8-Channel Data Selector

The MC14512B is an 8-channel data selector constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation.

Features

- Diode Protection on All Inputs
- Single Supply Operation
- 3-State Output (Logic "1", Logic "0", High Impedance)
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pb-Free Packages are Available*

MAXIMUM RATINGS (Voltages Referenced to VSS)

·			
Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	V _{in} , V _{out}	-0.5 to V _{DD} + 0.5	٧
Input or Output Current (DC or Transient) per Pin	I _{in} , I _{out}	±10	mA
Power Dissipation, Per Package (Note 1)	P_{D}	500	mW
Ambient Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (8–Second Soldering)	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

PDIP-16 P SUFFIX CASE 648

A = Assembly Location

WL = Wafer Lot
 YY, Y = Year
 WW = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

老品以及BCPC"供应商

查询"MC	14512BCP	G"供应商			
C	В	À	Inhibit	Disable	Z
0	0	0	0	0	X0
0	0	1	0	0	X1
0	1	0	0	0	X2
0	1	1	0	0	Х3
1	0	0	0	0	X4
1	0	1	0	0	X5
1	1	0	0	0	X6
1	1	1	0	0	X7
X	Х	Х	1	0	0
X	X	Х	X	1	High Impedance

PIN ASSIGNMENT

			_
X0 [1 ●		D V _{DD}
X1 [2	15	DIS
X2 [3	14	Ιz
Х3 [4	13	С
X4 [5	12	В
X5 [6	11	A
X6 [7	10	ј імн
V _{SS} [8	9] X7

NOTE: X = Don't Care

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14512BCP	PDIP-16	
MC14512BCPG	PDIP-16 (Pb-Free)	25 Units / Rail
MC14512BD	SOIC-16	
MC14512BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14512BDR2	SOIC-16	
MC14512BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	<u> </u>			- 5	5°C		25°C		125	5°C	
Characteristic	;	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15		0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current $ \begin{array}{l} (V_{OH}=2.5~\text{Vdc}) \\ (V_{OH}=4.6~\text{Vdc}) \\ (V_{OH}=9.5~\text{Vdc}) \\ (V_{OH}=13.5~\text{Vdc}) \end{array} $	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	- - -	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	- - -	- 1.7 - 0.36 - 0.9 - 2.4		mAd c
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAd c
Input Current		I _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0))	C _{in}	-	_	_	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outpon buffers switching)	nt, `	I _T	5.0 10 15			$I_T = (1$.8 μΑ/kHz) f .6 μΑ/kHz) f .4 μΑ/kHz) f	+ I _{DD}			μAdc
3-State Leakage Current		I_{TL}	15	_	± 0.1	-	± 0.0001	± 0.1	_	± 3.0	μAdc

- 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
- 3. The formulas given are for the typical characteristics only at $25\,^{\circ}$ C.
- To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} V_{SS}) in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS (Note 5) (C_L = 50 pF, T_A = 25°C, See Figure 1)

			All T	ypes	
Characteristic	Symbol	V _{DD}	Typ (Note 6)	Max	Unit
Output Rise and Fall Time t_{TLH} , t_{THL} = (1.5 ns/pF) C_L + 25 ns t_{TLH} , t_{THL} = (0.75 ns/pF) C_L + 12.5 ns t_{TLH} , t_{THL} = (0.55 ns/pF) C_L + 9.5 ns	t _{TLH} , t _{THL}	5.0 10 15	100 50 40	200 100 80	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	t₽LH	5.0 10 15	330 125 85	650 250 170	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	t _{PHL}	5.0 10 15	330 125 85	650 250 170	ns
3-State Output Delay Times (Figure 3) "1" or "0" to High Z, and High Z to "1" or "0"	t _{PHZ} , t _{PLZ} , t _{PZH} , t _{PZL}	5.0 10 15	60 35 30	150 100 75	ns

- 5. The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

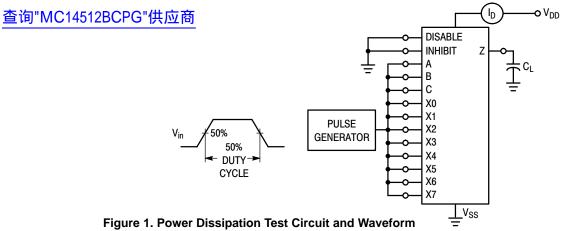


Figure 1. Power Dissipation Test Circuit and Waveform

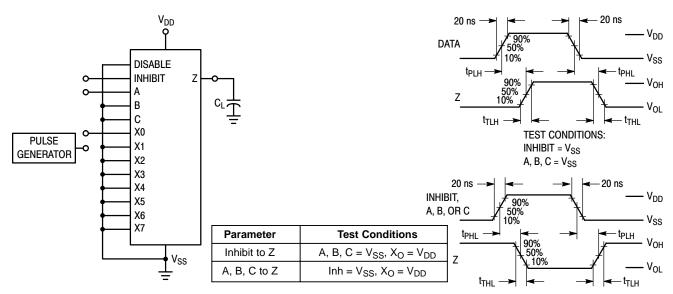


Figure 2. AC Test Circuit and Waveforms

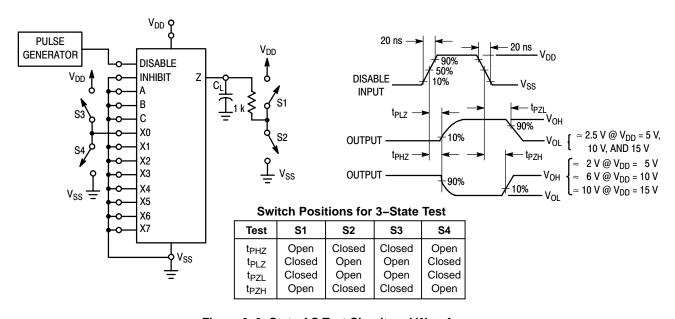
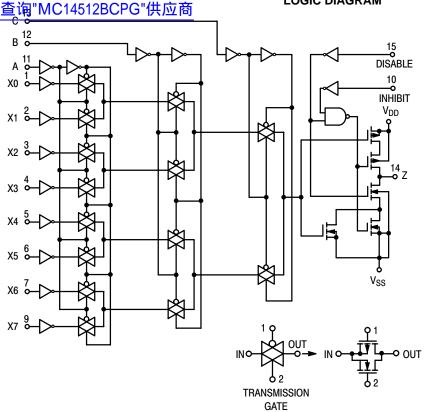
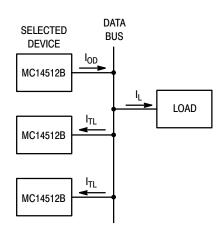




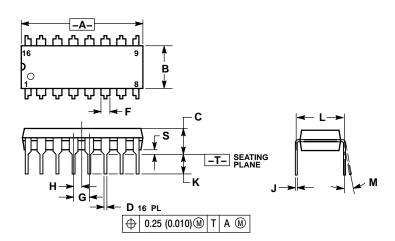
Figure 3. 3-State AC Test Circuit and Waveform

LOGIC DIAGRAM

3-STATE MODE OF OPERATION

Output terminals of several MC14512B 8–Bit Data Selectors can be connected to a single date bus as shown. One MC14512B is selected by the 3–state control, and the remaining devices are disabled into a high–impedance "off" state. The number of 8–bit data selectors, N, that may be connected to a bus line is determined from the output drive current, $I_{\rm OD}$, 3–state or disable output leakage current, $I_{\rm TL}$, and the load current, $I_{\rm L}$, required to drive the bus line

(including fanout to other device inputs), and can be calculated by:

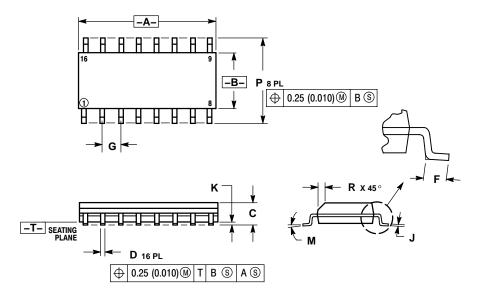

$$N = \frac{I_{OD} - I_{L}}{I_{TL}} + 1$$

N must be calculated for both high and low logic state of the bus line.

查询"MC14512BCPG"供应商

PACKAGE DIMENSIONS

PDIP-16 CASE 648-08 **ISSUE T**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD ELACH
- MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

SOIC-16 CASE 751B-05 **ISSUE J**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

查询"MC14512BCPG"供应商

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

USA/Canada

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative