ω
Drain-Source Saturation Voltage	V _{DS(on)}	I_{ρ} =0.2A. V_{GS} =15V*	_	5.0	10	v
Forward Transfer Admittance	19/4	$I_D=0.2$ A, $V_{DS}=10$ V*	60	100	_	mS
Input Capacitance	Cass	$V_{os}=10$ V, $V_{os}=0$	_ =	70	_	pF
Output Capacitance	Coss		_	15	_	рF
Reverse Transfer Capacitance	Crss	f=1MHz	_	5	_	pF
Turn-on Delay Time	t don't	$I_D = 0.2 \text{A}, \ V_{GS} = 15 \text{V}$ $R_L = 150 \Omega$	_	7	_	ns
Rise Time	t,		_	13	-	ns
Turn-off Delay Time	taross		_	11	-	ns
Fall Time	t _f			9	_	ns
Body-Drain Diode Forward Voltage	V _{DF}	I _r =0.2A, V _{cs} =0		0.8	_	v
Body-Drain Diode Reverse Recovery Time	t,,	I_F =0.2A, V_{cs} =0 dv_F/dt =100A/ μ s	_	280	_	ns

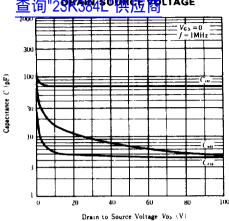
^{*}Pulse Test

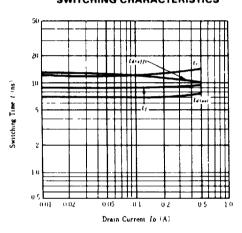

HITACHI/(OPTOELECTRONICS)

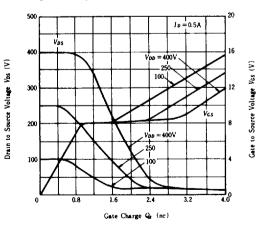

TYPICAL OUTPUT CHARACTERISTICS

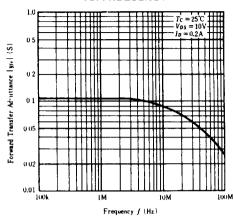

TYPICAL TRANSFER CHARACTERISTICS

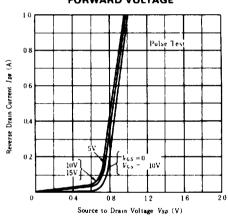

DRAIN-SOURCE SATURATION VOLTAGE VS. GATE-SOURCE VOLTAGE

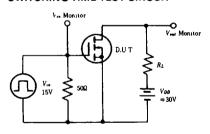

FORWARD TRANSFER ADMITTANCE VS. DRAIN CURRENT

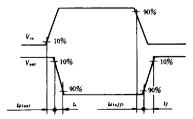

STATIC DRAIN-SOURCE ON STATE RESISTANCE VS. TEMPERATURE


TYPICAL CAPACITANCE VS. 查询"2**0RAM/\$0概贷资**LTAGE


SWITCHING CHARACTERISTICS


DYNAMIC INPUT CHARACTERISTICS


FORWARD TRANSFER ADMITTANCE VS. FREQUENCY


MAXIMUM BODY-DRAIN DIODE FORWARD VOLTAGE

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

HITACHI/(OPTOELECTRONICS)