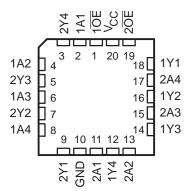
SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS SCBS034B – JULY 1989 – REVISED NOVEMBER 1993

- Open-Collector Version of 'BCT244
- Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V Per MIL-STD-883C Method 3015
- Packages Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Standard Plastic and Ceramic 300-mil DIPs (J, N)

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

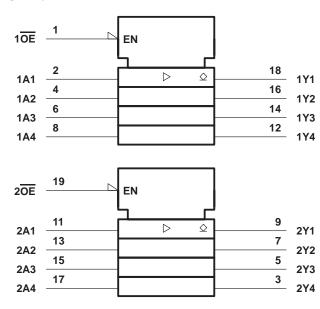

The 'BCT760 is organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The SN54BCT760 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74BCT760 is characterized for operation from 0°C to 70°C.

SN54BCT760 J OR W PACKAGE
SN74BCT760 DW OR N PACKAGE
(TOP VIEW)

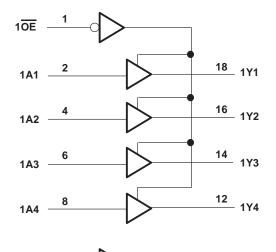
	(101 11	,	
1OE [1A1 [2Y4 [1A2 [2Y3 [1A3]		20] V _{CC} 19] 2OE 18] 1Y1 17] 2A4 16] 1Y2 15] 2A3	
2Y2 [7	14 1Y3	
1A4 [8	13 2A2	
2Y1 [9	12] 1Y4	
GND [10	11 2A1	
	¢		

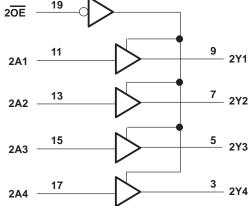
SN54BCT760 . . . FK PACKAGE (TOP VIEW)


FUNCTION TABLE (each buffer)

(caeli ballol)							
INP	JTS	OUTPUT					
OE	Α	Y					
L	Н	Н					
L	L	L					
н	Х	н					

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

,	–30 mA to 5 mA
Voltage range applied to any output in the disabled or	power-off state, V_O 0.5 V to 5.5 V
Voltage range applied to any output in the high state,	$V_{\rm O}$
Current into any output in the low state: SN54BCT760	
SN74BCT760	128 mA
Operating free-air temperature range: SN54BCT760	– 55°C to 125°C
SN74BCT760	0°C to 70°C
Storage temperature range	– 65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The negative input voltage rating may be exceeded if the input clamp current rating is observed.

recommended operating conditions

		SN54BCT760		SN74BCT760			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	V
IIK	Input clamp current			-18			-18	mA
IOL	Low-level output current			48			64	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS			SN54BCT760			SN74BCT760		
	TEST CONDITIONS		MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
V _{CC} = 4.5 V,	I _I = -18 mA				-1.2			-1.2	V	
Voo - 45 V	I _{OL} = 48 mA			0.38	0.55				V	
VCC = 4.5 V	I _{OL} = 64 mA						0.42	0.55	v	
V _{CC} = 5.5 V,	$V_{I} = 7 V$				0.1			0.1	mA	
V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μA		
V _{CC} = 5.5 V,	V _I = 0.5 V				-1			-1	mA	
V _{CC} = 4.5 V,	V _{OH} = 5.5 V	-			0.1			0.1	mA	
		Outputs high		21	33		21	33		
V _{CC} = 5.5 V,	Outputs open	Outputs low		48	76		48	76	mA	
		OE disabled		6	10		6	10		
V _{CC} = 5 V,	VI = 2.5 V or 0.5 V			6			6		pF	
V _{CC} = 5 V,	V _I = 2.5 V or 0.5	5 V		10			10		pF	
	$V_{CC} = 4.5 V$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5 V,$ $V_{CC} = 5 V,$	$V_{CC} = 4.5 \text{ V} \qquad \frac{I_{OL} = 48 \text{ mA}}{I_{OL} = 64 \text{ mA}}$ $V_{CC} = 5.5 \text{ V}, V_{I} = 7 \text{ V}$ $V_{CC} = 5.5 \text{ V}, V_{I} = 2.7 \text{ V}$ $V_{CC} = 5.5 \text{ V}, V_{I} = 0.5 \text{ V}$ $V_{CC} = 4.5 \text{ V}, V_{OH} = 5.5 \text{ V}$ $V_{CC} = 5.5 \text{ V}, \text{Outputs open}$ $V_{CC} = 5 \text{ V}, V_{I} = 2.5 \text{ V or } 0.5 \text{ V}$	$V_{CC} = 4.5 \text{ V} \qquad \begin{array}{c} I_{OL} = 48 \text{ mA} \\ \hline I_{OL} = 64 \text{ mA} \\ \hline I_{OL} = 64 \text{ mA} \\ \hline V_{CC} = 5.5 \text{ V}, V_{I} = 7 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, V_{I} = 2.7 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, V_{I} = 0.5 \text{ V} \\ \hline V_{CC} = 4.5 \text{ V}, V_{OH} = 5.5 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, Outputs \text{ open} \\ \hline \hline \begin{array}{c} Outputs \text{ high} \\ \hline Outputs \text{ low} \\ \hline \hline \hline OE \text{ disabled} \\ \hline \hline V_{CC} = 5 \text{ V}, V_{I} = 2.5 \text{ V} \text{ or } 0.5 \text{ V} \\ \hline V_{CC} = 5 \text{ V}, V_{I} = 2.5 \text{ V} \text{ or } 0.5 \text{ V} \\ \hline \end{array}$	$V_{CC} = 4.5 \text{ V} \qquad \begin{array}{c} I_{OL} = 48 \text{ mA} \\ \hline I_{OL} = 64 \text{ mA} \\ \hline I_{OL} = 64 \text{ mA} \\ \hline V_{CC} = 5.5 \text{ V}, V_{I} = 7 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, V_{I} = 2.7 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, V_{I} = 0.5 \text{ V} \\ \hline V_{CC} = 4.5 \text{ V}, V_{OH} = 5.5 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, Outputs \text{ open} \\ \hline \hline Outputs \text{ high} \\ \hline \hline Outputs \text{ low} \\ \hline \hline \hline \overline{OE} \text{ disabled} \\ \hline \hline V_{CC} = 5 \text{ V}, V_{I} = 2.5 \text{ V} \text{ or } 0.5 \text{ V} \\ \hline V_{CC} = 5 \text{ V}, V_{I} = 2.5 \text{ V} \text{ or } 0.5 \text{ V} \\ \hline \end{array}$	$V_{CC} = 4.5 \text{ V} \qquad \begin{array}{c} I_{OL} = 48 \text{ mA} & 0.38 \\ \hline I_{OL} = 64 \text{ mA} & & \\ \hline I_{OL} = 64 \text{ mA} & & \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 7 \text{ V} & & \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 2.7 \text{ V} & & \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 0.5 \text{ V} & & \\ \hline V_{CC} = 4.5 \text{ V}, & V_{OH} = 5.5 \text{ V} & & \\ \hline V_{CC} = 5.5 \text{ V}, & Outputs \text{ open} & & \\ \hline \hline Outputs \text{ high} & 21 & \\ \hline Outputs \text{ low} & 48 & \\ \hline \hline \overline{OE} \text{ disabled} & 6 & \\ \hline V_{CC} = 5 \text{ V}, & V_{I} = 2.5 \text{ V} \text{ or } 0.5 \text{ V} & & \\ \hline 0 \text{ V}_{CC} = 5 \text{ V}, & V_{I} = 2.5 \text{ V} \text{ or } 0.5 \text{ V} & & \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	ТО (OUTPUT)	CL RL	C = 5 V, = 50 pF = 500 Ω = 25°C	; 2,	CL RL	= 50 pl = 500 Ω		V,	UNIT
			1	3CT760		SN54B	CT760	SN74B	CT760	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	Any A	v	6.3	8	9.5	6.3	11.1	6.3	10	
^t PHL		ř	2.1	4.3	6.5	2.1	7.7	2.1	7.2	ns
^t PLH	OE	V	8.6	13	15.2	8.6	18.7	8.6	17.5	-
^t PHL		r	3.2	6.2	8.9	3.2	10.4	3.2	9.9	ns

[‡] For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

查询"5962-9093801MSA"供应商

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9093801M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9093801MRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9093801MSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type
SN54BCT760J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
SN74BCT760DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74BCT760DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74BCT760DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74BCT760DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74BCT760N	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74BCT760NE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74BCT760NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74BCT760NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54BCT760FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54BCT760J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54BCT760W	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

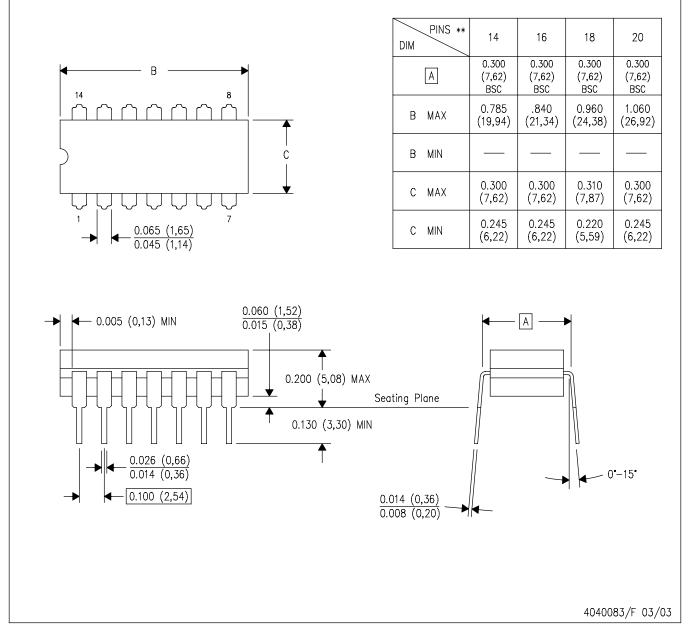
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

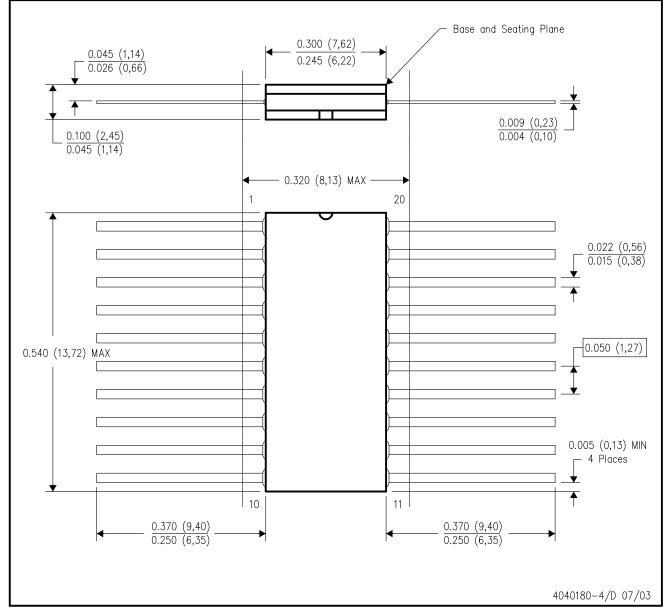


6-Dec-2006

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**)

14 LEADS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

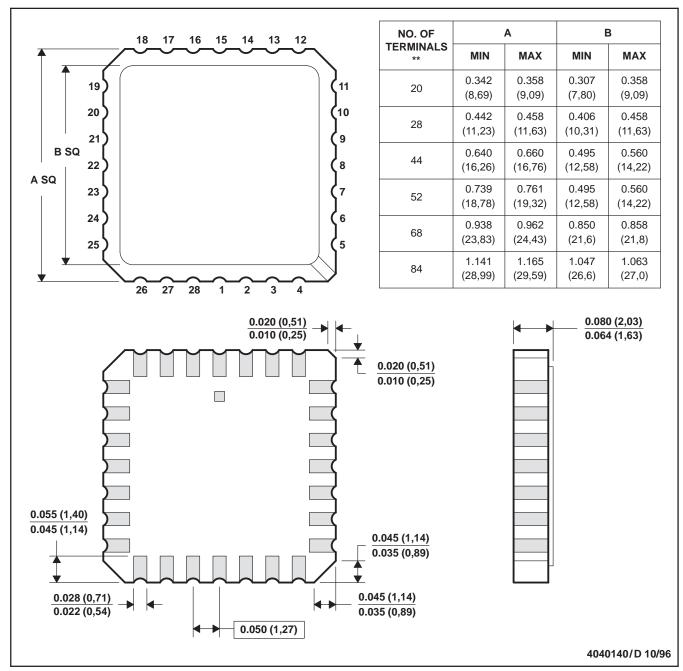
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

CERAMIC DUAL IN-LINE PACKAGE

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20


查询"5962-9093801MSA"供应商

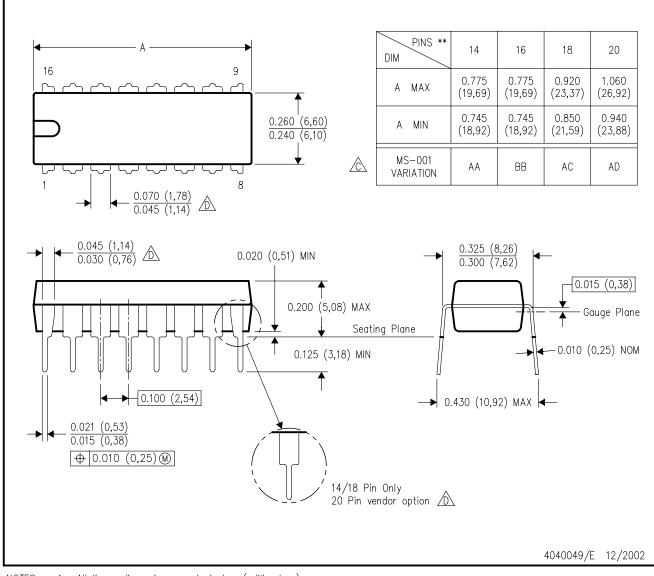
FK (S-CQCC-N**)

MLCC006B - OCTOBER 1996

LEADLESS CERAMIC CHIP CARRIER

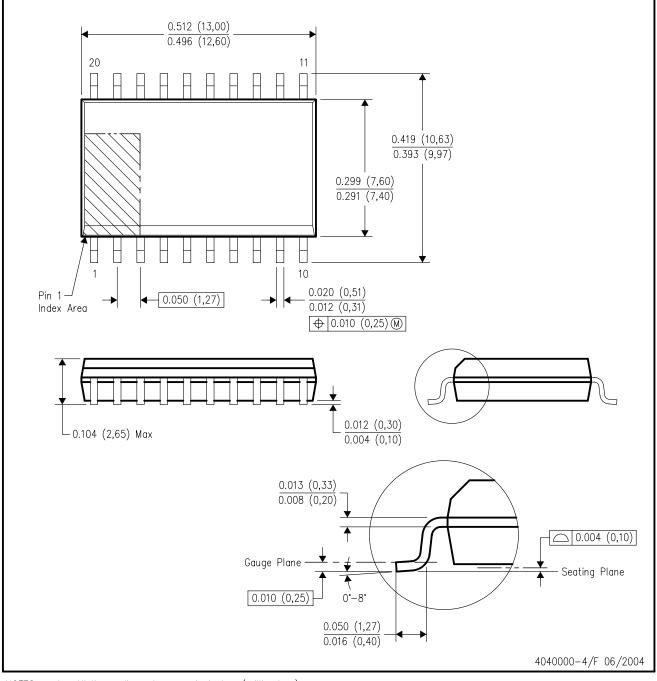
28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

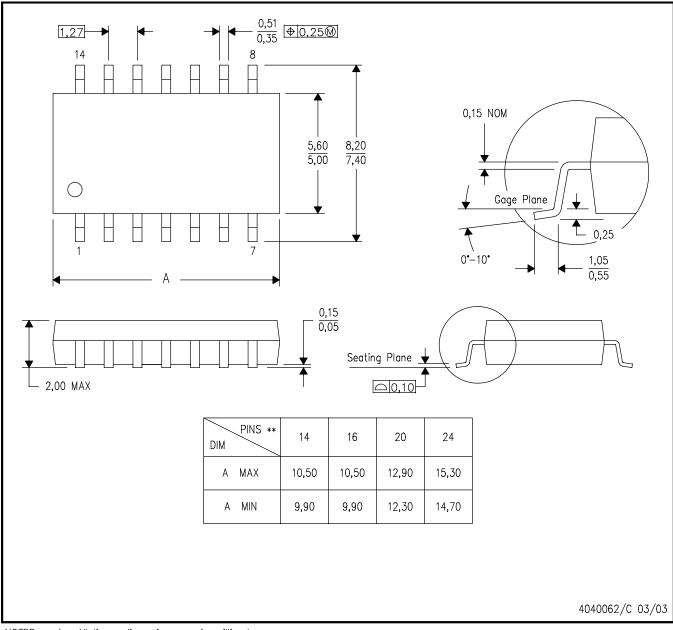
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.



查询"5962-9093801MSA"供应商

MECHANICAL DATA

NS (R-PDSO-G**) 14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated