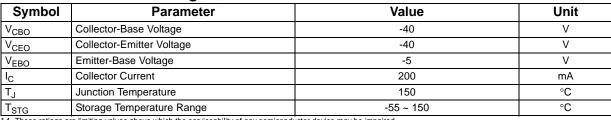
February 2008

Marking : AB

SOT-923F


MMBT3906SL

PNP Epitaxial Silicon Transistor

Features

- · General purpose amplifier transistor.
- Ultra small surface mount package for all types(max 0.43mm tall)
- Suitable for general switching & amplification
- · Well suited for portable application
- As complementary type, NPN MMBT3904SL is recommended.

Absolute Maximum Ratings $T_a = 25$ °C unless otherwise noted

Thermal Characteristics* Ta=25°C unless otherwise noted

Symbol	Parameter	Max	Unit
P _C	Collector Power Dissipation, by R _{θJA}	227	mW
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	550	°C/W

^{*} Minimum land pad.

Electrical Characteristics* T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = -10\mu A, I_E = 0$	-40		V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = -1 \text{ mA}, I_B = 0$	40		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = -10\mu A, I_C = 0$	-5		V
I _{CEX}	Collector Cut-off Current	$V_{CE} = -30V, V_{EB(OFF)} = -0.3V$		-50	nA
h _{FE}	DC Current Gain	$V_{CE} = 1V, I_{C} = -0.1 \text{mA}$	60		
		$V_{CE} = 1V$, $I_{C} = -1mA$	80		
		$V_{CE} = 1V, I_{C} = -10mA$	100	300	
		$V_{CF} = 1V, I_{C} = -50mA$	60		
		$V_{CE} = 1V, I_{C} = -100mA$	30		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = -10 \text{mA}, I_B = -1 \text{mA}$		-0.25	V
		$I_C = -50 \text{mA}$, $I_B = -5 \text{mA}$		-0.4	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	$I_C = -10 \text{mA}, I_B = -1 \text{mA}$	-0.65	-0.85	V
		$I_C = -50 \text{mA}, I_B = -5 \text{mA}$		-0.95	V
f _T	Current Gain Bandwidth Product	$V_{CE} = -20V, I_{C} = -10mA, f = 100MHz$	250		MHz
C _{ob}	Output Capacitance	$V_{CB} = -5V, I_{E} = 0, f = 1MHz$		7.0	pF
C _{ib}	Input Capacitance	$V_{EB} = -0.5V, I_{C} = 0, f = 1MHz$		15	pF
t _d	Delay Time	$V_{CC} = -3V, I_{C} = -10mA$		35	ns
t _r	Rise Time	I _{B1} =- I _{B2} = -1mA		35	ns
t _s	Storage Time]		225	ns
t _f	Fall Time			75	ns

^{*} DC Item are tested by Pulse Test : Pulse Width≤300us, Duty Cycle≤2%

© 2007 Fairchild Semiconductor Corporation MMBT3906SL Rev. 1.0.0

^{1.} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Typical Performance Characteristics

Figure 1. DC Current Gain

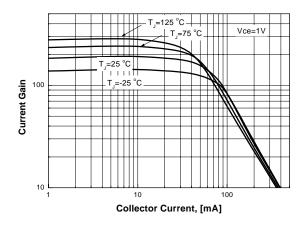


Figure 2. Collector-Emitter Saturation Voltage

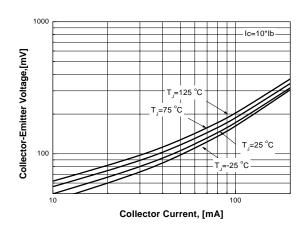


Figure 3. Base- Emitter Saturation Voltage

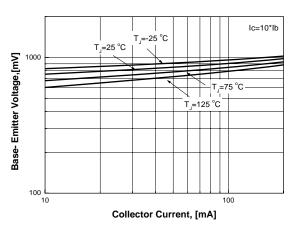


Figure 4. Collector- Base Leakage Current

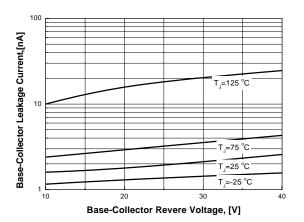


Figure 5. Collector- Base Capacitance

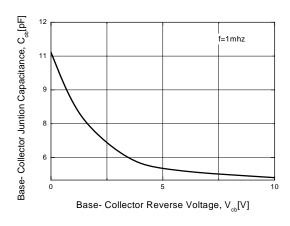
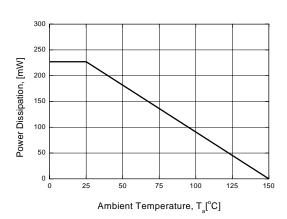
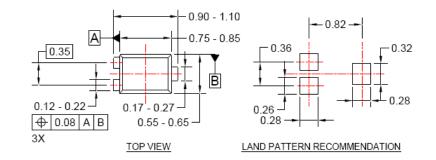



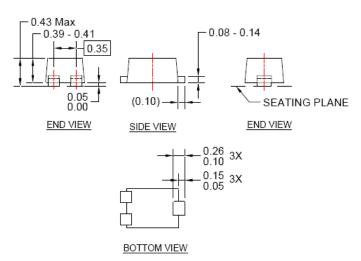
Figure 6. Power Derating

Package Dimensions

SOT-923F

Case : SOT-923F


Case Material(Molded Plastic): KTMC1060SC


• UL Flammability classification rating: "V0"

• Moisture Sensitivity level per JESD22-A1113B : MSL 1

• Lead terminals solderable per MIL-STD7502026 /JESD22A121

• Lead Free Plating : Pure Tin(Matte)

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

Power247®

Build it NowTM
CorePLUSTM
CROSSVOLTTM
CTLTM
Current Transfer LogicTM
EcoSPARK®
Fairchild®
Fairchild Semiconductor®
FACT Quiet SeriesTM
FACT®
FAST®
FastvCoreTM

IntelliMAXTM
ISOPLANARTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM
MicroPakTM
MillerDriveTM
Motion-SPMTM
OPTOLOGIC®
OPTOPLANAR®
U®
PDP-SPMTM
Power220®

Green FPS™

GTO™

i-Lo™

Green FPS™ e-Series™

POWEREDGE®
Power-SPMTM
PowerTrench®
Programmable Active DroopTM
QFET®
QSTM
QT OptoelectronicsTM
Quiet SeriesTM
RapidConfigureTM
SMART STARTTM
SPM®
STEALTHTM
SuperFETTM
SuperSOTTM-3
SuperSOTTM-6

SyncFETTM
The Power Franchise®

Prover
Franchise
TinyBoostTM
TinyBuckTM
TinyLogic®
TINYOPTOTM
TinyPowerTM
TinyPWMTM
TinyPWMTM
TinyWireTM
µSerDesTM
UHC®
UniFETTM
VCXTM

SuperSOT™-8

DISCLAIMER

FPS™

 $\mathsf{FRFET}^{\mathbb{R}}$

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Global Power ResourceSM

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.	

Rev. I31