查询"FDG6332C_F085"供应商

March 2009

FDG6332C_F085

20V N & P-Channel PowerTrench® MOSFETs

Features

• Q1 0.7 A, 20V. $R_{DS(ON)} = 300 \text{ m}\Omega \ @ \ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 400 \text{ m}\Omega \ @ \ V_{GS} = 2.5 \text{ V}$

• Q2 -0.6 A, -20V. $R_{DS(ON)} = 420$ m Ω @ $V_{GS} = -4.5$ V $R_{DS(ON)} = 630$ m Ω @ $V_{GS} = -2.5$ V

Low gate charge

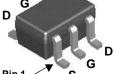
• High performance trench technology for extremely low $R_{\text{DS(ON)}}$

 SC70-6 package: small footprint (51% smaller than SSOT-6); low profile (1mm thick)

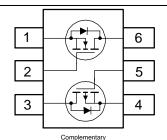
• Qualified to AEC Q101

RoHS Compliant

General Description


The N & P-Channel MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive TSSOP-8 and SSOP-6 packages are impractical.


Applications

- DC/DC converter
- · Load switch
- LCD display inverter

SC70-6

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

Symbol	Parameter	Q1	Q2	Units	
V _{DSS}	Drain-Source Voltage		20	-20	V
V _{GSS}	Gate-Source Voltage		±12	±12	V
I _D	Drain Current - Continuous	(Note 1)	0.7	-0.6	А
	- Pulsed		2.1	-2	
P_D	Power Dissipation for Single Operation	(Note 1)	0	W	
T _J , T _{STG}	Operating and Storage Junction Temperat	–55 to	°C		

Thermal Characteristics

R_{BJA} Thermal Resistance, Junction-to-Ambient (Note 1) 415 °C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.32			8mm	3000 units

©2009 Fairchild Semiconductor Corporation FDG6332C_F085 Rev C2 (W)

Symbol	Parameter		Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					•	
BV _{DSS}	Drain-Source Breakdown Volta	ge	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 –20			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperatur Coefficient	re	$I_D = 250 \mu A, Ref. to 25^{\circ}C$ Q1 $I_D = -250 \mu A, Ref. to 25^{\circ}C$ Q2		14 -14		mV/°C
I _{DSS}	Zero Gate Voltage Drain Currer	nt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 -1	μΑ
I _{GSSF} /I _{GSSR}	Gate–Body Leakage, Forward		$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
I _{GSSF} /I _{GSSR}	Gate-Body Leakage, Reverse		$V_{GS} = \pm 12V$, $V_{DS} = 0 V$			±100	nA
On Char	acteristics (Note 2)						
V _{GS(th)} Gate Threshold Voltage		Q1	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	0.6	1.1	1.5	V
, ,		Q2	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.6	-1.2	-1.5	
$\Delta V_{GS(th)}$	Gate Threshold Voltage	Q1	I _D = 250 μA,Ref. To 25°C		-2.8		mV/°C
ΔT _J	Temperature Coefficient	Q2	$I_D = -250 \mu\text{A}, \text{Ref. to } 25^{\circ}\text{C}$		3		,
R _{DS(on)}	Static Drain-Source	Q1	$V_{GS} = 4.5 \text{ V}, I_D = 0.7 \text{ A}$		180	300	mΩ
	On-Resistance		$V_{GS} = 2.5 \text{ V}, I_D = 0.6 \text{ A}$		293	400	
			$V_{GS} = 4.5 \text{ V}, I_D = 0.7 \text{A}, T_J = 125 ^{\circ}\text{C}$		247	442	
		Q2	$V_{GS} = -4.5 \text{ V}, I_D = -0.6 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -0.5 \text{ A}$		300	420	
			$V_{GS} = -2.5 \text{ V}, I_D = -0.5 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -0.6 \text{ A}, T_J = 125 ^{\circ}\text{C}$		470 400	630 700	
~	Forward Transconductance	Q1	$V_{DS} = 5 \text{ V}$ $I_D = 0.7 \text{ A}$		2.8	7.00	S
g FS	Forward Transconductance						3
_		Q2	$V_{DS} = -5 \text{ V}$ $I_D = -0.6 \text{A}$		1.8		
I _{D(on)}	On–State Drain Current	Q1	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	1			Α
		Q2	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$	-2			
Dynamic	Characteristics						
C _{iss} Input Capacitance		Q1	V _{DS} =10 V, V _{GS} = 0 V, f=1.0MHz		113		pF
7	, ,	Q2	V _{DS} =-10 V, V _{GS} = 0 V, f=1.0MHz		114		,
Coss	Output Capacitance	Q1	V _{DS} =10 V, V _{GS} = 0 V, f=1.0MHz		34		pF
		Q2	V _{DS} =-10 V, V _{GS} = 0 V, f=1.0MHz		24		1
C _{rss}	Reverse Transfer Capacitance	Q1	V _{DS} =10 V, V _{GS} = 0 V, f=1.0MHz		16		pF
Orss	Neverse Transfer Capacitance	Q2	V _{DS} =-10 V, V _{GS} = 0 V, f=1.0MHz		9		Pi
O	Oh avaataviatiaa	QΖ	VBS= 10 V, V GS= 0 V, I=11000112		3	<u> </u>	
	ng Characteristics (Note 2)		1			40	1
t _{d(on)}	Turn-On Delay Time	Q1	For Q1 :		5	10	ns
		Q2	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 1 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5.5	11	
t _r	Turn-On Rise Time	Q1	+		7	15	ns
		Q2	For Q2 : V _{DS} =–10 V, I _D = –1 A		14	25	
$t_{d(off)}$	Turn-Off Delay Time	Q1	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		9	18	ns
		Q2	- 1		6	12	
t_f	Turn-Off Fall Time	Q1	-		1.5	3	ns
^	Tatal Cata Oha	Q2			1.7	3.4	
Q_g	Total Gate Charge	Q1	For Q1 :		1.1	1.5	nC
	0 . 0 . 0:	Q2	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 0.7 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		1.4	2	
Q_{gs}	Gate-Source Charge	Q1	V_{GS} = 4.5 V, R_{GEN} = 6 Ω For Q2 :		0.24		nC
		Q2	V _{DS} =-10 V, I _D = -0.6 A		0.3		
Q_{gd}	Gate-Drain Charge	Q1	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		0.3	ļ	nC
		Q2			0.4		

Electric	cal Characteristics		$T_A = 25$ °C unless otherwise noted					
Symbol	Parameter		Test Condition	Min	Тур	Max	Units	
Drain-S	ource Diode Characterist	ics a	nd Maximum Rating	gs				
Is	Maximum Continuous Drain–Source Diode Forward Current Q1 0.25					0.25	Α	
	Q2 -0.25							
V _{SD} Drain-Source Diode Forv		Q1	$V_{GS} = 0 \text{ V}, I_{S} = 0.25 \text{ A}$	(Note 2)		0.74	1.2	V
Volta	Voltage Q2	$V_{GS} = 0 \text{ V}, I_{S} = -0.25 \text{ A}$	(Note 2)		-0.77	-1.2		

Notes:

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

^{1.} $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design. $R_{\theta JA} = 415^{\circ}\text{C/W}$ when mounted on a minimum pad of FR-4 PCB in a still air environment.

Typical Characteristics: N-Channel

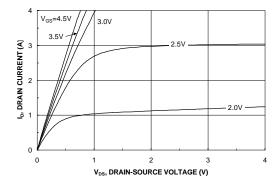


Figure 1. On-Region Characteristics.

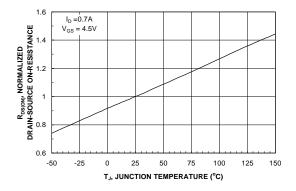


Figure 3. On-Resistance Variation with Temperature.

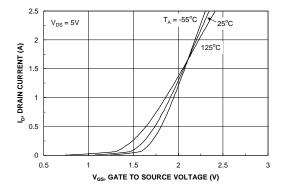


Figure 5. Transfer Characteristics.

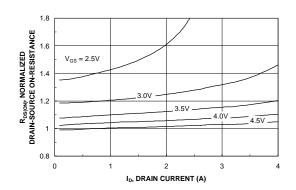


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

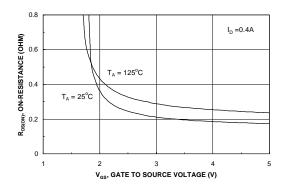


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

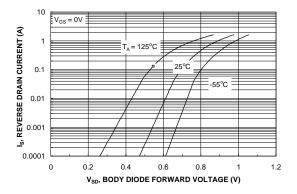


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: N-Channel

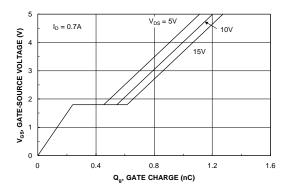


Figure 7. Gate Charge Characteristics.

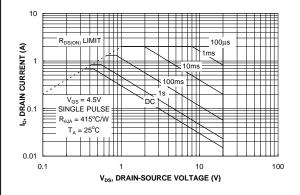


Figure 9. Maximum Safe Operating Area.

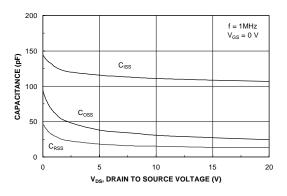


Figure 8. Capacitance Characteristics.

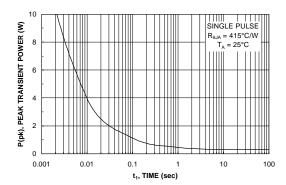


Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics: P-Channel

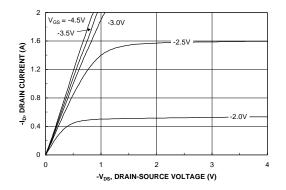


Figure 11. On-Region Characteristics.

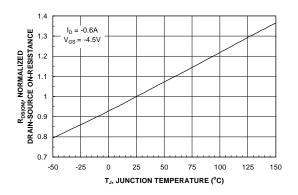


Figure 13. On-Resistance Variation with Temperature.

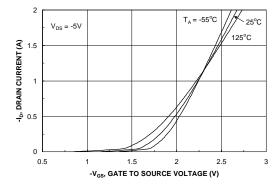


Figure 15. Transfer Characteristics.

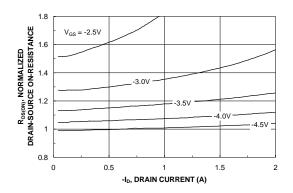


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

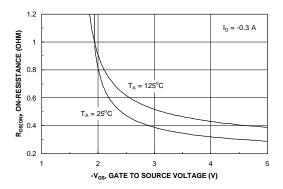


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

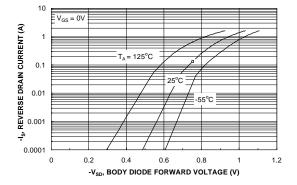
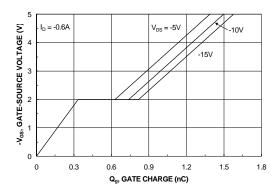



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: P-Channel

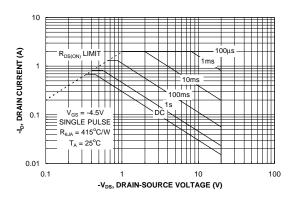



Figure 17. Gate Charge Characteristics.

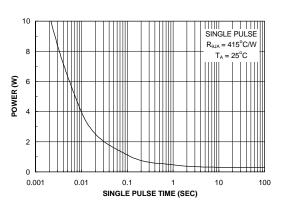


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

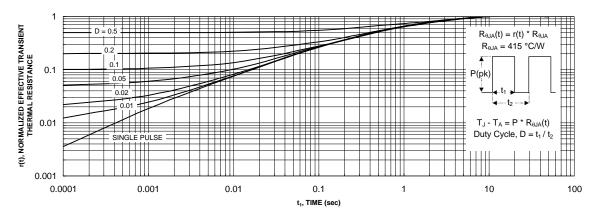


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ F-PFS™ Build it Now™ FRFET®

CorePLUS™ Global Power Resource SM CorePOWER™ Green FPS™

CorePOWERTM Green FPSTM $CROSSVOLT^{TM}$ Green FPSTM e-SeriesTM

 $\begin{array}{llll} {\sf CTL^{\sf TM}} & {\sf Gmax^{\sf TM}} \\ {\sf Current Transfer Logic^{\sf TM}} & {\sf GTO^{\sf TM}} \\ {\sf EcoSPARK}^{\otimes} & & {\sf IntelliMAX^{\sf TM}} \\ {\sf EfficentMax^{\sf TM}} & {\sf ISOPLANAR^{\sf TM}} \\ {\sf EZSWITCH^{\sf TM*}} & & {\sf MicROCOUPLER^{\sf TM}} \\ \hline {\sf EZZ^{\sf TM*}} & & {\sf MicroFET^{\sf TM}} \\ \end{array}$

Fairchild® MicroPak™
MillerDrive™
MotionMax™
Fairchild Semiconductor® Motion-SPM™
FACT Quiet Series™ OPTOLOGIC®
FACT® OPTOPLANAR®

FAST[®] FastvCore™

FETBench™ PDP SPM™
FlashWriter®* Power-SPM™
FPS™

PowerTrench[®] PowerXS[™]

Programmable Active Droop™

QFĒT[®]
QS™
Quiet Series™
RapidConfigure™

O_{TM}

Saving our world, 1mW/W/kW at a time[™] SmartMax[™] SMART START™

SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS™
SyncFET™
SyncJeck™

Sync-Lock™

Sync-Lock™

SYSTEM ®*

GENERAL

The Power Franchise® the production of the produ

µSerDes™
SerDes
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCL AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. I40