										RE\	/ISIC	ONS													
LTR						D	ESC	RIPT	ION								Ţ	DATE	(YR-I	NO-D	A)	AP	PRO	VED	
																		_							
																									1
																	I				1				
	· ····	1	.	r					-					1-1	<u> </u>						<u>г</u>				
REV																					┢				
SHEET										 						 									
REV					<u> </u>			ļ	┞──	ļ	ļ			\vdash		 				<u> </u>					
SHEET	L			L	 	 			 		_		-			┣				┠	┢─				
REV STATUS	╞		EV				┨			┣				-				_			┢	┨──	┢╌		
OF SHEETS		Sł	IEET		1	2		4	5	6	7	8	9 T	10	11	12	13	14	I		l	L			L
PMIC N/A					HRE A		DB 21	y)	1 us	nai	to l	Ľ,			DEF	FENS	e eli	ECTF	ioni	cs s	SUPP		ENTE	R	
STANDA	חס		חי		СН	с ку	_	_					1				DA	YTO	N, Oł	110 4	1544	4			
MILI					A	X	th	L	u	al	_		┟	MICF		RCUT	Τ.Ι	DIGI	TAL	, F/	4ST	CMOS	9-F	BIT	
DRA					AD	9,01		_		2		1		NON- MONC	INV	ERTI	NG I	SUS	TRA	VSCE	EIVE	R,		-	
THIS DRAWIN						AWIN				ŧ	×		╉	SIZE	-		CAGE		_	-					
FOR USE BY A	L DE	PART	MEN	TS			FEB							A			672				59	62	-88	86	61
DEPARTMEN	IT OF	DEFE	INSE		RE	VISIO	N LE	VEL					╊												
AMSC N/A															SHE	ET		1		OF		14			
DESC FORM 1	0.2														_	_			MAENT	PRIN	TING O	FFICE: 1	987	748-12	29/6091

SEP 87

5962-E919

DISTRIBUTION STATEMENT A. Approved for public release; distribution Is unlimited.

1. SCOPE			
1.1 <u>Scope</u> . This drawing describes devi with 1.2.1 of MIL-STD-883, "Provisions for non-JAN devices".	ce requirements the use of MIL	s for class B mi -STD-883 in con	crocircuits in accordance junction with compliant
1.2 Part number. The complete part num	iber shall be as	s shown in the f	ollowing example:
<u>5962-88661</u> 01	-	<u>к</u> 	<u>×</u>
l l Drawing number Device (1.2.		ase outline (1.2.2)	 Lead finish per MIL-M-38510
1.2.1 Device types. The device types s	hall identify f	the circuit fund	ction as follows:
Device type Generic numb	er <u>C</u>	ircuit function	
01 54FCT863A 02 54FCT863B		non-inverting bu non-inverting bu	
1.2.2 Case outlines. The case outlines as follows:	s shall be as do	esignated in app	pendix C of WIL-M-38510, and
Outline letter	Case out	line	
K F-6 (24-lead, .6 L D-9 (24-lead, 1. 3 C-4 (28-terminal	540" x .420" x 280" x .310" x , .460" x .460	.090"), flat pac .200"), dual-in " x .100"), squa	ckage n-line package are chip carrier package
1.3 Absolute maximum ratings. 1/			
Supply voltage	θ _{JC})	0.5 V dc 1 0.5 V dc 1 20 mA 50 mA - ±100 mA - 500 mW - See liL-M-1 65 C to +1 - +175 °C	to V _{CC} +0.5 V dc to V _{CC} +0.5 V dc 38510. appendix C
1.4 Recommended operating conditions.			
Supply voltage range (V_{CC}) Maximum low level input voltage (V_{IL} Minimum high level input voltage (V_{CC}) Case operating temperature (T_{C}))	- 0.8 V dc	
17 All voltages reference to GND. 2/ Must withstand the add d PD due to sho STANDARDIZED MILITARY DRAWING	ort circuit tes SIZE A	t; e.g., I _{OS} .	5962-88661
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 2
DESC FORM 193A SEP 87			☆ U. S. GOVERNMENT PRINTING OFFICE: 1968-550-547

2. APPLICABLE DOCUMENTS 2.1 <u>Government specification and standard</u>. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. SPECIFICATION MILITARY - Microcircuits, General Specification for. MIL-M-38510 STANDARD MILITARY - Test Methods and Procedures for Microelectronics. MIL-STD-883 (Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. 3. REQUIREMENTS 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein. 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1. 3.2.2 Truth table. The truth table shall be as specified on figure 2. 3.2.3 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 3. 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein. 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range. 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein. SIZE STANDARDIZED Α 5962-88661 **MILITARY DRAWING REVISION LEVEL** SHEET DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 3

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

	TABLE	I. <u>Electri</u>	cal perform	ance charac	teristics.				
Test	Symbol	-55°C	Conditions C < T _C < +1 Otherwise s	25°C	Group A Isubgroups	Device type	Lin Min	nits Max	Unit
High level output voltage	V _{OH}	$V_{CC} = 4.5 V,$ $V_{IL} = 0.8 V,$		= -300 μA	1, 2, 3	A11	4.3	T	v
···· J -	 	$V_{IH}^{IL} = 2.0 V$		= −15 mA	1, 2, 3	A]]	2.4		۷
Low level output voltage	VOL	$V_{CC} = 3.0 V,$ $V_{IL} = 0.8 V,$	IO	= 300 µA	1, 2, 3	 A]]		0.2	v
	 	$ V_{\rm IH} = 2.0 V$		= 32 mA	1, 2, 3	 A]] 		0.5	۷
Input clamp voltage	VIK	V _{CC} = 4.5 V,	IIN = -18	mA	1	 A]]		-1.2	V
High level input current	IH	V _{CC} = 5.5 V, V _{IN} = 5.5 V	OE	₹ _n , σέτ _n	1, 2, 3	A11		5	μA
			Rn	, T _n	1, 2, 3	A11		15	Aμ
Low level input current	IIL	V _{CC} = 5.5 V, V _{IN} = GND	ŌE	R _n , OET _n	1, 2, 3			-5	μA
			R _n	, T _n	1, 2, 3	A11		-15	μA
High impedance output	I _{OZH}	$V_{CC} = 5.5 V, V_{IN} = 5.5 V$			1, 2, 3	A11		10	μA
	¹ ozl	$V_{\rm CC} = 5.5 V$	$V_{IN} = GND$		1, 2, 3	A11 -		-10	μA
Short circuit output current	IOS	$V_{\rm CC} = 5.5 V$	1/		1, 2, 3	A11	-75		nìA
Quiescent power supply current (CMOS inputs)	I CCQ	$V_{\text{IN}} \stackrel{<}{=} \begin{array}{c} 0.2 \\ 5.5 \\ 1 \end{array}$	or $V_{IN} \ge 5$, $f_I = 0$ MH	.3 V, z	1, 2, 3	A11	1	1.5	Б іА
Quiescent power supply current (TTL inputs)	∿I CC	$V_{\rm CC} = 5.5 V_{\rm cc}$	$V_{IN} = 3.4$	V <u>2</u> /	1, 2, 3	 A11 		2.0	ъA
See footnotes at end of	f table.								
STANDARD MILITARY DE		IG	SIZE A			59	62-886	61	
DEFENSE ELECTRONIC		r		REVISIO			SHEET	*****	

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	25 mA/
$V_{IN} \ge 5.3$ V or $V_{IN} \le 0.2$ V,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$V_{IN} = 3.4 \text{ V or } V_{IN} = \text{GND},$ $V_{CC} = 5.5 \text{ V}, \text{ f}_{I} = 10 \text{ MHz},$ $Outputs \text{ open},$ $One \text{ bit toggling } - 50\% \text{ duty cycle}$	D m/
ests See 4.3. d 7, 8 A11	
tance C _{IN} See 4.3.1c 4 A11 10	pF
itance C _{OUT} See 4.3.]c 4 All 12	14
delay t_{PLH} , $R_{L} = 500\%$, $C_{L} = 50 \text{ pF}$ 9,10,11 01 10 o T _n t_{PHL} See figure 3	n:
	.5 n:
$ C_{L} = 300 \text{ pF} \frac{5}{9}, 10, 11 01 17$	l ns
02 14	ns
$C_{L} = 300 \text{ pF } \frac{5}{2} 9,10,11 01 17$	

DESC FORM 193A SEP 87

I

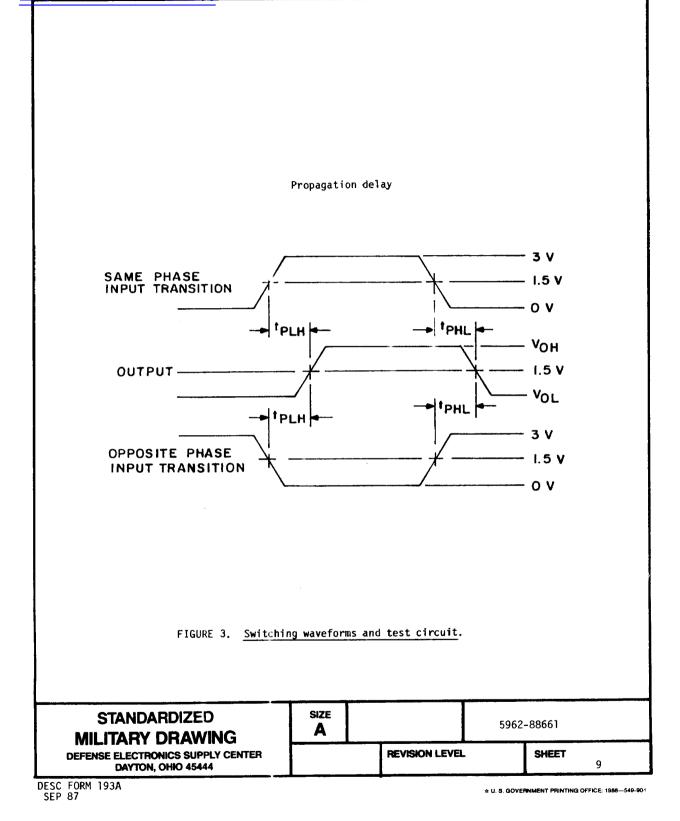
* U. S. GOVERNMENT PRINTING OFFICE: 1988--650-547

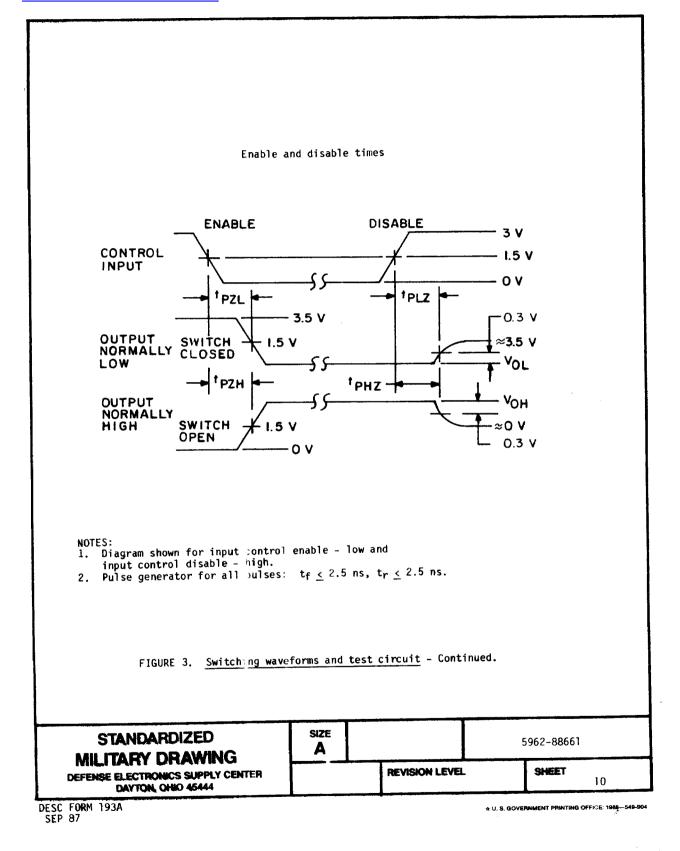
ł

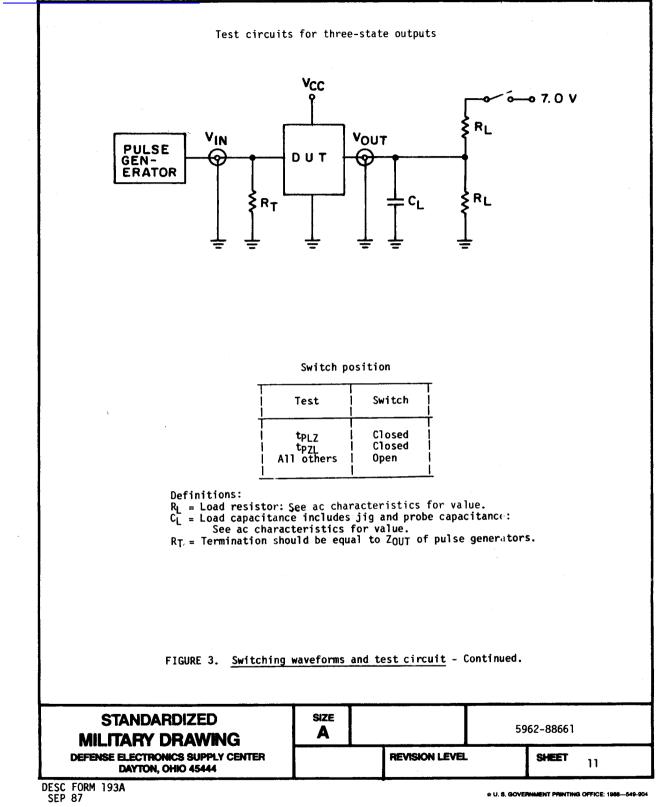
Test	Symbol	55%	Condition $Condition > Condition$	S 125°C	Group A				Unit	
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		unless of	$\frac{\langle C \rangle}{\langle therwise}$	specified	subgroups 	i cype				
Output enable time, \overline{OET}_{n} to T_{n} or	ltpZH, ltpZL	RL = 500Ω, See figure :		L = 50 pF	9, 10, 11	01		17	ns	
DER _n to R _n						02		9.0	ns	
	1	8 1 1	 C	L = 300 pF 5/	 9, 10, 11 	01		22 22	ns	
	 	 				02		16	ns	
Output disable time, OET _n to T _n or OER _n to R _n	tpHZ,			L = 50 pF	9, 10, 11	01		10	ns	
		1				02		8.0	ns	
		 1		L = 5.0 pF 5/	/ 9, 10, 11 	01		19	ns	
		1 			1	02		8.0	ns	
2/ TTL driven input (2/ This parameter is calculations.	V _{IN} = 3. not dire	ctly testable	ner inputs e, but is	at V _{CC} or GN derived for u					ιιτ	
2/ TTL driven input (2/ This parameter is calculations. 2/ ICC = ICCQ + (Δ ICC Where: D _H = Duty N _T = Number f _I = Input N _I = Number 2/ Parameter guaranter 3.5 <u>Certificate of</u> n order to be Tisted submitted to DESC-ECS manufacturer's productor are in. 3.6 Certificate of	<pre>VIN = 3. not dire X D_H X cycle fo er of TTL t frequen er of inp ee(, but complian as an ap prior to t meets t conforma</pre>	4 V); all oth ctly testable NT) + (I _{CCD}) r TTL inputs inputs at D _I cy in MHz uts at f _I not tested. <u>ce</u> . A certif proved source listing as a he requirement	her inputs e, but is (f _I X N _I) high d icate of c e of suppl an approve hts of MIL	ompliance ha y in 6.4. The source of s -STD-883 (see	all be require as require	l power fired from ate of of l state n) and ed in MI	supply compliant that the red L-STD-4	y anufact ance the quirenme	turer	
<pre>// TTL driven input (// This parameter is calculations. // ICC = ICCQ + (ΔICC Where: D_H = Duty N_T = Number f_I = Input N_I = Number // Parameter guaranter 3.5 <u>Certificate of</u> n order to be listed submitted to DESC-ECS manufacturer's production () Shall be provided () Shall be provided () This parameter is provided () This parameter is producted () This parameter is parameter is</pre>	<pre>VIN = 3. not dire X D_H X cycle fo er of TTL t frequen er of inp eec, but complian as an ap prior to t meets t conforma ided with</pre>	4 V); all oth ctly testable NT) + (I _{CCD}) r TTL inputs inputs at D _I cy in MHz uts at f _I not tested. <u>ce</u> . A certif proved source listing as a he requirement	her inputs e, but is (f _I X N _I) high { icate of c e of suppl an approve hts of MIL ificate of microcirc	ompliance ha y in 6.4. The source of s -STD-883 (see	all be require as require	l power fired from ate of of l state n) and ed in MI	supply compliant that the red L-STD-4	y anufact ance the quirenme	turer	
2/ TTL driven input (2/ This parameter is calculations. 2/ ICC = ICCQ + (Δ ICC Where: D _H = Duty N _T = Number f _I = Input N _I = Number 2/ Parameter guaranter 3.5 <u>Certificate of</u> n order to be Tisted submitted to DESC-ECS manufacturer's productor are in. 3.6 Certificate of	<pre>VIN = 3. not dire X D_H X cycle fo r of TTL t frequen er of inp ee, but complian as an ap prior to t meets t conforma ided with</pre>	4 V); all oth ctly testable NT) + (I _{CCD}) r TTL inputs inputs at D _I cy in MHz uts at f _I not tested. <u>ce. A certif</u> proved source listing as a he requirement <u>nce. A cert</u>	her inputs e, but is (f _I X N _I) high d icate of c e of suppl an approve hts of MIL	ompliance ha y in 6.4. The source of s -STD-883 (see	all be require as require	l power are of () state n) and drawing	supply compliant that the red L-STD-4	y anufact ance the quirenne 883 (se	turer	

......

Device types	A1	1	
Case outlines	K and L	3	
Terminal number	Ternina] symbol	
	OER ₁	NC I	
2	RO	OER1	
	R ₁	RO	
4	R ₂	R ₁	
5	R3	R ₂	
6	R4	R3	
7	R5	R4	
8	R6	NC I	
9	R7	R ₅	
10	R ₈	R ₆	
	OER ₂	R ₇	
11	GND	R ₈	
13		OER2	
14	DET ₂	GND	
14	T ₈	NC I	
16	τ ₇	DET1	
17	T ₆	DET2	
18	т ₅	T ₈	
	τ ₄	T7	
20		т ₆	
	Т <u>з</u>	T ₅	
	т ₂	NC	
22	т ₁		
i 23	т _о	T4	
24	Vcc	T3	
25		T ₂	
26		T ₁	
27		T _O	
28		Vcc	
	Terminal connec	tions.	
STANDARDIZED	SIZE		
MILITARY DRAWING			5962-886




DESC FORM 193A SEP 87


* U. S. GOVERNMENT PRINTING OFFICE: 1988-549-904

......

STANDARDI MLITARY DR		ž		SIZE Å		to the art of		5962-88661
			FIGURE	2. <u>1</u>	ruth t	<u>able</u> .		
	 = L = X =	High Low Te Don't High	logic evel 1 care impeda	l level ogic nce st	<u> </u>	<u> </u>	<u> </u> i	
	н	H	x	I X	Z	Z	 High Z	
		L L	N/A N/A	L 	L H		Receiving	
		H	Н	N/A	N/A	н	Transmitting	
	L	Н	L	N/A	N/A	L	 Transmitting 	
	DET	0EF.n		T _n	Ŕ'n	т _n	Function 	
		Inputs		Output		outs	1 1	

3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

4. QUALITY ASSURANCE PROVISIONS

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test method 1015 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_{A} = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{OUT} measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. Test all applicable pins on five devices with zero failures.
 - d. Subgroups 7 and 8 tests shall verify the truth table as specified on figure 2.
- 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test method 1005 of MIL-STD-883 conditions:
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_{A} = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of NIL-STD-883.

STANDARDIZED MILITARY DRAWING	size A		5	5962-88661		
DEFENSE BLECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET	2	

DESC FORM 193A SEP 87

* U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547

MJL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*,2,3,4,7,8, 9,10,11
Group A test requirements (method 5005)	1,2,3,4,7,8, 9,10,11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

<mark>则"5962-88661013A"供应商</mark> TABLE II. <u>Electrical test requirements</u>.

* PDA applies to subgroup 1 and 7.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.

6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED MILITARY DRAWING	size A		5962-88661		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	. s	HEET 13	

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

6.4 <u>Approved source of supply</u>. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number			Replacement military specification part number
5962-8866101KX	61772	54FCT863AEB	
5962-8866101LX	61772	54FCT863ADB	
5962-88661013X	61772	54FCT863ALB	
5962-8866102KX	61772	54FCT863BEB	
5962-8866102LX	61772	54FCT863BDB	
5962-88661023X	61772	54FCT863BLB	

<u>1/</u> <u>Caution</u>. Do not use this number for item acquisition. Items acquired by this number may not satisfy the performance requirements of this drawing.

> Vendor CAGE number

> > 61772

Vendor name and address

Integrated Device Technology 3236 Scott Boulevard Santa Clara, CA 95052

 STANDARDIZED
 SIZE

 MILITARY DRAWING
 A

 DEFENSE ELECTRONICS SUPPLY CENTER
 REVISION LEVEL

 DAYTON, OHIO 45444
 14

DESC FORM 193A SEP 87 ★ U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547

011144 / _ _