FAIRCHILD

SEMICONDUCTOR

MM74HC423A Dual Retriggerable Monostable Multivibrator

General Description

The 74HC423A high speed monostable multivibrators (one shots) utilize advanced silicon-gate CMOS technology. They feature speeds comparable to low power Schottky TTL circuitry while retaining the low power and high noise immunity characteristic of CMOS circuits.

Each multivibrator features both a negative, A, and a positive, B, transition triggered input, either of which can be used as an inhibit input. Also included is a clear input that when taken LOW resets the one shot. The MM74HC423A cannot be triggered from clear.

The MM74HC423A is retriggerable. That is, it may be triggered repeatedly while its outputs are generating a pulse and the pulse will be extended.

Pulse width stability over a wide range of temperature and supply is achieved using linear CMOS techniques. The output pulse equation is simply: $PW = (R_{EXT})$ (C_{EXT}); where PW

is in seconds, R is in ohms, and C is in farads. All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

September 1983 Revised January 2004

MM74HC423A Dual Retriggerable Monostable Multivibrato

Ordering	Code:
----------	-------

Order Number	Package Number	Package Description
MM74HC423AM (Note 1)	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC423ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC423AMTC (Note 1)	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC423AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
		16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Specify by appending the suffix letter "X" to the ordering code.

Features

■ Typical propagation delay: 40 ns

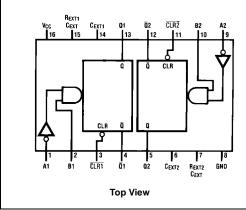
■ Wide power supply range: 2V–6V

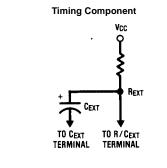
■ Low input current: 1 µA maximum

■ Simple pulse width formula T = RC

■ Wide pulse range: 400 ns to ∞ (typ)

■ Part to part variation: ±5% (typ)

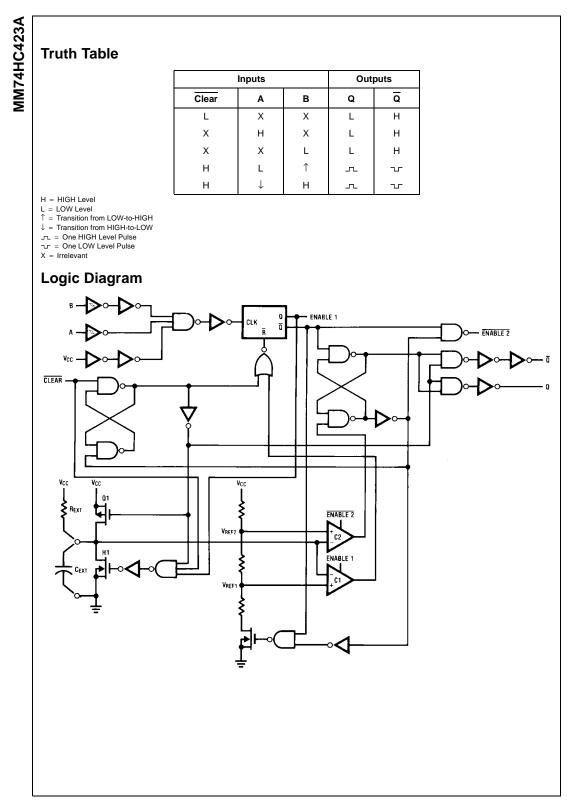

be as slow as one second

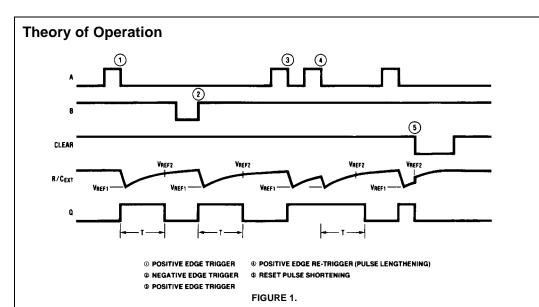

■ Fanout of 10 LS-TTL loads

■ Low quiescent current: 80 µA maximum (74HC Series)

Schmitt Trigger A & B inputs allow rise and fall times to

Connection Diagrams





Note: Pin 6 and Pin 14 must be hard-wired to GND.

© 2004 Fairchild Semiconductor Corporation DS005338

查询"MM74HC423AM"供应商

TRIGGER OPERATION

As shown in Figure 1 and the Logic Diagram before an input trigger occurs, the one-shot is in the quiescent state with the Q output LOW, and the timing capacitor CEXT completely charged to $V_{\mbox{CC}}.$ When the trigger input A goes from V_{CC} to GND (while inputs B and clear are held to $V_{CC})$ a valid trigger is recognized, which turns on comparator C1 and N-Channel transistor N11. At the same time the output latch is set. With transistor N1 on, the capacitor C_{EXT} rapidly discharges toward GND until $\mathrm{V}_{\mathrm{REF1}}$ is reached. At this point the output of comparator C1 changes state and transistor N1 turns OFF. Comparator C1 then turns OFF while at the same time comparator C2 turns on. With transistor N1 OFF, the capacitor $\mathrm{C}_{\mathrm{EXT}}$ begins to charge through the timing resistor, R_{EXT} , toward $V_{\text{CC}}.$ When the voltage across C_{EXT}equals V_{REF2}, comparator C2 changes state causing the output latch to reset (Q goes LOW) while at the same time disabling comparator C2. This ends the timing cycle with the one-shot in the quiescent state, waiting for the next triager.

A valid trigger is also recognized when trigger input B goes from GND to V_{CC} (while input A is at GND and input clear is at $V_{CC}2$.)

It should be noted that in the quiescent state C_{EXT} is fully charged to V_{CC} causing the current through resistor R_{EXT} to be zero. Both comparators are "OFF" with the total device current due only to reverse junction leakages. An added feature of the MM74HC423A is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_{EXT}, R_{EXT} , or the duty cycle of the input waveform.

RETRIGGER OPERATION

The MM74HC423A is retriggered if a valid trigger occurs 3 followed by another trigger 4 before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin or has begun to rise from V_{REF1}, but has not yet reached V_{REF2}, will cause an increase in output pulse width T. When a valid retrigger is initiated 4, the voltage at the R/C_{EXT} pin will again drop to V_{REF1} before progressing along the RC charging curve toward V_{CC}. The Q output will remain high until time T, after the last valid retrigger.

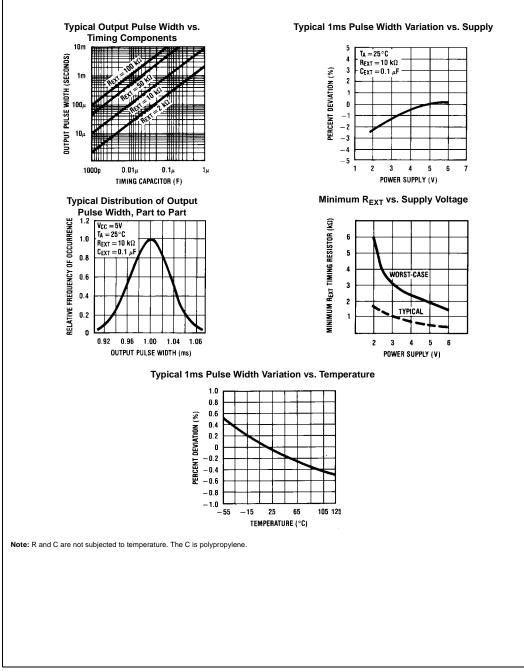
Because the trigger-control circuit flip-flop resets shortly after C_X has discharged to the reference voltage of the lower reference circuit, the minimum retrigger time, t_{rr} is a function of internal propagation delays and the discharge time of C_X:

$$t_{rr} = 20 + \frac{187}{V_{CC} - 0.7} + \frac{565 + (0.256 \, V_{CC}) \, C_X}{(V_{CC} - 0.7)^2} \, \text{ns}$$

Another removal/retrigger time occurs when a short clear pulse is used. Upon receipt of a clear, the one shot must charge the capacitor up to the upper trip point before the one shot is ready to receive the next trigger. This time is dependent on the capacitor used and is approximately:

$$t_{rr} = 20 + \frac{187}{V_{CC} - 0.7} + \frac{565 + (0.256 V_{CC}) C_X}{(V_{CC} - 0.7)^2} \text{ ns}$$

www.fairchildsemi.com


MM74HC423A

Theory of Operation (Continued) RESET OPERATION

These one shots may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on clear sets the reset latch and causes the capacitor to be fast charged to V_{CC} by turning on transistor Q1 5. When the voltage on the capacitor reaches V_{REF2} , the reset latch will clear and then be ready to accept another pulse. If the

clear input is held LOW, any trigger inputs that occur will be inhibited and the Q and \overline{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Clear input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

(Note 3)

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

(
Supply Voltage (V _{CC})	-0.5V to +7.0V	
DC Input Voltage (V _{IN})	–1.5V to V _{CC} +1.5V	Su
DC Output Voltage (V _{OUT})	–0.5V to V_{CC} +0.5V	DC
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	(
DC Output Current, per pin (I _{OUT})	±25 mA	Op
DC V _{CC} or GND Current,		Ma
per pin (I _{CC})	±50 mA	(Cl
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
Power Dissipation (P _D)		
(Note 4)	600 mW	
S.O. Package only	500 mW	Note
Lead Temperature (T _L)		devic
(Soldering 10 seconds)	260°C	Note Note
		12m

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T_A)	-40	+85	°C
Maximum Input Rise and Fall Time			
(Clear Input)			
$V_{CC} = 2.0V$		1000	ns

 $\begin{array}{ccc} V_{CC}=4.5V & 500 & ns \\ V_{CC}=6.0V & 400 & ns \end{array}$ Note 2: Maximum Ratings are those values beyond which damage to the

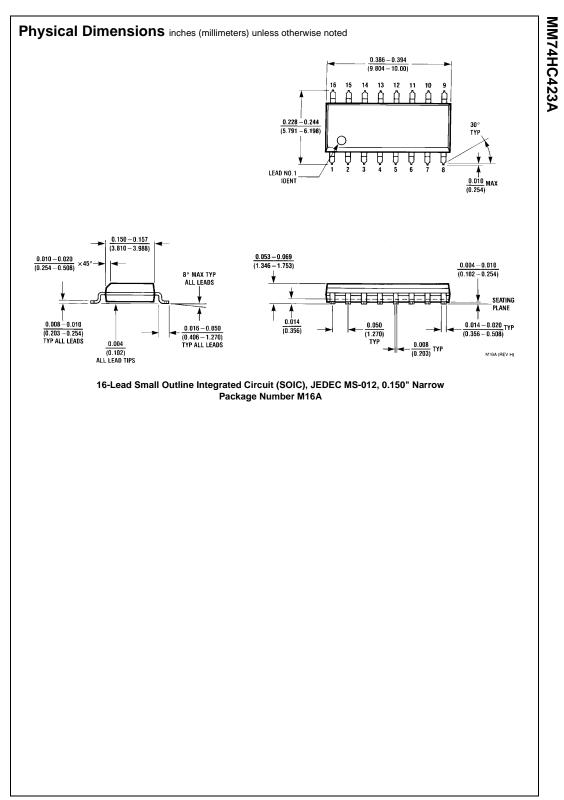
device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground. Note 4: Power Dissipation Temperature Derating: Plastic "N" Package: – 12mW/°C from 65°C to 85°C.

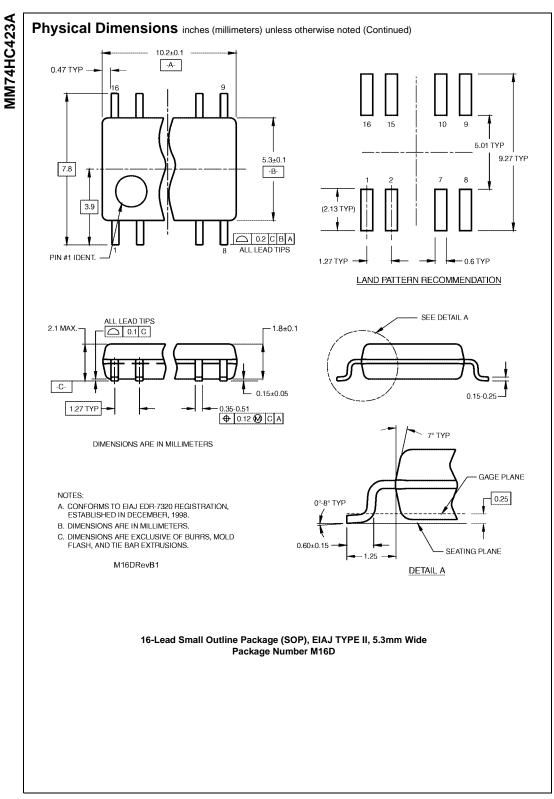
DC Electrical Characteristics (Note 5)

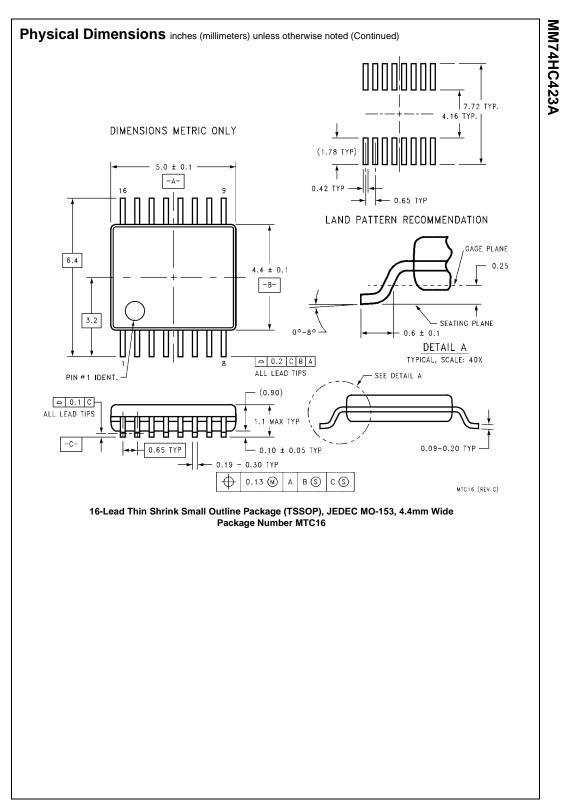
Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_{A}=-40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
•	Farameter	Conditions	•cc	Тур		Guaranteed L	Units	
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.3	0.3	0.3	
	Input Voltage		4.5V		0.9	0.9	0.9	V
			6.0V		1.2	1.2	1.2	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	
			4.5V	4.5	4.4	4.4	4.4	
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V		3.96	3.84	3.7	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V		5.46	5.34	5.2	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	
			4.5V	0	0.1	0.1	0.1	
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4 \text{ mA}$		0.4				
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V		0.26	0.33	0.4	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	5.0V		0.5	5.0	5.0	μA
	(Pins 7, 15)							
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	(all other pins)							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current (standby)	$I_{OUT} = 0 \ \mu A$						
I _{CC}	Maximum Active Supply	$V_{IN} = V_{CC}$ or GND	2.0V	36	80	110	130	μΑ
	Current (per	$R/C_{EXT} = 0.5V_{CC}$	4.5V	0.33	1.0	1.3	1.6	mA
	monostable)		6.0V	0.7	2.0	2.6	3.2	mA

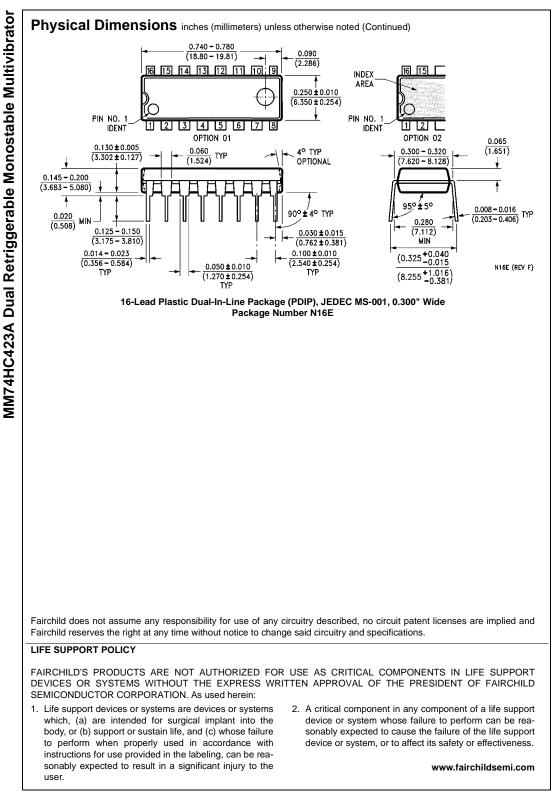
Note 5: For a power supply of 5V \pm 10% the worst-case output voltages (V_{OH}, V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


MM74HC423A

5


SymbolParameterConditionstrpLHMaximum Trigger Propagation Delay, A, B to Q		$/, T_{A} = 25^{\circ}C, C_{L} = 15 \text{ pF}, t_{r}$		τ					2	
InitialA, B to QterHLMaximum Trigger Propagation Delay, A, B to QtPHLMaximum Propagation Delay, Clear to QtPLHMaximum Propagation Delay, Clear to QtPLHMaximum Propagation Delay, Clear to QtwwMinimum Pulse Width, A, B or CleartwwMinimum Output Pulse WidthtwQ(MIN)Minimum Output Pulse WidthtwQOutput Pulse WidthtwQOutput Pulse WidthtwQOutput Pulse WidthtwQOutput Pulse WidthtwQOutput Pulse WidthtwQOutput Pulse WidthtreptCEXT = 1000 pF REXT = 10 kΩtpLHMaximum Trigger Propagation Delay, A or B to QtpHLMaximum Trigger Propagation Delay, A or B to QtpHLMaximum Propagation Delay, A or B to QtpHLMaximum Propagation Delay, Clear to QtpHLMaximum Propagation Delay, Clear to QtpLHMaximum Propagation Delay, Clear to QtpLHMaximum Propagation Delay, Clear to QtwwMinimum Pulse Width A, B, CleartwqQutput Pulse Width A, B, CleartwqQutput Pulse Width REXT = 0.1 µF REXT = 10 KΩtwqMinimum Clear RexT = 0.1 µF RexT = 10 KΩtwqQutput Pulse Width RexT = 0.1 µF RexT = 10 KΩtwqQutput Pulse Width RexT = 0.1 µF RexT = 10 KΩtwqQutput Pulse Width RexT = 0.1 µF RexT = 10 KΩtwqMinimum Clear RexT = 0.1 µF RexT = 10 KΩtwqMinimu	Symbol Parameter		ter	r Conditions				Тур	Guatanteed Limit	Ur
A, B to \overline{Q} Maximum Propagation Delay, Clear to QVertical Clear to QtpLHMaximum Propagation Delay, Clear to \overline{Q} Vertical Clear to \overline{Q} twMinimum Pulse Width, A, B or ClearVertical Clear to \overline{Q} twQ(MIN)Minimum Output Pulse Width $C_{EXT} = 28 \text{ pF}$ $R_{EXT} = 2 k\Omega$ twQOutput Pulse Width $C_{EXT} = 1000 \text{ pF}$ 			agation Delay,	gation Delay,				22	33	r
$\begin{tabular}{ c c c c } \hline Clear to Q & & & & & & & & & & & & & & & & & & $	łL		agation Delay,					25	42	r
$\begin{tabular}{ c c c c c } \hline Clear to \overline{Q} & & & & & & & & & & & & & & & & & & &$	۱L		Delay,					20	27	r
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Н		Delay,	\square				22	33	r
$\begin{array}{c c c c c c c } \hline t_{WQ}(\text{MIN}) & \text{Minimum Output Pulse Width} & C_{EXT} = 28 \ \text{pF} \\ R_{EXT} = 2 \ \text{k}\Omega \\ \hline t_{WQ} & \text{Output Pulse Width} & C_{EXT} = 10 \ \text{k}\Omega \\ \hline \hline t_{WQ} & \text{Output Pulse Width} & C_{EXT} = 10 \ \text{k}\Omega \\ \hline $, A, B or Clear	+				14	26	r
$\begin{array}{c c c c c c c } \hline \mbox{Work(MIN)} & \mbox{Minimum Output Pulse Width} & \begin{tabular}{ c c c c c } \hline C_{EXT} = 28 \ \mbox{P}F \\ R_{EXT} = 2 \ \mbox{K}\Omega \\ \hline \mbox{Rext} = 10 \ \mbox{K}\Omega \\ \hline \mbox{Cext} = 10 \ \mbox{Cext} \\ \hline $		Minimum Clear Remov	val Time	+-					0	r
$\begin{tabular}{ c c c c } \hline $$ R_{EXT} = 10 \ K\Omega$ \\ \hline $$ Symbol$ $$ Parameter$ $$ Conditions$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		Minimum Output Pulse	Width					400		r
$\begin{array}{c c c c c c c c } \hline \textbf{AC Electrical Characteristics}\\ \hline \textbf{C}_L = 50 \mbox{ pF } t_r = t_f = 6 \mbox{ ns (Unless otherwise specified)} \\ \hline \textbf{Symbol} & \hline \textbf{Parameter} & \hline \textbf{Conditions} & \hline \textbf{V}_{CC} & \hline \hline \textbf{Typ} \\ \hline \textbf{T}_{PLH} & Maximum Trigger Propagation \\ Delay, A \mbox{ or B to Q} & 2.0V & 21 \\ \hline \textbf{t}_{PHL} & Maximum Trigger Propagation \\ Delay, A \mbox{ or B to $\overline{\mathbf{Q}}$} & 2.0V & 88 \\ \hline \textbf{0} & & 2.0V & 21 \\ \hline \textbf{t}_{PHL} & Maximum Trigger Propagation \\ Delay, A \mbox{ or B to $\overline{\mathbf{Q}}$} & 2.0V & 54 \\ \hline \textbf{0} & & 2.0V & 55 \\ \hline \textbf{0} & & 2.0V & 55 \\ \hline \textbf{0} & & 2.0V & 56 \\ \hline \textbf{0} & & 2.0V & 57 \\ \hline \textbf{4}, \textbf{B}, Clear \mbox{ op} & & 4.5V & 25 \\ \hline \textbf{6} & & 2.0V & 57 \\ \hline \textbf{A}, \textbf{B}, Clear \mbox{ op} & & 4.5V & 17 \\ \hline \textbf{6} & & 6.0V & 12 \\ \hline \textbf{t}_{REM} & \hline \textbf{Minimum Pulse Width} & & 2.0V & 57 \\ \hline \textbf{4}, \textbf{B}, Clear \mbox{ op} & & 4.5V & 0 \\ \hline \textbf{6} & & 0 & 1 \\ \hline \textbf{t}_{WQ} & \hline \textbf{Output Pulse Width} & \hline \textbf{C}_{EXT} = 0.1 \ \mu F \\ \hline \textbf{Max} & 5.0V & 1 \\ $	Q	Output Pulse Width						10		h
$\begin{tabular}{ c c c c c } \hline \textbf{Symbol} & \begin{tabular}{ c c c c } \hline \textbf{Parameter} & \begin{tabular}{ c c c } \hline \textbf{Conditions} & \begin{tabular}{ c c c } \hline \textbf{V}_{CC} & \hline \textbf{Typ} \\ \hline \textbf{Tup} \hline \textbf{Tup} \\ \hline \textbf{Tup} \hline \textbf{Tup} \hline \textbf{Tup} \\ \hline \textbf{Tup} \hline \textbf{Tup} \hline \textbf{Tup} \hline \textbf{Tup} \hline T$	VC EI	lectrical Charac	teristics	4			+	+	+	
$ \begin{array}{ c c c } \hline \mbox{Symbol} & \mbox{Parameter} & \mbox{Conditions} & \mbox{V}_{CC} & \hline \mbox{Typ} \\ \hline \\mbox{Typ} \\ \hline \\mbox{Typ} \\ \hline \\mbox{Typ} \\ \hline \mbox{Typ} \\ \hline \\mbox{Typ} \\ $	<u> </u>				—	T _A = 25°C		$T_{A} = -40$ to 85°C $T_{A} = -55$ to 125°		0 125°C
$ \begin{array}{c c c c c c c } t_{\text{PLH}} & \begin{array}{c c c c c c } Maximum Trigger Propagation \\ Delay, A or B to Q & & & & & & & & & & & & & & & & & & $	/mbol	Parameter	Condition	ıS	V _{cc}		<u> </u>	Guarantee		
$ \begin{array}{ c c c c c } \hline \mbox{Delay, A or B to Q} & 4.5V & 26 \\ \hline \mbox{6.0V} & 21 \\ \hline \mbox{belay, A or B to \overline{Q}} & 2.0V & 88 \\ \hline \mbox{Delay, A or B to \overline{Q}} & 4.5V & 29 \\ \hline \mbox{6.0V} & 24 \\ \hline \mbox{belay, A or B to \overline{Q}} & 2.0V & 54 \\ \hline \mbox{Delay, Clear to Q} & 4.5V & 23 \\ \hline \mbox{Delay, Clear to Q} & 4.5V & 23 \\ \hline \mbox{belay, Clear to \overline{Q}} & 6.0V & 19 \\ \hline \mbox{tpLH} & \mbox{Maximum Propagation} & 2.0V & 56 \\ \mbox{Delay, Clear to \overline{Q}} & 4.5V & 25 \\ \hline \mbox{6.0V} & 19 \\ \hline \mbox{tpLH} & \mbox{Maximum Propagation} & 2.0V & 56 \\ \mbox{Delay, Clear to \overline{Q}} & 4.5V & 25 \\ \hline \mbox{6.0V} & 20 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 2.0V & 57 \\ \hline \mbox{A, B, Clear} & 4.5V & 17 \\ \hline \mbox{6.0V} & 12 \\ \hline \mbox{tr} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tr} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tr} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 2.0V & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 4.5V & 0 \\ \hline \mbox{6.0V} & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 4.5V & 0 \\ \hline \mbox{6.0V} & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 4.5V & 0 \\ \hline \mbox{6.0V} & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 4.5V & 0 \\ \hline \mbox{6.0V} & 0 \\ \hline \mbox{tw} & \mbox{A, B, Clear} & 4.5V & 0 \\ \hline \mbox{A, B, Clear} & \ \mbox{A, B, Clear} & 4.5V & 0 \\ \hline \mbox{A, B, Clear} & \ \ \ \mbox{A, B, Clear} & \ \ \ \mbox{A, B, Clear} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	н /	Maximum Trigger Propagatior	1		2.0V		169	194	210	
$\begin{tabular}{ c c c c c } \hline t_{PHL} & Maximum Trigger Propagation \\ Delay, A or B to $\overline{\Omega}$ & $2.0V$ & 88 \\ \hline d.5V$ & 29 \\ $6.0V$ & 24 \\ \hline t_{PHL} & Maximum Propagation \\ Delay, Clear to $\overline{\Omega}$ & $2.0V$ & 54 \\ \hline Delay, Clear to $\overline{\Omega}$ & $2.0V$ & 54 \\ \hline d.5V$ & 23 \\ $6.0V$ & 19 \\ \hline t_{PLH} & Maximum Propagation \\ Delay, Clear to $\overline{\Omega}$ & $2.0V$ & 56 \\ \hline Delay, Clear to $\overline{\Omega}$ & $2.0V$ & 56 \\ \hline d.5V$ & 25 \\ \hline d.0V$ & 20 \\ \hline t_{W} & Minimum Pulse Width \\ A, B, Clear & $4.5V$ & 17 \\ \hline d.0V$ & 12 \\ \hline t_{REM} & Minimum Clear \\ Removal Time & $2.0V$ & 0 \\ \hline t_{WQ} & Output Pulse Width & $C_{EXT} = 0.1 \mu F$ \\ \hline t_{NUR} & 0 \\ \hline t_{WQ} & Output Pulse Width & $C_{EXT} = 0.1 \mu F$ \\ \hline t_{TLH}, t_{THL} & Maximum Output Rise & $2.0V$ & 30 \\ \hline \end{tabular}$				ļ	4.5V	26	42	51	57	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							32	39	44	
$\begin{tabular}{ c c c c } \hline \mathbf{h} $\mathbf{h}$$			1				197	229	250	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ſ	Delay, A or B to Q		ļ			48	60	67	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \rightarrow $	11 1 D separting					38	46	51	
$\begin{tabular}{ c c c c } \hline \mathbf{h}_{PLH} & Maximum Propagation \\ Delay, Clear to $\overline{\mathbf{Q}}$ & $2.0V$ & 56 \\ & $2.0V$ & 25 \\ & $6.0V$ & 20 \\ \hline \mathbf{h}_{W} & Minimum Pulse Width \\ A, B, Clear & $2.0V$ & 57 \\ A, B, Clear & $4.5V$ & 17 \\ & $6.0V$ & 12 \\ \hline \mathbf{h}_{Rem} & \mathbf{h}_{Re				ļ			114 34	132 41	143	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Delay, Clear to Q		ļ			34 28	41 33	45 36	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Maximum Propagation	+			-	116	135	147	
$\begin{array}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$				ļ			36	42	46	
$\begin{array}{c} t_W \\ h_W \\ A, B, Clear \\ t_{REM} \\ t_{Removal Time} \end{array} \begin{array}{c} \medskip \\ Minimum Clear \\ Removal Time \\ t_{WQ} \\ \medskip \\ t_{WQ} \end{array} \begin{array}{c} \medskip \\ Output Pulse Width \\ t_{TLH}, t_{THL} \\ t_{TLH}, t_{THL} \end{array} \begin{array}{c} \medskip \\ A, B, Clear \\ Minimum Clear \\ Removal Time \\ t_{TLH}, t_{THL} \\ Maximum Output Rise \end{array} \begin{array}{c} \medskip \\ 2.0V \\ 4.5V \\ 4.5V \\ 4.5V \\ 0 \\ 6.0V \\ 0 \end{array} \begin{array}{c} \medskip \\ 5.0V \\ 1 \\ \medskip \\ Max \\ 5.0V \\ 1 \end{array} \end{array}$		50kg, 2022 12 12		ļ			29	34	37	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Minimum Pulse Width	+	+		-	123	144	157	
$\begin{array}{c} t_{REM} \\ Removal Time \\ t_{WQ} \end{array} \begin{array}{c} \text{Minimum Clear} \\ \text{Removal Time} \\ \end{array} \begin{array}{c} 2.0V & 0 \\ 4.5V & 0 \\ 6.0V & 0 \\ \end{array} \\ t_{WQ} \end{array} \\ \begin{array}{c} \text{Min} \\ \text{S.0V} \end{array} \begin{array}{c} 1 \\ \text{Min} \\ \text{S.0V} \end{array} \begin{array}{c} 1 \\ 1 \\ \text{Max} \\ \text{S.0V} \end{array} \begin{array}{c} 1 \\ 1 \\ \text{Max} \end{array} \end{array}$				ļ			30	37	42	
$\begin{array}{c c} \mbox{Removal Time} & 4.5V & 0 \\ \hline & & & & \\ \hline t_{WQ} & \mbox{Output Pulse Width} & \mbox{C}_{EXT} = 0.1\mu\text{F} & \mbox{Min} & 5.0V & 1 \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline $				ļ	6.0V	12	21	27	30	
$\frac{t_{WQ}}{t_{WQ}} \begin{array}{c} \text{Output Pulse Width} \\ \hline t_{TLH}, t_{THL} \end{array} \begin{array}{c} C_{EXT} = 0.1 \mu F \\ R_{EXT} = 10 k\Omega \end{array} \begin{array}{c} \text{Min} \\ \hline \text{Max} \\ \hline \text{Max} \\ 5.0V \end{array} \begin{array}{c} 1 \\ \hline \text{Max} \\ 30 \end{array}$	-M	Minimum Clear	1		2.0V	0	0	0	0	
$ \begin{array}{c c} t_{WQ} & \mbox{Output Pulse Width} & \begin{tabular}{c} C_{EXT} = 0.1 \ \mu F \\ R_{EXT} = 10 \ k\Omega & \end{tabular} & \e$	F	Removal Time		ļ			0	0	0	
$\frac{1}{R_{EXT}} = 10 \text{ k}\Omega$						-	0	0	0	
t _{TLH} , t _{THL} Maximum Output Rise 2.0V 30	۲ ۲	Output Pulse Width					0.9	0.86	0.85	
		Direct Direct	_ _ '	Max			1.1	1.14	1.15	
and Fail lime 4.5v o				ļ			75 15	95	110	
6.0V 7	ſ	and Fall time		ļ			15 13	19 16	22 19	
C _{PD} Power Dissipation 83		Power Dissipation	+		0.00		15	10	10	
Capacitance (Note 6)	D			ļ	1 '	00				
C _{IN} Maximum Input 12			+			12	20	20	20	
Capacitance (Pins 7 & 15)				ļ	1 '					
C _{IN} Maximum Input 6		, ,	+	+		6	10	10	10	


 $I_{S} = C_{PD} V_{CC} f + I_{CC}.$


查询"MM74HC423AM"供应商

查询"MM74HC423AM"供应商

