

查询“J108AMO”供应商 N-channel silicon junction FETs

J108; J109; J110

FEATURES

- High speed switching
- Interchangeability of drain and source connections
- Low $R_{DS(on)}$ at zero gate voltage ($< 8 \Omega$ for J108).

APPLICATIONS

- Analog switches
- Choppers and commutators.

DESCRIPTION

N-channel symmetrical silicon junction field-effect transistors in a TO-92 package.

PINNING - TO-92

PIN	SYMBOL	DESCRIPTION
1	g	gate
2	s	source
3	d	drain

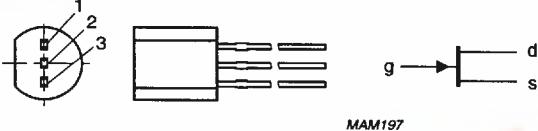


Fig.1 Simplified outline and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DS}	drain-source voltage		—	± 25	V
V_{GSoff}	gate-source cut-off voltage J108 J109 J110	$I_D = 1 \mu A$; $V_{DS} = 5 V$	-3 -2 -0.5	-10 -6 -4	V
I_{DSS}	drain current J108 J109 J110	$V_{GS} = 0$; $V_{DS} = 5 V$	80 40 10	—	mA
P_{tot}	total power dissipation	up to $T_{amb} = 50^\circ C$	—	400	mW

查询 J108AMQ 供应商 Junction FETs

J108; J109; J110

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DS}	drain-source voltage		–	± 25	V
V_{GSO}	gate-source voltage	open drain	–	–25	V
V_{GDO}	gate-drain voltage	open source	–	–25	V
I_G	forward gate current (DC)		–	50	mA
P_{tot}	total power dissipation	up to $T_{amb} = 50^\circ\text{C}$	–	400	mW
T_{stg}	storage temperature		–65	150	$^\circ\text{C}$
T_j	operating junction temperature		–	150	$^\circ\text{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{th\ j-a}$	thermal resistance from junction to ambient	250	K/W

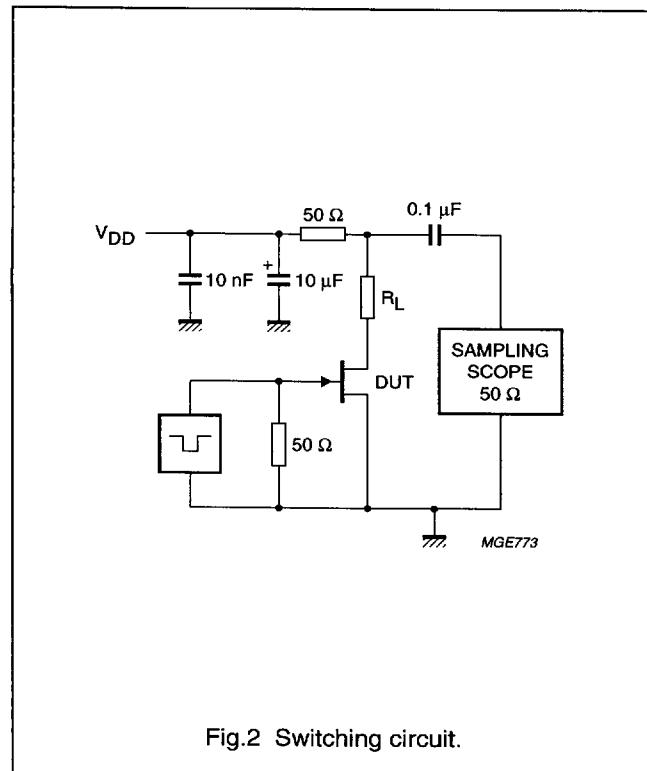
STATIC CHARACTERISTICS

 $T_j = 25^\circ\text{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{(BR)GSS}$	gate-source breakdown voltage	$I_G = -1\ \mu\text{A}; V_{DS} = 0$	–	–	–25	V
V_{GSoff}	gate-source cut-off voltage J108 J109 J110	$I_D = 1\ \mu\text{A}; V_{DS} = 5\ \text{V}$	–3	–	–10	V
			–2	–	–6	V
			–0.5	–	–4	V
I_{DSS}	drain current J108 J109 J110	$V_{GS} = 0; V_{DS} = 15\ \text{V}$	80	–	–	mA
			40	–	–	mA
			10	–	–	mA
I_{GSS}	gate leakage current	$V_{GS} = -15\ \text{V}; V_{DS} = 0$	–	–	–3	nA
I_{DSX}	drain-source cut-off current	$V_{GS} = -10\ \text{V}; V_{DS} = 5\ \text{V}$	–	–	3	nA
R_{DSon}	drain-source on-state resistance J108 J109 J110	$V_{GS} = 0; V_{DS} = 100\ \text{mV}$	–	–	8	Ω
			–	–	12	Ω
			–	–	18	Ω

J108; J109; J110

J108; J109; J110


DYNAMIC CHARACTERISTICS

 $T_j = 25^\circ\text{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
C_{is}	input capacitance	$V_{DS} = 0; V_{GS} = -10 \text{ V}; f = 1 \text{ MHz}$	15	30	pF
		$V_{DS} = 0; V_{GS} = 0; f = 1 \text{ MHz}; T_{amb} = 25^\circ\text{C}$	50	85	pF
C_{rs}	reverse transfer capacitance	$V_{DS} = 0; V_{GS} = -10 \text{ V}; f = 1 \text{ MHz}$	8	15	pF
Switching times; see Fig.2					
t_d	delay time	note 1	2	—	ns
t_{on}	turn-on time		4	—	ns
t_s	storage time		4	—	ns
t_{off}	turn-off time		6	—	ns

Note

1. Test conditions for switching times are as follows:

 $V_{DD} = 1.5 \text{ V}; V_{GS} = 0$ to V_{GSoff} (all types) $V_{GSoff} = -12 \text{ V}; R_L = 100 \Omega$ (J108) $V_{GSoff} = -7 \text{ V}; R_L = 100 \Omega$ (J109) $V_{GSoff} = -5 \text{ V}; R_L = 100 \Omega$ (J110).

[查询 J108AMC 供应商](#) N-channel silicon junction FETs

J108; J109; J110

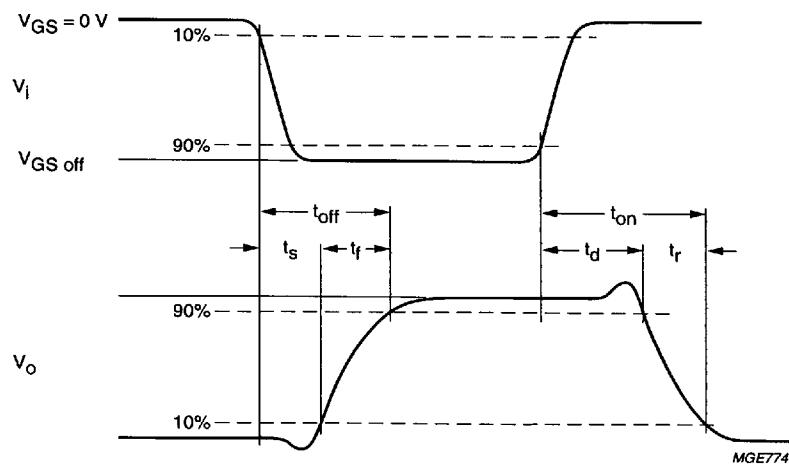
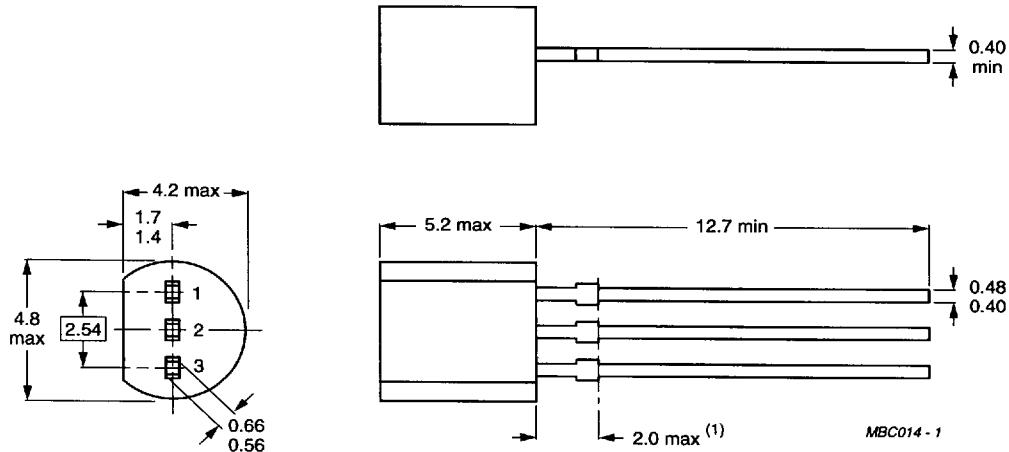



Fig.3 Input and output waveforms.

[查询 "J109AM" 供应商](#)
N-channel silicon junction FETs

J108; J109; J110

PACKAGE OUTLINE

Dimensions in mm.

(1) Terminal dimensions in this zone are uncontrolled.

Fig.4 TO-92 (SOT54).