

FAIRCHILD

SEMICONDUCTOR TM

DM74LS283 4-Bit Binary Adder with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

August 1986 Revised March 2000

DM74LS283 4-Bit Binary Adder with Fast Carry

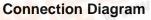
Ordering Code:

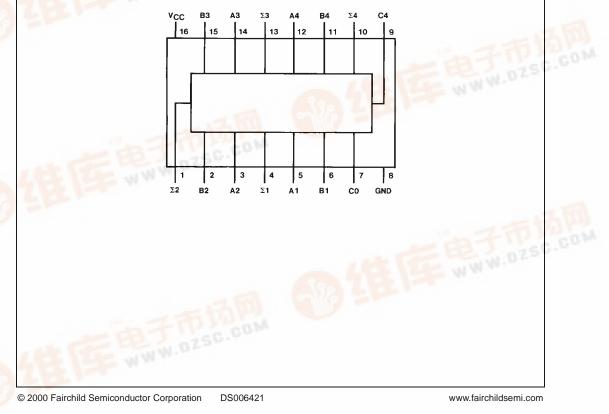
Order Number	Package Number	Package Description
DM74LS283M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS283N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Features

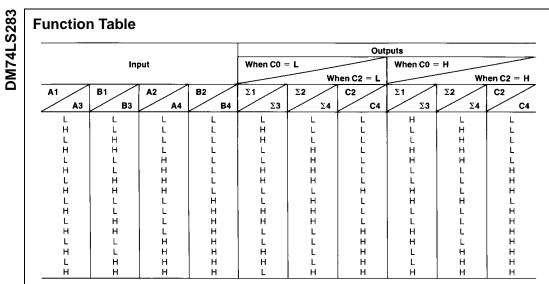
Typical add times

Full-carry look-ahead across the four bits

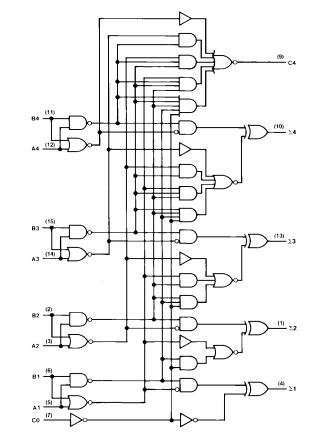

the economy of ripple carry


Two 8-bit words 25 ns

Two 16-bit words 45 ns


Systems achieve partial look-ahead performance with

Typical power dissipation per 4-bit adder 95 mW



 $\mathsf{H}=\mathsf{HIGH}\;\mathsf{Level},\,\mathsf{L}=\mathsf{LOW}\;\mathsf{Level}$

Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs $\Sigma1$ and $\Sigma2$ and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs $\Sigma3$, $\Sigma4$, and C4.

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS283

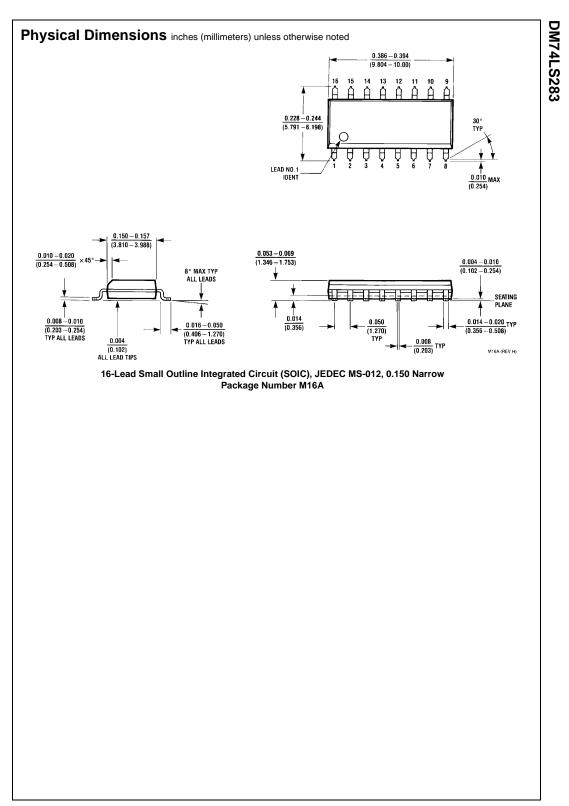
Recommended Operating Conditions

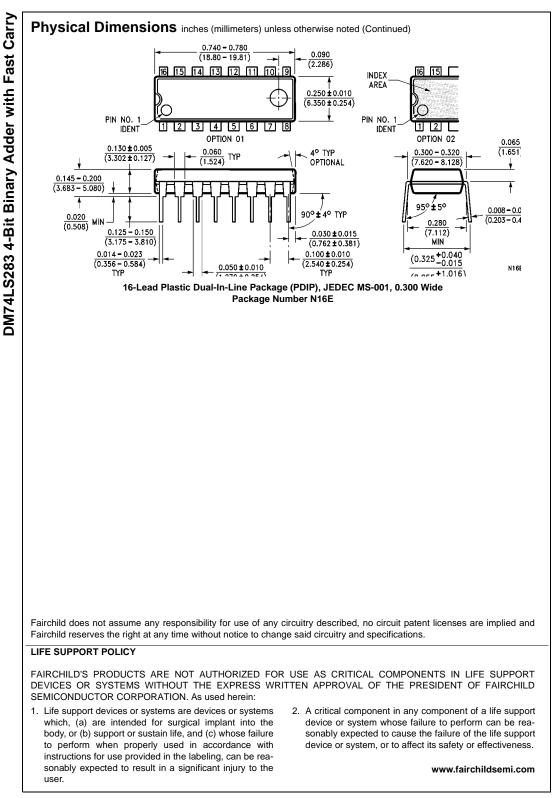
Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
/ _{IH}	HIGH Level Input Voltage	2			V
/ _{IL}	LOW Level Input Voltage			0.8	V
ОН	HIGH Level Output Current			-0.4	mA
OL	LOW Level Output Current			8	mA
Γ _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	$V_{CC} = Min, I_{OH} = Max$		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.1			v
V _{OL}	LOW Level	$V_{CC} = Min, I_{OL} = Max$			0.35	0.5	
Out	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.55	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$			0.25	0.4	
lı	Input Current @ Max	V _{CC} = Max	А, В			0.2	mA
	Input Voltage	$V_1 = 7V$	C0			0.1	ШA
I _{IH}	HIGH Level	V _{CC} = Max	А, В			40	
	Input Current	$V_1 = 2.7V$	C0			20	μA
IIL	LOW Level	V _{CC} = Max	А, В			-0.8	mA
	Input Current	$V_I = 0.4V$	C0			-0.4	
I _{OS}	Short Circuit Output Current	V _{CC} = Max		-20		-100	mA
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)			19	34	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 5)			22	39	mA


Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs OPEN, all B inputs LOW and all other inputs at 4.5V, or all inputs at 4.5V.

Note 5: I_{CC2} is measured with all outputs OPEN and all inputs GROUNDED.

$\begin{array}{ c c c c c c } \hline Min & Max & Min & Max \\ \hline Min & Max \\ \hline Min & Max & Max \\ \hline Min & Max & Max \\ \hline Min & Max \\ \hline Min & Max & Max \\ \hline Min & Max & Max \\ \hline Min & Max \\ \hline Min & Max \\ \hline Min & Max & Max \\ \hline Min & Max \\ \hline Min & Max & Max \\ \hline Min & Max & Max \\ \hline Min & Max \\ \hline Max \\$		/ and T _A = 25°C	From (Input)		R _L =	2 k Ω		
t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to $\Sigma1$, $\Sigma2$ 24 28 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output $C0$ to $\Sigma1$, $\Sigma2$ 24 30 n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to $\Sigma3$ 24 28 n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to $\Sigma3$ 24 28 n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to $\Sigma3$ 24 300 n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to $\Sigma4$ 24 28 n t_{PLH} Propagation Delay Time HIGH-to-LOW Level Output $C0$ to $\Sigma4$ 24 300 n t_{PLH} Propagation Delay Time HIGH-to-LOW Level Output $C0$ to $\Sigma4$ 24 300 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 24 300 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 24 300 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 24 30 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 24 30 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 24 30 n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output $C0$ to	Symbol	Parameter	To (Output)	C _L = ²	15 pF	C _L =	50 pF	Uni
LOW-to-HIGH Level OutputC0 to $\Sigma 1, \Sigma 2$ 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma 1, \Sigma 2$ 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 3$ 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma 3$ 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 3$ 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to Σ_1 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputA ₁ or B ₁ to Σ_1 2430n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to Σ_1 2430n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to C41724n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to C41724n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to C41724n t_{PHL} Propagation Delay Time LOW-to-HIGH Level Output <td< th=""><th></th><th></th><th></th><th>Min</th><th>Max</th><th>Min</th><th>Max</th><th></th></td<>				Min	Max	Min	Max	
LOW-to-HIGH Level OutputC0 to $\Sigma1$, $\Sigma2$ 2430n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma1$, $\Sigma2$ 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma3$ 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma3$ 2430n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma4$ 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma4$ 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma4$ 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma4$ 2430n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to Σ_1 2430n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to Σ_1 2430n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to Σ_1 2430n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to C41724n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to C41724n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA ₁ or B ₁ to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputA ₁	t _{PLH}		C0 to $\Sigma 1$, $\Sigma 2$		24		28	ns
HIGH-to-LOW Level OutputC0 to $\Sigma 1$, $\Sigma 2$ 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 3$ 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma 3$ 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 3$ 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to $\Sigma 4$ 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputA _i or B _i to Σ_i 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA _i or B _i to Σ_i 2428n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to C41724n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputC0 to C41725n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputA _i or B _i to C41726n							-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{PHL}		C0 to Σ1, Σ2		24		30	ns
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	t							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PLH		C0 to ∑3		24		28	ns
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	t _{PHL}							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		HIGH-to-LOW Level Output	C0 to ∑3		24		30	ns
LOW-to-HIGH Level OutputCO to $\Sigma4$ 2430n t_{PHL} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to Σ_i 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to Σ_i 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to C41725n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41726n	t _{PLH}	Propagation Delay Time	C0 to 54		24		20	
HIGH-to-LOW Level OutputCO to $\Sigma 4$ 2430ntpLHPropagation Delay Time LOW-to-HIGH Level Output A_i or B_i to Σ_i 2428ntpHLPropagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430ntpHLPropagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430ntpHLPropagation Delay Time LOW-to-HIGH Level Output $C0$ to C41724ntpHLPropagation Delay Time LOW-to-HIGH Level OutputC0 to C41725ntpHLPropagation Delay Time HIGH-to-LOW Level Output A_i or B_i to C41724ntpLHPropagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41724n		LOW-to-HIGH Level Output	C0 10 <u>2</u> 4		24		28	ns
HIGH-to-LOW Level OutputAi or Bi to Σ_i 2428n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to Σ_i 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to C41725n t_{PLH} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41726n	t _{PHL}		C0 to $\Sigma 4$		24		30	ns
Low-to-HIGH Level Output A_i or B_i to Σ_i 2428n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to C41724n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output $C0$ to C41725n t_{PLH} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41724n t_{PHL} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41726n		-						
LOW-to-HIGH Level OutputAi or Bi to Σ_i 2430n t_{PHL} Propagation Delay Time LOW-to-HIGH Level OutputAi or Bi to Σ_i 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputC0 to C41724n t_{PHL} Propagation Delay Time HIGH-to-LOW Level OutputC0 to C41725n t_{PLH} Propagation Delay Time HIGH-to-LOW Level OutputAi or Bi to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputAi or Bi to C41724n t_{PLH} Propagation Delay Time LOW-to-HIGH Level OutputAi or Bi to C41726n	t _{PLH}		A_i or B_i to Σ_i		24		28	ns
HIGH-to-LOW Level Output A_i or B_i to Σ_i 2430n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output $C0$ to C41724n t_{PHL} Propagation Delay Time HIGH-to-LOW Level Output $C0$ to C41725n t_{PLH} Propagation Delay Time HIGH-to-LOW Level Output A_i or B_i to C41726n t_{PLH} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41726n t_{PHL} Propagation Delay Time LOW-to-HIGH Level Output A_i or B_i to C41726n								
tpLH Propagation Delay Time LOW-to-HIGH Level Output C0 to C4 17 24 n tpHL Propagation Delay Time HIGH-to-LOW Level Output C0 to C4 17 25 n tpLH Propagation Delay Time LOW-to-HIGH Level Output C0 to C4 17 25 n tpLH Propagation Delay Time LOW-to-HIGH Level Output A _i or B _i to C4 17 24 n tpHL Propagation Delay Time LOW-to-HIGH Level Output A _i or B _i to C4 17 26 n	^L PHL		A_i or B_i to Σ_i		24		30	ns
LOW-to-HIGH Level OutputC0 to C41724ntpHLPropagation Delay Time HIGH-to-LOW Level OutputC0 to C41725ntpLHPropagation Delay Time LOW-to-HIGH Level OutputA _i or B _i to C41724ntpHLPropagation Delay Time LOW-to-HIGH Level OutputA _i or B _i to C41724ntpHLPropagation Delay Time LOW-to-HIGH Level OutputA _i or B _i to C41726n	toru							
tPHL Propagation Delay Time HIGH-to-LOW Level Output C0 to C4 17 25 n tPLH Propagation Delay Time LOW-to-HIGH Level Output A _i or B _i to C4 17 24 n tPHL Propagation Delay Time LOW-to-HIGH Level Output A _i or B _i to C4 17 26 n	-FLM		C0 to C4		17		24	ns
HIGH-to-LOW Level Output HIGH-to-LOW Level Output t _{PLH} Propagation Delay Time LOW-to-HIGH Level Output A _i or B _i to C4 17 24 n t _{PHL} Propagation Delay Time A _i or B _i to C4 17 26 n	t _{PHL}		001-04		47		05	
LOW-to-HIGH Level Output A _i or B _i to C4 17 24 n t _{PHL} Propagation Delay Time A _i or B _i to C4 17 26 n		HIGH-to-LOW Level Output	CU to C4		17		25	ns
LOW-to-HIGH Level Output Propagation Delay Time A: or B: to C4 17 26 n	t _{PLH}		A: or B: to C4		17		24	ns
A; or B; to C4 17 26 n								
HIGH-to-LOW Level Output	t _{PHL}		A _i or B _i to C4		17		26	ns

www.fairchildsemi.com