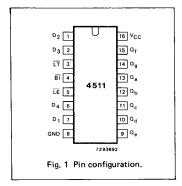
BCD章0词\$E6MEN451AFCH/DE606薛/DRIVER

FEATURES

- Latch storage of BCD inputs
- Blanking input
- Lamp test input
- Driving common cathode LED displays
- Guaranteed 10 mA drive capability per output
- Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4511 are high-speed Si-gate CMOS devices and are pin compatible with "4511" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.


The 74HC/HCT4511 are BCD to 7-segment latch/decoder/drivers with four address inputs (D₁ to D₄), an active LOW latch enable input (LE), an active LOW ripple blanking input (BI), an active LOW lamp test input (LT), and seven active HIGH segment outputs (Q_a to Q_0).

When LE is LOW, the state of the segment outputs $(Q_a \text{ to } Q_g)$ is determined by the data on D₁ to D₄

When LE goes HIGH, the last data present on D₁ to D₄ are stored in the latches and the segment outputs remain stable. When LT is LOW, all the segment outputs are HIGH independent of all other input conditions. With LT HIGH, a LOW on BI forces all segment outputs LOW. The inputs LT and BI do not affect the latch circuit.

APPLICATIONS

- Driving LED displays
- Driving incandescent displays
- Driving fluorescent displays
- Driving LCD displays
- Driving gas discharge displays

			TYF		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
tPHL/ tPLH	propagation delay D _D to Q _n LE to Q _n BI to Q _n LT to Q _n	C _L = 15 pF V _{CC} = 5 V	24 23 19 12	24 24 20 13	ns ns ns
CI	input capacitance		3.5	3.5	рF
CPD	power dissipation capacitance per latch	notes 1 and 2	64	64	pF

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

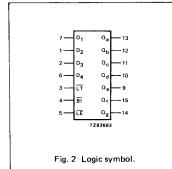
PD = CPD x
$$VCC^2$$
 x f_i + Σ (CL x VCC^2 x f_o) where:

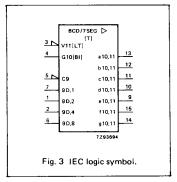
fi = input frequency in MHz

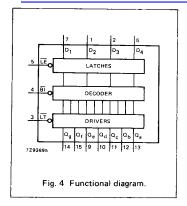
CL = output load capacitance in pF

VCC = supply voltage in V

fo = output frequency in MHz $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

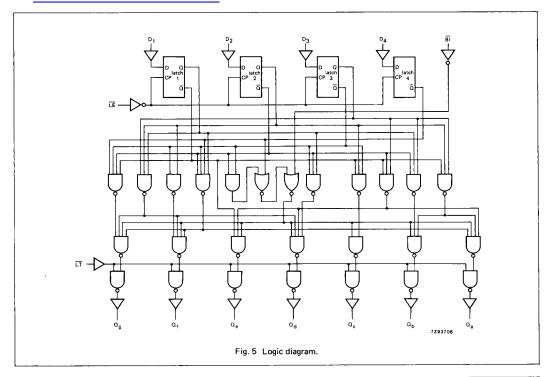

2. For HC the condition is VI = GND to VCC For HCT the condition is $V_1 = GND$ to VCC - 1.5 V

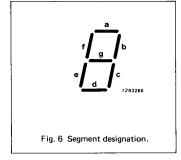

PACKAGE OUTLINES

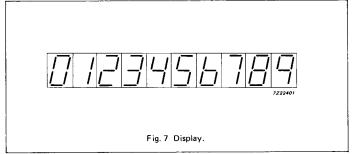

16-lead DIL; plastic (SOT38Z). 16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
3	LT	lamp test input (active LOW)
4	BI	ripple blanking input (active LOW)
5	ΙĒ	latch enable input (active LOW)
7, 1, 2, 6	D ₁ to D ₄	BCD address inputs
8	GND	ground (0 V)
13, 12, 11, 10, 9, 15, 14	Ω _a to Ω _g	segments outputs
16	Vcc	positive supply voltage


FUNCTION TABLE


		1	NPU	ΓS			[0	JTPU	TS			
LE	BI	LŦ	D ₄	D ₃	D ₂	D ₁	Qa	a_b	αc	$\sigma_{\mathbf{d}}$	αe	Qf	$\mathbf{Q}_{\mathbf{g}}$	DISPLAY
х	×	L	x	×	×	×	Н	н	Н	Н	н	н	Н	8
х	L	н	×	х	x	x	L	L	L	L	L	L	L	blank
	H H H	H H H H		L	L H H	LHLH	H	H H H H	HHHH	# - # #	H L H L	# 6 6 6	LLHH	0 1 2 3
	H H H	H # H H	1111	HHH	LLHH	LHLH	L H L	HLLE	# # # #	L # # L	L L H L	H H H L	# H H L	4 5 6 7
	H H H H	H H H	H # H	L L L	LLHH	LHLH	HHLL	HHLL	H H L	H L L	HLLL	HHLL	H H L	8 9 blank blank
L L L	H H H	H H H H	H H H	H H H H	L H H	L H L H	L L L	L L L	L L L	L L L	L L L		L L L	blank blank blank blank
Н	Н	н	×	×	x	×				*				*


^{*} Depends upon the BCD-code applied during the LOW-to-HIGH transition of $\overline{\text{LE}}$.

H = HIGH voltage level

L = LOW voltage level X = don't care

DC CHARACTERISTICS FOR 74HC

 $For the \ DC \ characteristics \ see \ chapter \ ''HCMOS \ family \ characteristics'', section \ ''Family \ specifications''.$

Output capability: standard, excepting VOH which is given below

ICC category: MSI

Non-standard DC characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL PA		T _{amb} (°C)								TEST CONDITIONS			
	PARAMETER												
	FANAMETER	+25		-40 to +85		-40 to +125		UNIT	V _{CC}	VI	–lo mA		
		min.	typ.	max.	min.	max.	min.	max.					
Vон	HIGH level output voltage	3.98 3.60			3.84 3.35		3.70 3.10		V	4.5	VIH or VIL	7.5 10.0	
Voн	HIGH level output voltage	5.60 5.48 4.80			5.45 5.34 4.50		5.35 5.20 4.20		V	6.0	VIH or VIL	7.5 10.0 15.0	

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_f = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER				Tamb	(°C)				TEST CONDITIONS		
					74H	С						
	Anameren	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
tPHL/ tPLH	propagation delay D _n to Q _n		77 28 22	300 60 51		375 75 64		450 90 77	ns	2.0 4.5 6.0	Fig. 8	
tPHL/ tPLH	propagation delay LE to Q _n		74 27 22	270 54 46		330 68 58		405 81 69	nş	2.0 4.5 6.0	Fig. 9	
tPHL/ tPLH	p <u>rop</u> agation delay BI to Q _n		61 22 18	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig. 10	
tPHL/ tPLH	p <u>rop</u> agation delay LT to Q _n		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 8	
tTHL/ tTLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 8, 9 and 10	
^t W	latch enable pulse width LOW	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 9	
t _{su}	set-up time D _n to ŁE	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig. 11	
t _h	hold time D _n to LE	0 0 0	-11 -4 -3		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig. 11	

1040

January 1986

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard, excepting VOH which is given below

ICC category: MSI

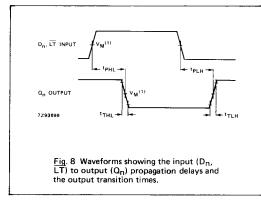
Non-standard DC characteristics for 74HCT

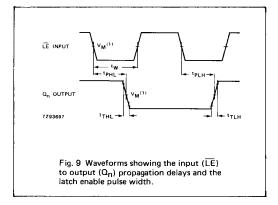
Voltages are referenced to GND (ground = 0 V)

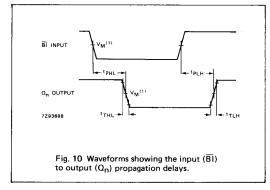
SYMBOL PARAMETER				7	r _{amb} ('	°C)		TEST CONDITIONS				
	PARAMETER	74HCT								Vcc	Vı	
	TARAMETER	+ 25		-40 to +85		-40 to +125		UNIT	VCC	"	−lO mA	
		min.	typ.	max.	min.	max.	min.	max.				
Vон	HIGH level output voltage	3.98 3.60			3.84 3.35		3.70 3.10		٧	4.5	V _{IH} or V _I L	7.5 10.0

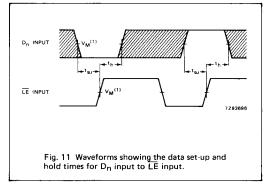
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

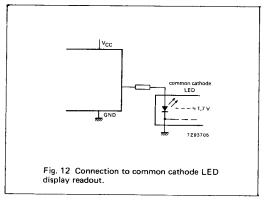

INPUT	UNIT LOAD COEFFICIENT
LT, LE	1.50
BI, Dn	0.30

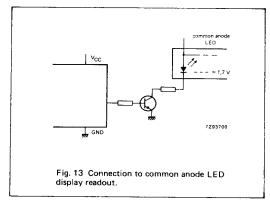

AC CHARACTERISTICS FOR 74HCT

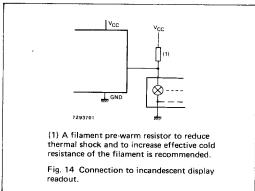

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

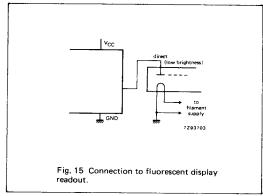

SYMBOL					Tamb	(°C)	ļ	TEST CONDITIONS			
	PARAMETER				74H	СТ					
31 MBOL	FARAMETER	+25			-40 to +85		-40 to +125		UNIT	VCC	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay D _n to Q _n		28	60		75		90	ns	4.5	Fig. 8
t _{PHL} /	propagation delay LE to Q _n		27	54		68		81	ns	4.5	Fig. 9
t _{PHL} / t _{PLH}	p <u>ro</u> pagation delay BI to Q _n		23	44		55		66	ns	4.5	Fig. 10
^t PHL/ ^t PLH	p <u>ro</u> pagation delay LT to Q _n		16	30		38		45	ns	4.5	Fig. 8
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 8, 9 and 10
't _W	latch enable pulse width LOW	16	5		20		24		ns	4.5	Fig. 9
t _{su}	set-up ti <u>me</u> D _n to LE	12	5		15		18		ns	4.5	Fig. 11
th	hold time D _n to LE	0	-4		0		0		ns	4.5	Fig. 11

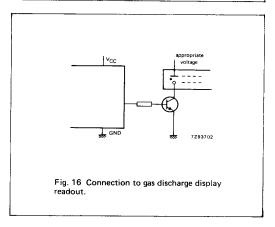
AC WAVEFORMS


Note to AC waveforms


(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.


Note to Fig. 11


The shaded areas indicate when the input is permitted to change for predictable output performance.


APPLICATION DIAGRAMS

