

a**ʷʷʷザチチᠻ**ᠮ6244A"供应商

SN54LVTH16244A, SN74LVTH16244A 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS142T-MAY 1992-REVISED NOVEMBER 2006

FEATURES	SN54LVTH16244A WD PACKAGE
 Members of the Texas Instruments	SN74LVTH16244ADGG, DGV, OR DL PACKAGE
Widebus™ Family	(TOP VIEW)
 State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) 	1 OE 1 48 2OE 1Y1 2 47 1A1 1Y2 3 46 1A2 GND 4 45 GND 1Y3 5 44 1A3 1Y4 6 43 1A4 V _{CC} 7 42 V _{CC}
 Support Unregulated Battery Operation	2Y1 8 41 2A1
Down to 2.7 V	2Y2 9 40 2A2
 Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	GND 10 39 GND 2Y3 11 38 2A3
 I_{off} and Power-Up 3-State Support Hot	2Y4 [12 37] 2A4
Insertion	3Y1 [13 36] 3A1
 Bus Hold on Data Inputs Eliminates the Need	3Y2 [14 35] 3A2
for External Pullup/Pulldown Resistors	GND [15 34] GND
 Latch-Up Performance Exceeds 500 mA	3Y3 [16 33] 3A3
Per JESD 17	3Y4 [17 32] 3A4
 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A) 	V _{CC} [] 18 31 [] V _{CC} 4Y1 [] 19 30 [] 4A1 4Y2 [] 20 29 [] 4A2 GND [] 21 28 [] GND
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

DESCRIPTION/ORDERING INFORMATION

The 'LVTH16244A devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using loff and power-up 3-state. The loff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SN54LVTH16244A, SN74LVTH16244A 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS scassing 1- MAY HAVE: A MAY HAVE A M

ORDERING INFORMATION

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	FBGA – GRD	Reel of 1000	SN74LVTH16244AGRDR	11.0444	
	FBGA – ZRD (Pb-free)	Reel of 1000	SN74LVTH16244AZRDR	— LL244A	
		Tube of OF	SN74LVTH16244ADL		
	SSOP – DL	Tube of 25	SN74LVTH16244ADLG4		
	330F - DL	Deal of 1000	SN74LVTH16244ADLR	– LVTH16244A	
		Reel of 1000	74LVTH16244ADLRG4		
–40°C to 85°C			SN74LVTH16244ADGGR		
	TSSOP – DGG	Reel of 2000	74LVTH16244ADGGRE4	LVTH16244A	
			74LVTH16244ADGGRG4		
	TVSOP – DGV	Reel of 2000	SN74LVTH16244ADGVR	11.0444	
	1V30P - DGV	Reel 01 2000	74LVTH16244ADGVRE4	— LL244A	
	VFBGA – GQL	Deal of 1000	SN74LVTH16244AGQLR		
	VFBGA – ZQL (Pb-free)	Reel of 1000	SN74LVTH16244AZQLR	— LL244A	
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH16244AWD	SNJ54LVTH16244AWD	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

♥ Texas INSTRUMENTS 查淄[™] VTH16244A"供应商

GQL OR ZQL PACKAGE (TOP VIEW)										
	1 2 3 4 5 6									
Α	000000									
в	0000000									
С	0000000									
D	000000									
Е	00 00									
F	00 00									
G	000000									
н	000000									
J	000000									
к	000000									

SN54LVTH16244A, SN74LVTH16244A 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS142T-MAY 1992-REVISED NOVEMBER 2006

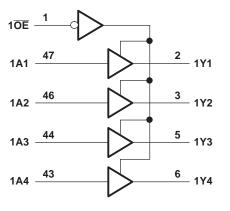
TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

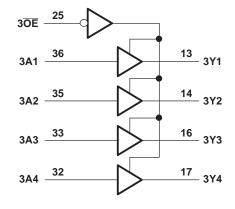
	1	2	3 4		5	6		
Α	1 <mark>0E</mark>	NC	NC	NC	NC	2 <mark>0E</mark>		
В	1Y2	1Y1	GND	GND	1A1	1A2		
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4		
D	2Y2	2Y1	GND GND		2A1	2A2		
Е	2Y4	2Y3			2A3	2A4		
F	3Y1	3Y2			3A2	3A1		
G	3Y3	3Y4	GND	GND	3A4	3A3		
Н	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1		
J	4Y3	4Y4	GND	GND	4A4	4A3		
к	4 0E	NC	NC	NC	NC	3 0E		

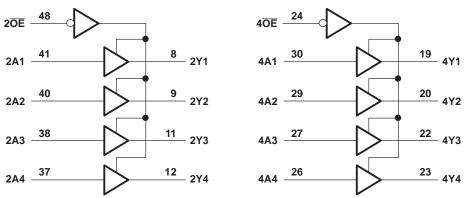
(1) NC – No internal connection

	GRD OR ZRD PACKAGE (TOP VIEW)								
		1	2			5	6		
A	$\left(\right)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	\sim								

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)


	1	2	3	4	5	6
Α	1Y1	NC	1 <mark>0E</mark>	2 <mark>0E</mark>	NC	1A1
В	1Y3	1Y2	NC	NC	1A2	1A3
С	2Y1	1Y4	V _{CC}	V _{CC}	1A4	2A1
D	2Y3	2Y2	GND	GND	2A2	2A3
Е	3Y1	2Y4	GND	GND	2A4	3A1
F	3Y3	3Y2	GND	GND	3A2	3A3
G	4Y1	3Y4	V _{CC}	V _{CC}	3A4	4A1
Н	4Y3	4Y2	NC	NC	4A2	4A3
J	4Y4	NC	4 <mark>0E</mark>	3 0E	NC	4A4


(1) NC - No internal connection


FUNCTION TABLE (EACH 4-BIT BUFFER)

INPL	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Х	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	4.6	V	
VI	Input voltage range ⁽²⁾		-0.5	7	V	
Vo	Voltage range applied to any output in the high	n-impedance or power-off state ⁽²⁾	-0.5	7	V	
Vo	Voltage range applied to any output in the high	n state ⁽²⁾	-0.5	V _{CC} + 0.5	V	
	Comment into any extent in the law state	SN54LVTH16244A		96	V	
I _O	Current into any output in the low state	SN74LVTH16244A	12		v	
	Current into any output in the high state ⁽³⁾	SN54LVTH16244A		48	V	
I _O		SN74LVTH16244A		64		
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
		DGG package		70		
		DGV package		58		
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package			°C/W	
		GQL/ZQL package		42		
		GRD/ZRD package		36		
T _{stg}	Storage temperature range		-65	150	°C	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The current flows only when the output is in the high state and $V_O > V_{CC}$. (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH	16244A	SN74LVTH		
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-25		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate	· · ·	200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54LVTH16244A, SN74LVTH16244A 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCESTA21-WAY HOOS REAL 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	METED	TEST CO	NDITIONS	SN54LVTH16	6244A	SN74	LVTH16244A		
PARA	METER	TEST CO	NDITIONS	MIN TYP ⁽¹) MAX	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA		-1.2			-1.2	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V,$	I _{OL} = -100 μA	V _{CC} – 0.2		$V_{CC} - 0.2$			
.,		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4		2.4			
V _{OH}		V 2.V	I _{OH} = -24 mA	2					V
	$V_{CC} = 3 V$		I _{OH} = -32 mA			2			
		V 07V	I _{OL} = 100 μA		0.2			0.2	
		$V_{CC} = 2.7 V$	I _{OL} = 24 mA		0.5			0.5	
			I _{OL} = 16 mA		0.4			0.4	V
V _{OL}		V 2.V	I _{OL} = 32 mA		0.5			0.5	v
	$V_{CC} = 3 V$	I _{OL} = 48 mA		0.55					
			I _{OL} = 64 mA					0.55	
		$V_{CC} = 0 \text{ or } 3.6 \text{ V}, \qquad V_{I} = 5.5 \text{ V}$		50			10		
I _I	Control inputs Data	V _{CC} = 3.6 V,	$V_{I} = V_{CC}$ or GND		±1			±1	μA
			$V_{I} = V_{CC}$		1			1	•
	inputs	V _{CC} = 3.6 V	$V_{I} = 0$		-5			-5	
I _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$					±100	μA
		N 2.V	V _I = 0.8 V	75		75			
La in	Data	$V_{CC} = 3 V$	V _I = 2 V	-75		-75			μA
I _{I(hold)}	inputs	$V_{\rm CC} = 3.6 \ V^{(2)},$	V _I = 0 to 3.6 V				-	500 - 750	μΑ
I _{OZH}		V _{CC} = 3.6 V,	$V_0 = 3 V$		5			5	μA
I _{OZL}		V _{CC} = 3.6 V,	V _O = 0.5 V		-5			-5	μA
I _{OZPU}		$\frac{V_{CC}}{OE}$ = 0 to 1.5 V, V _O = \overline{OE} = don't care	0.5 V to 3 V,		±100 ⁽³⁾			±100	μA
I _{OZPD}		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _O = \overline{OE} = don't care	0.5 V to 3 V,		±100 ⁽³⁾			±100	μA
		V _{CC} = 3.6 V,	Outputs high		0.19			0.19	
I _{CC}		$I_{O} = 0,$	Outputs low		5			5	mA
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.19			0.19	
$\Delta I_{CC}^{(4)}$		V_{CC} = 3 V to 3.6 V, Or Other inputs at V _{CC} or	ie input at V _{CC} – 0.6 V, GND		0.2			0.2	mA
Ci		$V_I = 3 V \text{ or } 0 V$			4		4		pF
Co		$V_0 = 3 V \text{ or } 0 V$			9		9		pF

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

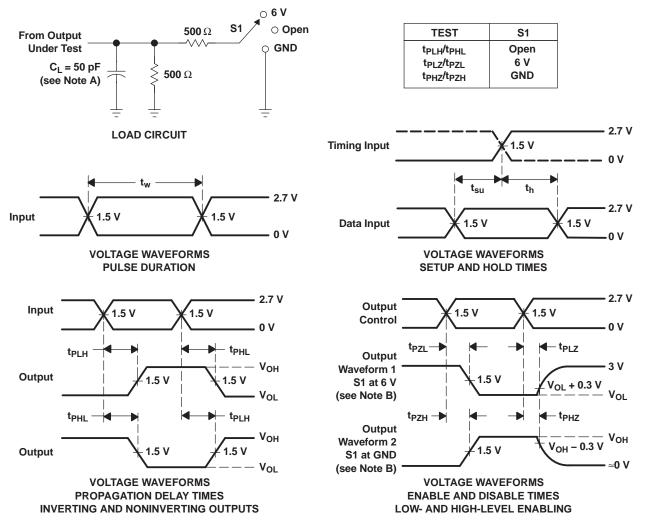
(3) On products compliant to MIL-PRF-38535, this parameter does not apply.
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

♥ Texas INSTRUMENTS 查询"LVTH16244A"供应商

SN54LVTH16244A, SN74LVTH16244A 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCB5142T-MAY 1992-REVISED NOVEMBER 2006

Switching Characteristics

over recommended operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


		TO (OUTPUT)	SN54LVTH16244A				SN74LVTH16244A							
PARAMETER	FROM (INPUT)		V _{CC} = 3 ± 0.3	8.3 V V	V _{CC} =	2.7 V	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT			
			MIN	MAX	MIN	MAX	MIN	TYP ⁽¹⁾	MAX	MIN	MAX			
t _{PLH}	A	Y	1.1	4.4		4.6	1.2	2.3	3.2		3.7	20		
t _{PHL}		A	A	A	T	1.1	3.6		3.9	1.2	2	3.2		3.7
t _{PZH}	OE	Y	1.1	4.6		5.4	1.2	2.6	4		5	20		
t _{PZL}	ÛE	UE Y	1.1	5.4		6.2	1.2	2.7	4		5	ns		
t _{PHZ}	ŌĒ	Y	1.6	5.7		6.2	2.2	3.3	4.5		5			
t _{PLZ}	UE	T	1.2	5		4.7	2	3.1	4.2		4.4	ns		
t _{sk(LH)}									0.5			ns		
t _{sk(HL)}									0.5			115		

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SN54LVTH16244A, SN74LVTH16244A 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS sc查該資料-MAT H49年決定体為性的地域形態ER 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9668501QXA	ACTIVE	CFP	WD	48	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9668501VXA	ACTIVE	CFP	WD	48	1	TBD	A42 SNPB	N / A for Pkg Type
74LVTH16244ADGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16244ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16244ADGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16244ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16244ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16244ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16244ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16244ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16244ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16244AGQLR	ACTIVE	BGA MI CROSTA R JUNI OR	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVTH16244AGRDR	ACTIVE	BGA MI CROSTA R JUNI OR	GRD	54	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVTH16244AZQLR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SN74LVTH16244AZRDR	ACTIVE	BGA MI CROSTA R JUNI OR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SNJ54LVTH16244AWD	ACTIVE	CFP	WD	48	1	TBD	A42 SNPB	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

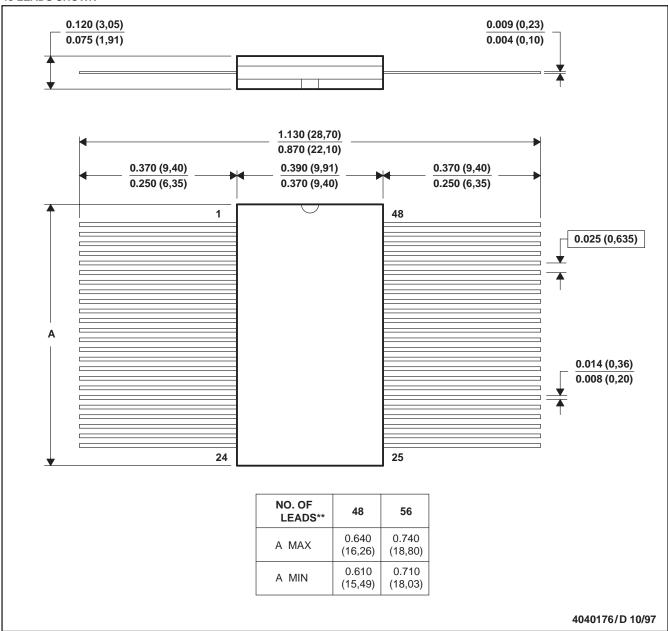
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and

package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

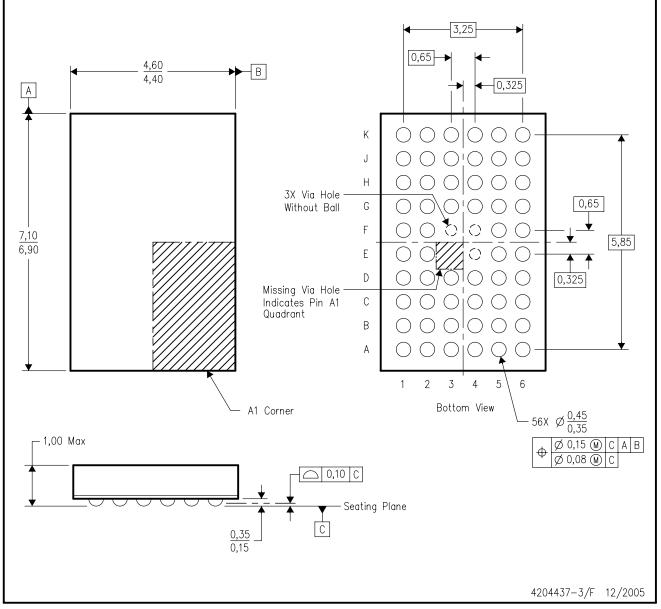

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

<u> 查询"LVTH16244A"供应商</u>

CERAMIC DUAL FLATPACK

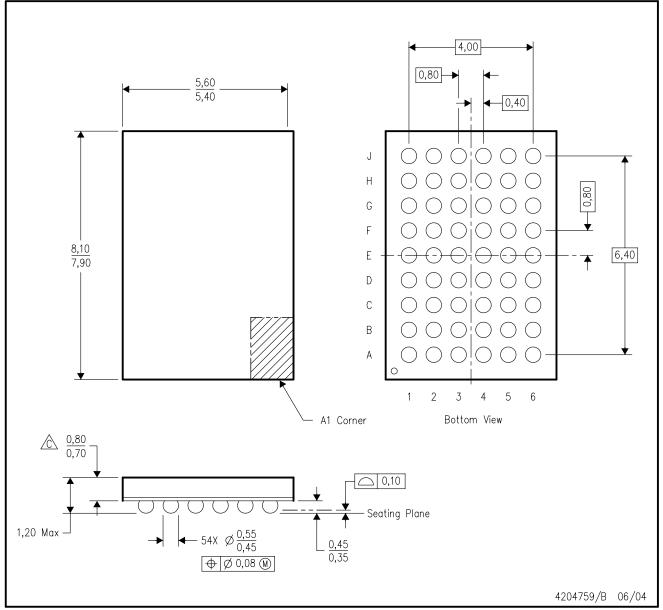
WD (R-GDFP-F**) 48 LEADS SHOWN



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

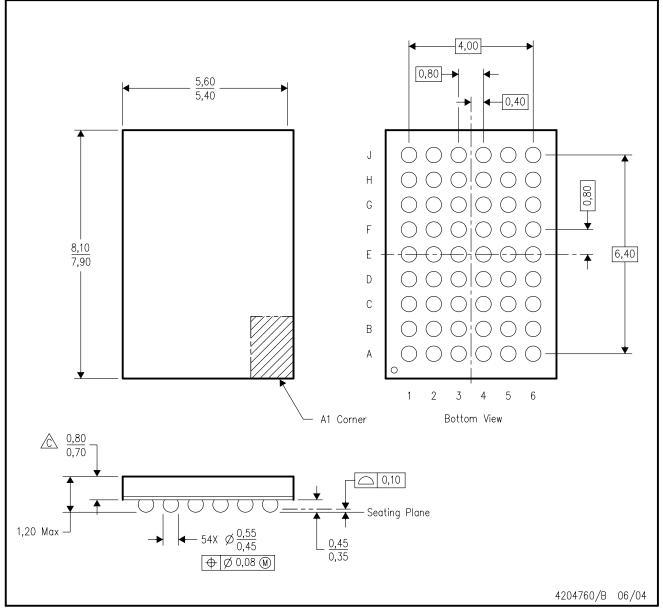
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

GRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

NOTES: A

A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.


Falls within JEDEC MO-205 variation DD.

D. This package is tin-lead (SnPb). Refer to the 54 ZRD package (drawing 4204760) for lead-free.

ZRD (R-PBGA-N54)

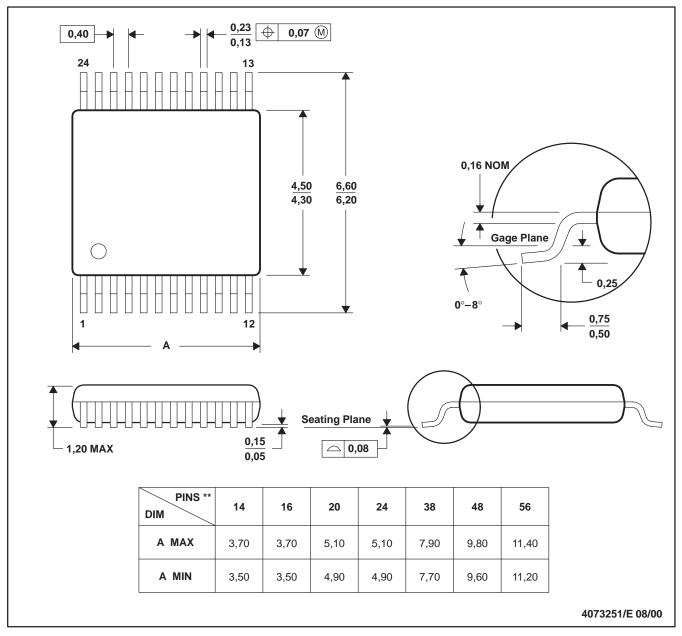
PLASTIC BALL GRID ARRAY

NOTES: A.

A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

Falls within JEDEC MO-205 variation DD.

D. This package is lead—free. Refer to the 54 GRD package (drawing 4204759) for tin—lead (SnPb).


PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

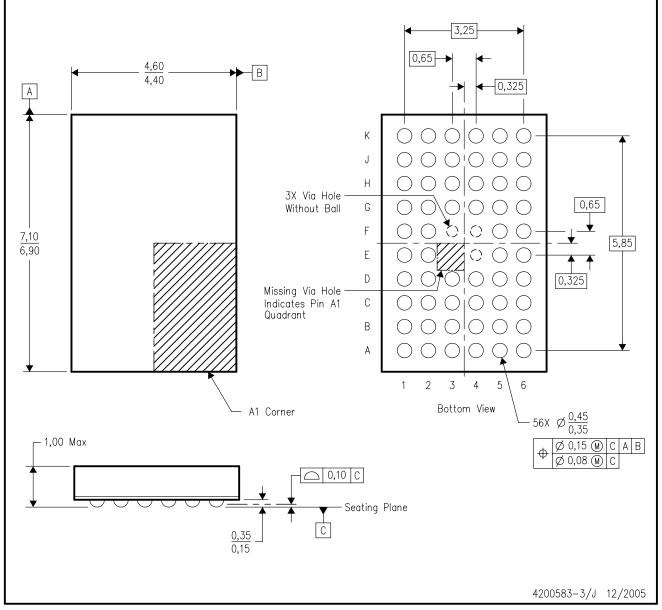
<u> 查询"LVTH16244A"供应商</u>

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

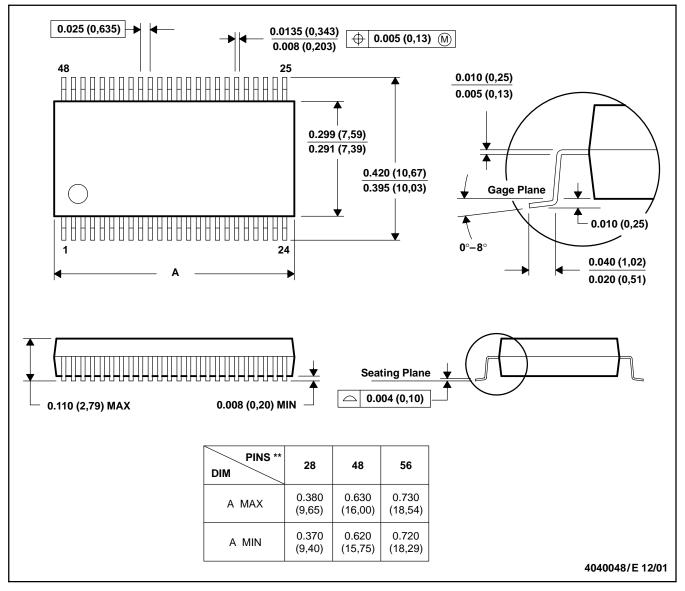
14/16/20/56 Pins – MO-194

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.


<u> 查询"LVTH16244A"供应商</u>

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

DL (R-PDSO-G**)

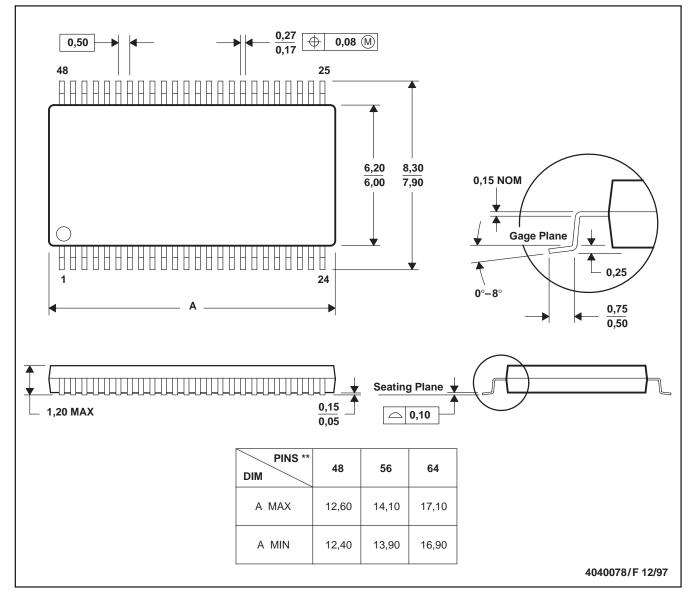
48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


<u> 查询"L\/TH16244A"供应商</u>

DGG (R-PDSO-G**)

MTSS003D – JANUARY 1995 – REVISED JANUARY 1998

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated